Effects of arbuscular mycorrhizal fungi on caesium accumulation and the ascorbate-glutathione cycle of *Sorghum halepense*

Ren-Hua Huanga,b, Yun-Mei Lub, Hui-Ling Yanga,b, Wei Huanga,b, Ke Chena,*

a Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
b College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
* Corresponding author, e-mail: huangrenhua@swust.edu.cn

Received 27 Aug 2014
Accepted 30 Oct 2016

ABSTRACT: A pot experiment was conducted to study the effects of *Glomus mosseae* and *Glomus versiforme* on the ascorbate-glutathione cycle metabolism and caesium enrichment in roots and leaves of *Sorghum halepense*. The results showed that inoculated *G. mosseae* and *G. versiforme* significantly increased the concentrations of ascorbate (AsA) and reduced glutathione (GSH), the ratios of AsA/DHA (dehydroascorbate) and GSH/GSSG (oxidized glutathione) in roots and leaves of *S. halepense* in Cs contaminated soil. Additionally, the inoculated arbuscular mycorrhizal fungi increased the antioxidant enzyme activities of the ascorbate-glutathione cycle, with the best efficiency provided by *G. mosseae*. The activities of antioxidant enzymes (ascorbate peroxidase, APX, EC 1.11.1.11; dehydroascorbate reductase, DHAR, EC 1.8.5.1; and glutathione reductase, glutathione reductase (GR), EC 1.8.1.7) in the roots were, respectively, 4.7, 3.6, and 2.3 times higher than those in non-inoculated roots, and the activities of DHAR was 1.7 times higher than that in non-inoculated leaves. However, *G. versiforme* increased the activity of monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) 2.39 U/g fresh weight, and the activities of APX and GR were 6.8 and 1.4 times higher than for nonmycorrhizal plants. *G. versiforme* also increased the accumulation of caesium in roots and leaves but to a lesser extent than *G. mosseae*, and with a positive effect on translocation. Thus arbuscular mycorrhizal fungi promotes efficient operation of ascorbate-glutathione cycle in the roots and leaves of *S. halepense*, enhancing its tolerance to Cs stress.

KEYWORDS: bioremediation, phytoremediation, Johnson grass, Cs stress

INTRODUCTION

Environmental pollution by radiocaesium (134Cs and 137Cs) results from nuclear installations and above-ground testing of thermo-nuclear weapons, thereby the soil becomes the world major reservoir1,2. Due to the low mobility of radiocaesium in soils, this radio-pollutant mainly accumulates in the topsoil3; as a consequence, one of the principal routes for radiocaesium entry into the food chain is by means of soil-to-plant4, becoming a serious hazard for human health5,6. To limit caesium dispersion in the environment, various remedial actions including mineral amendments, K fertilization agricultural-based countermeasures7, and chemical and bioindicator methods8 have been proposed. Of them, phytoremediation was regarded as the most compatible method for long-term bioremediation of radiocaesium contaminated soils, because it is not destructive for the environment9. The plants used for bioremediation however do not grow well or even die in environments contaminated with low-level of radionuclides, which destroys the rhizosphere microenvironment of the plants10,11. Thus a combination of the plants and microorganisms with mutual benefits has been proposed recently to remove or immobilize radiocaesium12,13.

The arbuscular mycorrhizal fungi (AMF) are universal soil microbes constituting an integral component of terrestrial ecosystems, forming symbiotic associations with plant root systems of over 80% of all terrestrial plant species, including most angiosperms, some gymnosperms, pteridophytes, lycopsids, and mosses14,15. AMF are involved in the most widely distributed root symbioses among the soil microflora, forming associations with most ter-
restrial flowering plants, improving their growth conditions, and alleviating toxicity of environmental stresses such as diesel contamination. AMF are developed inside roots and within the soil by forming extensive extraradical mycelium nets which help the plant to extract mineral nutrients and water from the soil. AMF have been introduced into phytoremediation of soil contaminated with radionuclides to enhance plant resistance and capacity to accumulate radionuclides. Declerck et al demonstrated that the extraradical hyphal network of AMF incorporate and translocate radiocaesium from a radiocaesium labelled root-free compartment to a root compartment, using a monoxenic multi-compartment growing system. De Boulois et al suggested that there was the possibility, although limited, of radiocaesium accumulation in the intraradical mycelium. Chen et al also reported that AMF raised the biomass of Pteris vittata, significantly, when increased U concentrations in the root, and had a high transfer factor value, indicating that the intraradical hyphae may take advantage of microorganisms and rhizosphere microenvironment to transform radionuclides in soil effectively. Additionally, it has been reported that intraradical fungal structures of Glomus lamelloseum can induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem.

The ascorbate-glutathione cycle has an important function in alleviating damage of plants under stress. The ascorbate (AsA) is the most abundant antioxidant in plants and plays a role in the response to oxidative stress. It has been shown that exogenous application of ascorbate increases resistance to chilling, drought, and salt stresses. Simultaneously, reduced glutathione (GSH) is central to the regeneration of ascorbic acid in the ascorbate-glutathione cycle and is used as a potential marker for oxidative changes in plant metabolism. The antioxidant enzymes including ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7) constitute ascorbate-glutathione cycle. The present study showed that the four participating enzymes increased more than the control after 70 days experimental free-air ozone exposure. This study aimed to evaluate the effects of AMF (G. mosseae and G. versiforme) on ascorbate-glutathione cycle of Sorghum halepense on alleviating caesium stress in soil. The findings would have important implications in revealing the mechanisms that confer stress resistance and provide insights into the potential of S. halepense to adapt to environmental stress.

MATERIALS AND METHODS

The soil contaminated with Cs treatments

The soils used for experiments were from Southwest University of Science and Technology (SWUST) garden. To prepare the soils, they were mixed with clean river sands (7:1, v/v) after removing grassroots. Those mixtures had pH 5.81, 1.84 g/kg of total nitrogen, 10.62 mg/kg of effective phosphorus, 25.65 mg/kg of effective potassium 25% of water moisture capacity, and 8.4 g/kg of organic matter content. Before the experiments the soils were autoclaved 24 h and then 8.0 kg of the mixture, 0.1 g of fertilizers (NH₄)₂SO₄, and 0.05 g of KH₂PO₄ were added into each pot at seeding time with addition of water to keep the moisture saturated for two weeks. Then, 20 mg/kg of CsCl solution, which was prepared considering two factors: plant growth condition and soil condition contaminated with CsCl determined according to the CsCl gradient experiment, was added to each pot. At the second day of the experiment, water was added to keep water-holding capacity from 70% to 80%. The soils were kept in wet conditions with regular addition of water to maintain the moisture capacity. Cs concentrations in the surface and underlying of soil were measured weekly. There was no significant difference of Cs concentrations between the surface and underlying of soil after 4 weeks.

Experimental strain culture

Four weeks later, G. mosseae and G. versiforme used in the experiment consisted of root segment of the host plant, the corresponding mycorrhizal fungi spore, and rhizosphere soil of mycelium out of roots. Seeds of subterranean clover (Trifolium subterraneum) were surface-sterilized by immersing in 2 M H₂O₂ for 10 min, rinsed in deionized water and germinated on wet tissue for 48 h before sowing. The source of inoculum was an air-dried and sieved (< 2 mm) soil collected from 4 month-old pure culture pots of subterranean clover inoculated with the mixture of G. mosseae and G. versiforme.

Experimental phase

From each of the same size plastic pots, 6.0 kg of mixtures were collected. For mycorrhizal treatments (+Cs+G. mosseae and +Cs+G. versiforme) a portion
of 200 g of soil mixture was added into 50 g of inoculum and nonmycorrhizal (+Cs−AM and −Cs−AM) as control. Meanwhile, S. halepense seeds were sterilized with 10% H2O2 for 10 min, rinsed with distilled water for several times, and germinated at 25°C for 3 days, 8–10 seeds placed onto pot, and then covered using the remained soil. In the 10 groups of control pots, the same sterilized inoculum and treatment were used as monoclonal village. To obtain the 70–80% of water moisture capacity, routine water was provided. The plants were maintained in the greenhouse with 16/8 h light/dark cycles, varying temperature between a minimum of 15°C during the night and a maximum of 29°C on sunny days, and maintaining the humidity between 70 and 80%. The light intensity was in the range 438–1880 µmol m−2 s−1 photon flux density and the minimum was supplied by Philips SON-T 400 daylight lamps (380–779 nm) with an automatic regulation, while the daily maxima were reached on sunny days. Plants were watered daily by weight. After 4 weeks, root samples were taken from pots and analysed for AMF colonization as described below. All tests were done in the new glass greenhouse of Southwest University of Science and Technology.

Determination of mycorrhizal colonization rate

Roots were used to estimate mycorrhizal colonization rate as described by Phillips and Hayman method25. They were carefully washed, cut into 1-cm root segment, fixed with FAA fixative liquid for at least 24 h, and then incubated in 10% KOH for 1.5–2 h at 90°C. Subsequently, after carefully washing with distilled water, the roots were bleached in 10% H2O2 for 10–15 min, acidified for 1 h (or overnight) in 0.2 M HCl. Then the roots were washed carefully four times with distilled water, and immediately added into a trypsin blue-lactic acid phenol solution and dyed for 5 min. To examine the colonies, the root segments were placed on a glass slide coated with mounting medium and covered with cover glass to look at AMF colonization under XSZ-3G biological microscope. The frequency of occurrence of AMF colonization (%) was calculated as the percentage of root segments colonized by hyphae, arbuscular or vesicles/the length of examined root segment.

Determination of AsA and DHA

Five grams of plant root and leaf (FW) were homogenized in 5 ml of 5% (w/v) trichloroacetic acid (TCA). The homogenate was filtered through four layers of Miracloth and centrifuged for 10 min at 16,000 g (4°C). The supernatant was used for assay of AsA and total ascorbate. AsA and DHA were determined using the method described by Chen and Wang26. The AsA assay mixture containing of 0.2 ml of the supernatant, 0.5 ml 100 mM phosphate buffer (pH 7.7), 0.4 ml 10% TCA, 0.4 ml 44% phosphoric acid, 0.4 ml 4% 2,2-bipyridyl, and 0.2 ml 3% ferric trichloride, was incubated for 60 min at 37°C and then cooled down to room temperature. Absorbance of the coloured solution was recorded at 525 nm. The total ascorbate (AsA+DHA) assay mixture, 0.2 ml supernatant, 0.25 ml 100 mM phosphate buffer (pH 7.7) and 0.25 ml 0.2 mM dithiothreitol, was kept for 10 min at room temperature, followed by addition of 0.4 ml TCA (10%), 0.4 ml phosphoric acid (44%), 0.4 ml 4% 2,2-bipyridyl, and 0.2 ml 3% ferric trichloride. The final mixture was incubated for 60 min at 37°C before absorbance at 525 nm was recorded. Dehydroascorbate concentration was estimated from the difference of ‘total ascorbate’ and ‘ascorbate’ concentrations. A standard curve in the range 0–10 mM of ascorbate was used.

Measurement of GSH and GSSG

Five grams of plant root and leaf (FW) were homogenized in 5.0 ml ice-cold 60.0 mM phosphate solution with a chilled mortar and pestle under N2 at 0°C. The homogenate was centrifuged for 15 min at 20,000 g (4°C) and the supernatant was subjected to GSH and GSSG measurement as described by Chen and Wang27. Total GSH equivalents were determined by reacting 0.3 ml supernatant, 0.5 ml of extract with 60 mM KH2PO4–2.5 mM EDTA buffer (pH 7.7), 0.2 ml 0.6 mM 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) in 200 mM Tris-HCl (pH 8.0), 1 ml 1 U of GR (from Sigma, EC 1.6.4.2) and 1 ml 0.2 mM NADPH. The reaction was followed as the rate of change in absorbance at 412 nm, and the total glutathione concentration was calculated from a standard curve. GSSG was determined using the method described by Chen and Wang26. The reaction mixture containing of 0.5 ml 100 mM KH2PO4–2.5 mM EDTA buffer (pH 7.7), and 0.2 ml 0.6 mM DTNB in 200 mM Tris-HCl (pH 8.0). The mixture was incubated at 30°C for 10 min, and the reaction was followed as the rate of change in absorbance at 412 nm. The GSSG concentration was estimated from the difference of ‘total glutathione’ and ‘glutathione’ concentrations. A standard curve in the range 0–10 mM GSH was used.
Determination of APX, MDHAR, DHAR and GR

Samples of fresh plant roots and leaves (5.0 g) were homogenized in 3.5 ml 50 mM ice-cold K_2PO_4 (pH 7.6), containing 1.0 mM EDTA, 1.0 mM sodium ascorbate and 4% polyvinylpyrrolidone. After grinding, 1.5 ml saturated (NH_4)_2SO_4 was added. The homogenate was centrifuged for 20 min at 15 000g (4 °C), and the supernatant was used for the enzyme assays according to Krivosheeva et al with slight modifications.

For the APX assay, the reaction mixture contained 0.8 ml of 0.5 mM ascorbate, 0.1 ml of 2.0 mM H_2O_2 (both were made fresh) and 0.1 ml supernatant. The decrease in absorbance at 290 nm (ascorbate consumption) was recorded for the first three minutes after the reaction had started by adding the enzyme extract (extinction coefficient was 2.8 mM/cm).

For the MDHAR assay, the reaction mixture contained 0.83 ml of 2 mM ascorbate, 0.05 ml 2 mM NADPH, 0.02 ml ascorbate oxidase (two units) and 0.1 ml supernatant. The formation of ascorbate was recorded as the increase of absorbance at 292 nm (extinction coefficient of 14 mM/cm).

For the DHAR assay, the reaction mixture contained 0.7 ml 50 mM EDTA, 0.1 ml 2 mM dehydroascorbate (DHA), 0.1 ml of 25 mM GSH and 0.1 ml enzyme extract. The increment of absorbance was determined at 265 nm (extinction coefficient of 6.2 mM/cm).

For the GR assay, the reaction mixture contained 0.82 ml 1 mM GSSG 0.08 ml of 2.0 mM NADPH and 0.1 ml supernatant. The consumption of NADPH was followed as the decrease in absorbance at 340 nm during the first three minutes of the reaction (extinction coefficient of 6.2 mM/cm).

The specific enzyme activity for all the above enzymes was expressed on the basis of fresh weight.

Statistical analysis

Data were analysed using SAS SYSTEM for Windows 9.1. The data were subjected to combined ANOVA and the means that were significantly different were separated at p < 0.05 by the least significant difference test. Mean values were compared using Duncan’s multiple range test.

RESULTS

Mycorrhizal colonization rate

The mycorrhizal colonization rate of G. mosseae and G. versiforme was 52% and 61%, respectively (Fig. 1). The control (+Cs−AM and −Cs−AM) had no signs of colonization.

Effects of AMF on non-enzymes in the ascorbate-glutathione cycle

Table 1 shows the effects of AMF on ascorbate pool in leaves and roots. The concentrations of AsA in the root and leaf of S. halepense with +Cs+G. mosseae plants were approximately 1.65- and 7.02-fold higher than in +Cs−AM plants, respectively. But, there was no difference between +Cs−AM and −Cs−AM plants. Meanwhile, the concentrations of DHA of +Cs+G. mosseae plants were 21%, 36% lower than +Cs−AM in the leaf and the root. For +Cs+G. versiforme, there was a significant difference in relative to +Cs−AM in leaf, but not in the roots. In addition, the AsA/DHA ratios of +Cs+G. mosseae and +Cs+G. versiforme plants were 6.42- and 15.75-fold higher than +Cs−AM plants in the leaves, respectively. In roots, AsA/DHA ratios of +Cs+G. mosseae and +Cs+G. versiforme plants were 10.39 and 6.59 times significantly higher than +Cs−AM plant, respectively.

The effects of AMF on GSH concentrations of leaves and roots exposed to Cs are shown in Table 2. The GSH concentrations of +Cs+G. mosseae and +Cs+G. versiforme increased significantly by 40.35 and 53.43 ng/gFW, respectively, compared to those of +Cs−AM in the roots, while GSH concentrations of +Cs+G. mosseae and +Cs+G. versiforme decreased significantly by 92.14 and 131.4 ng/gFW compared to +Cs−AM in leaves. The GSSG concentrations of +Cs+G. mosseae was less pronounced com-
Table 1 The effects of different arbuscular mycorrhizal fungi on ascorbate, dehydroascorbate concentration and the ratios of them in roots and leaves in *S. halepense*.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>AsA (µg/gFW)</th>
<th>DHA (µg/gFW)</th>
<th>AsA/DHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Root</td>
<td>Leaf</td>
<td>Root</td>
</tr>
<tr>
<td>+CsG. mosseae</td>
<td>1.26 ± 0.02b</td>
<td>0.98 ± 0.04b</td>
<td>0.05 ± 0.01c</td>
</tr>
<tr>
<td>+CsG. versiforme</td>
<td>2.81 ± 0.02a</td>
<td>1.49 ± 0.04a</td>
<td>0.18 ± 0.01b</td>
</tr>
<tr>
<td>+CsAM</td>
<td>0.43 ± 0.03c</td>
<td>0.90 ± 0.03b</td>
<td>0.19 ± 0.04b</td>
</tr>
<tr>
<td>−CsAM</td>
<td>0.40 ± 0.01c</td>
<td>0.85 ± 0.02b</td>
<td>0.26 ± 0.05a</td>
</tr>
</tbody>
</table>

† +Cs*G. mosseae*: inoculation with *G. mosseae* under Cs stress; +Cs*G. versiforme*: inoculation with *G. versiforme* under Cs stress; +Cs*AM*: non-inoculation treatments under Cs stress; −Cs*AM*: non-inoculation treatments without Cs stress. ‡ In this Table and the following, each value is the mean of three replicates ± SE across rows and columns; lowercase letters in each column mean significant difference.

Table 2 The effects of different arbuscular mycorrhizal fungi on reduced glutathione, oxidized glutathione concentration and the ratios of them in roots and leaves in *S. halepense*.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>GSH (ng/gFW)</th>
<th>GSSG (ng/gFW)</th>
<th>GSH/GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Root</td>
<td>Leaf</td>
<td>Root</td>
</tr>
<tr>
<td>+CsG. mosseae</td>
<td>112.3 ± 6.2a</td>
<td>143 ± 19b</td>
<td>29.99 ± 0.94b</td>
</tr>
<tr>
<td>+CsG. versiforme</td>
<td>125.3 ± 0.9a</td>
<td>103 ± 12b</td>
<td>20.7 ± 2.5b</td>
</tr>
<tr>
<td>+CsAM</td>
<td>74.1 ± 4.3b</td>
<td>234 ± 3.9a</td>
<td>31.1 ± 1.6a</td>
</tr>
<tr>
<td>−CsAM</td>
<td>71.4 ± 8.4b</td>
<td>258 ± 8.2a</td>
<td>32.2 ± 8.1a</td>
</tr>
</tbody>
</table>

pared to +Cs*AM* in leaves and roots. In leaves of +Cs*G. versiforme*, the GSSG concentration was less pronounced with respect to +Cs*AM*; while it was significantly pronounced in roots, the ratio of GSH/GSSG in +Cs*G. mosseae* and +Cs*G. versiforme* plants was higher than +Cs*AM*, although there was no significant difference among them. However, in roots of +Cs*G. mosseae* and +Cs*G. versiforme*, GSH/GSSG ratios were 3.37- and 2.23-fold significantly higher than those of +Cs*AM*, respectively. Additionally, there was no significant difference between +Cs*AM* and −Cs*AM*.

Effects of AMF on enzymes in the ascorbate-glutathione cycle

Fig. 2 illustrates the effects of *G. mosseae* and *G. versiforme* inoculations on APX activities in leaves and roots of *S. halepense*. In roots of +Cs*G. mosseae* and +Cs*G. versiforme* plants, the activities of APX significantly increased by 3.5- and 2.09-fold, with respect to +Cs*AM* plants. The activities of APX in leaves of +Cs*G. versiforme* plants were significantly higher than those in leaves of +Cs*AM* plants, while +Cs*G. mosseae* plants had no significant difference compared to +Cs*AM* plants. There were no significant difference between +Cs*AM* and −Cs*AM* plants in roots and leaves.

The activities of DHAR in leaves and roots of +Cs*G. mosseae* and +Cs*G. versiforme* plants are shown in Fig. 3. It demonstrated that the activities of DHAR in roots of +Cs*G. mosseae* and +Cs*G. versiforme* plants were significantly higher by 3.78-, 2.64-fold, respectively, compared to +Cs*AM* plants. In leaves of +Cs*G. mosseae* plants, the activity of DHAR would be...
The effects of arbuscular mycorrhizal fungi (AMF) on dehydroascorbate reductase (DHAR) activities of roots and leaves. Inoculation with G. mosseae increased the concentrations of Cs in plants. It was observed that the effects of AMF on the accumulative capacity of Cs have no significant difference between leaves and roots. In roots and leaves, the activity of DHAR was significantly increased by 1.21 U/gFW, while the activity of GR was significantly increased by 2.91-, 2.07-fold. Similarly, the activity of MDHAR was significantly increased by about 2.34-fold, but had no significant difference compared to +Cs−AM plants. On the other hand, in leaves of +Cs−AM plants, the activity of GR was less pronounced with respect to +Cs−AM plants. In roots and leaves of +Cs−AM and −Cs−AM plants, the activities of GR had no significant difference.

Effects of AMF on Cs accumulating capacity

The effects of AMF on the accumulative capacity of S. halepense to Cs in roots and leaves are shown in Table 3. It was observed that inoculation with G. mosseae and G. versiforme plants significantly increased the concentrations of Cs of plants in leaves and roots with respect to +Cs−AM. Particularly, Cs concentrations of +Cs+G. mosseae plants were significantly higher by 657.72 and 884.39 mg/kg DW in roots and leaves, respectively. In +Cs+G. versiforme plants, Cs concentrations were significantly increased by 170.45 and 328.68 mg/kg DW. When compared with +Cs−AM, a significant difference in increase of Cs concentration was found between +Cs+G. mosseae and +Cs+G. versiforme plants in leaves and roots. In soil Cs concentration was significantly lower relative to +Cs−AM plants, especially in +Cs+G. mosseae plant was significantly lower than

Fig. 3 The effects of arbuscular mycorrhizal fungi (AMF) on dehydroascorbate reductase (DHAR) activities of roots and leaves. +Cs+G. mosseae, +Cs+G. versiforme, +Cs−AM, and −Cs−AM in S. halepense.

Fig. 4 The effects of arbuscular mycorrhizal fungi (AMF) on monodehydroascorbate reductase (MDHAR) activities of roots and leaves. +Cs+G. mosseae, +Cs+G. versiforme, +Cs−AM, and −Cs−AM in S. halepense.

Fig. 5 The effects of arbuscular mycorrhizal fungi (AMF) on glutathione reductase (GR) activities of root and leaves. +Cs+G. mosseae, +Cs+G. versiforme, +Cs−AM, and −Cs−AM in S. halepense.
that of +Cs+G. versiforme plants, only about 48% of +Cs−AM. The bioconcentration factor of leaves is higher than those in roots whether mycorrhizal or mycorrhizal plants. It demonstrates that the translocating capacity of S. halepense to Cs from roots to leaves is huge, and a large proportion of caesium was enriched in leaves. Additionally, G. mosseae and G. versiforme also slightly increased the transfer factor of S. halepense to Cs compared to +Cs−AM plants; furthermore, the transfer factor of +Cs−AM plants reached 1.24.

DISCUSSION

A well-developed mycorrhizal symbiosis may enhance the survival of plants in polluted areas by improving water relations, nutrient acquisition, pathogenic resistance, soil structure, phytohormone production, and soil aggregation, thus improving the success of all kinds of bioremediation procedures such as increased caesium uptake by AMF treated plants. These procedures can be used effectively to establish plant coverage on radionuclide contaminated soils to reduce environmental risks10,13. Rufyikiri et al demonstrated greater resistance of mycorrhiza banana plantlets grown in vitro to Al toxicity than the nonmycorrhizal plantlets under continuous nutrient flow conditions29. Latef et al reported that G. mosseae protect tomato against salinity stress by alleviating the salt induced oxidative stress30. In this study, it was clearly shown that the ascorbate-glutathione pathway in roots and leaves of S. halepense was affected by AMF exposed to Cs stress, but the responses in both plant organs were not similar. It was obvious that the AMF combined with the roots significantly increased the antioxidant substances and the activities of antioxidant enzyme of AsA-GSH cycle, Cs as a signal translocated from roots to the leaves to activate a defence system in the plant cells which can cope with Cs levels.

GSH is reductant to the regeneration of AsA in the AsA-GSH cycle and is used as a potential marker for oxidative changes in plant metabolism. The concentration of GSH and GSH/GSSG ratio in +Cs+G. mosseae and +Cs+G. versiforme plants was significantly higher than those of +Cs−AM plants. But, GSSG in AMF-plant roots was lower than that in +Cs−AM plant roots, which was partly resulting in the increased activity of GR of +Cs+G. mosseae and +Cs+G. versiforme to recycle GSSG to GSH, thus increasing the resistance of plants to Cs stress. However, in leaves of +Cs+G. mosseae and +Cs+G. versiforme, the concentrations of GSH and GSH/GSSG ratio were significantly lower than those of +Cs−AM plants, and were in accordance with Cuypers et al, who reported changes in the concentration of GSH and GSH/GSSG ratio at 168 h after exposure to zinc31. The studies have demonstrated that AsA is the most abundant antioxidant in plants and exogenous application of AsA increases resistance to chilling, drought21, and salt stress22. It is obvious that AMF decreases the concentration of DHA of +Cs+G. mosseae and +Cs+G. versiforme compared to +Cs−AM in roots and leaves, increases the concentration of AsA that improves the resistance of plants. It was shown that the AsA/DHA of group +CsAM increased significantly compared to that of group +Cs−AM, resulting from a decrease of DHA but an increase of AsA in groups +Cs+AM. These results were related to the increase of GSH (Table 3) and the activity of DHAR (Fig. 2), as well as the full reduction of DHA to AsA in groups +Cs+AM.

The present studies reported that mycorrhization with AMF were able of increasing the resistance of host plants, results in increasing efficient metabolism of ascorbate-glutathione (AsA-GSH) cycle in roots of host plants; hence it would increase the capacities of plants to scavenging reactive oxygen species. De Leonardis demonstrated that increased activities of MDHAR and DHAR oxidized DHA into ascorbate to effectively scavenge toxic oxygen species in potato tuber mitochondria23. In roots, the antioxidant substances and the activities of antioxidant enzyme of AsA-GSH cycle were affected by AMF under Cs stress. For instance, the activities of APX, MDHAR, and DHAR of +Cs+G. mosseae...
and $+\text{Cs}^{+}\text{G. versiforme}$ were significantly higher than those in $+\text{Cs}^{−}\text{AM}$ plants (Figs. 2, 3, 4) and the AsA/DHA ratio significantly increased due to increase of AsA with decrease in DHA compared to $+\text{Cs}^{−}\text{AM}$ plants (Table 1). It suggests that AMF increased concentration of AsA and the activities of APX, MDHAR and DHAR to efficiently promote the operation of AsA-GSH cycle to translocate Cs from roots to leaves, in a certain extent, relieving the toxicity of Cs. Several studies suggested that mycorrhizal symbiosis helps plants to alleviate salt stress and Cs stress by enhancing the activities of APX, MDHAR, and DHAR$^{32-34}$.

To estimate the benefits of AMF in restoring the soil contaminated with radionuclide, this study takes the Cs concentration, bioconcentration factor and transfer factor of S. halepense. Inoculation AMF significantly increased Cs concentration in leaves of $+\text{Cs}^{+}\text{G. mosseae}$ and $+\text{Cs}^{+}\text{G. versiforme}$ plants by 328.68, 884.39 mg/kg DW and 170.45, 657.71 mg/kg DW in roots, respectively, relative to $+\text{Cs}^{−}\text{AM}$ (Table 3). It indicates that AMF could enhance the biological immobilization of plants, while contributing to intraradical hyphal network of arbuscular mycorrhizal symbionts participating in taking up and translocate caesium from root to leaf35. Vinichuk et al36 studied that G. mosseae increased the ^{137}Cs concentration of sunflower in leaves were accordance with this study. On the other hand, the ascorbate acid was affected (Table 1). These results suggest that increased biosynthesis of AsA was a stimulating factor of Cs imposed signal translocated from roots to leaves to activate a defence system in the plant cells which can cope with Cs toxicity. Additionally, the bioconcentration factor and transfer factor of $+\text{Cs}^{+}\text{G. mosseae}$ and $+\text{Cs}^{+}\text{G. versiforme}$ plants were higher than one unit. Provided mycorrhiza or not, S. halepense is a potential candidate for the bioremediation of heavy metal stress37.

CONCLUSIONS

Under Cs stress, the plant with G. mosseae or G. versiforme presents higher antioxidants and antioxidant enzymes of AsA-GSH cycle than non-AMF plant. It indicates that AMF could enhance the resistance of plants to adapt to Cs stress. Meanwhile, AMF promotes Cs enriching in leaves and roots of S. halepense, increasing the bioconcentration factor and transfer factor, and decreasing Cs concentration in the soil. Intraradical hyphal network of arbuscular mycorrhizal symbionts are thus useful to promote the removal of Cs from soils to roots. Acknowledgements: This work was supported by projects from SWUST prep-research fund (15yyhk13, 14tdg01) and NSCF (31000259), China. We would like to thank Dr Wang of Hua Zhong Agricultural University for the arbuscular mycorrhizal fungi and Prof. Liu of Nanjing Agricultural University for S. halepense seeds.

REFERENCES