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ABSTRACT: A KdV equation with drifting describes solitary waves propagating on an interface (liquid-air) with wave
motion induced by a harmonic forcing. In this work, exact travelling wave solutions of this equation are studied using
the G′/G-expansion scheme and its variants. Many new exact travelling wave solutions can easily be derived from the
general results under certain conditions.
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INTRODUCTION

Nonlinear evolution equations (NLEEs) have been
applied in fields such as optical fibres, quantum me-
chanics, quantum field theory, high-energy physics,
fluids dynamics, biophysics, and plasma physics.
A lot of physical models have supported a wide
variety of solitary wave solutions. Thus the in-
vestigation of the solitary wave solutions to NLEEs
plays an important role in mathematical physics.
In particular, there has been considerable interest
in investigating exact travelling wave solutions of
NLEEs. In the recent years, many significant di-
rect methods have been established to find exact
solutions of NLEEs such as the Painlevé expansion
method1, Bäcklund and Darboux transform2, soli-
tary wave ansatz method3, homogeneous balance
method4, Jacobi elliptic function method5, and the
F -expansion method6.

The G′/G-expansion method proposed by Wang
Ml7, is one of the most effective direct methods to
obtain travelling wave solutions of NLEEs8–10. This
method can also be applied to fractional ODEs11.
To extend the range of its applicability, the gen-
eralized G′/G-expansion method12, the extended
G′/G-expansion method13 and the improved G′/G-
expansion method14 have been developed.

The nonlinear shallow water surface waves sat-
isfy the Korteweg-de Vries (KdV) equation

wt + c0wx + a1wwx + a2wx x x = 0. (1)

This equation is only valid for long waves. Solitary
waves in film flows were studied by Liu15 and
Heining16. These flows also show a transition to

turbulence. This process is better understood if the
dynamics of nonlinear waves are traceable. Rees17

derived a new NLEE for waves propagating on a
liquid-air interface driven by a horizontal harmonic
forcing:

wx x x + k2wx +εcλ3(w
2
x −wwx x)−

2k2

c
wt = 0. (2)

This equation is more nonlinear than (1). The
nonlinear term wwx in (1) does not appear in (2),
and the reconstruction of this term from (w2

x−wwx x)
is not possible by order approximation equivalences.
The nonlinear term in (2) is also steeper. Exact trav-
elling wave solutions of (2) have not been reported.
The aim of this paper is to derive travelling wave
solutions to (2) using the G′/G-expansion scheme
and its variants.

The organization of the paper is as follows.
Firstly, a brief account of the G′/G-expansion
method and its variants, i.e., the generalized, im-
proved and extended versions, for finding the trav-
elling wave solutions of NLEEs are given. We then
study (2) using these schemes.

DESCRIPTION OF METHODS

The G′/G-expansion method:

Step 1: Consider a general nonlinear PDE in the
form

(u, ux , ut , uxx, uxt, . . .) = 0. (3)

Using u(x , t) = U(ξ),ξ = αx + β t, we can
rewrite (3) as the nonlinear ODE

(U , U ′, U ′′, . . .) = 0, (4)
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where the prime denotes differentiation with
respect to ξ.

Step 2: Suppose that the solution of ODE (4) can
be written as

U(ξ) =
n
∑

i=0

ai

�

G′

G

�i

+
n
∑

j=1

b j

�

G′

G

�− j

, (5)

or

U(ξ) =
n
∑

i=0

ai

�

G′

G+σG′

�i

+
n
∑

j=1

b j

�

G′

G+σG′

�− j

,

(6)
where σ, ai , b j are constants to be determined
later, n is a positive integer, and G = G(ξ)
satisfies

G′′+λG′+µG = 0, (7)

where λ, µ are real constants. The general
solutions of (7) can be listed as follows. When
∆ = λ2 − 4µ > 0, we obtain the hyperbolic
function solution of (7)

G(ξ) = e−(λ/2)ξ
�

A1 cosh

p
∆

2
ξ+A2 sinh

p
∆

2
ξ

�

.

(8)
When ∆ = λ2 − 4µ < 0, we obtain the trigono-
metric function solution of (7)

G(ξ) = e−(λ/2)ξ
�

A1 cos

p
−∆
2
ξ+A2 sin

p
−∆
2
ξ

�

.

(9)
When ∆ = λ2 − 4µ = 0, we obtain the solution
of (7)

G(ξ) = e−(λ/2)ξ(A1+A2ξ), (10)

where A1 and A2 are arbitrary constants.
Step 3: Determine the positive integer n by balanc-

ing the highest order derivatives and nonlinear
terms in (4).

Step 4: Substituting (5) or (6) along with (7) into
(4) and then setting all the coefficients of
(G′/G)k (for k = 1,2, . . .) of the resulting sys-
tem’s numerator to zero yields a set of over-
determined nonlinear algebraic equations for c
and ai , b j .

Step 5: Assuming that the constants c and ai , bi can
be obtained by solving the algebraic equations
in Step 4, substituting these constants and the
known general solutions of (7) into (5) or (6),
we can obtain the explicit solutions of (3) im-
mediately.

The generalized G′/G-expansion method:

In the generalized version12, one makes the ansatz
for the solution U(ξ) as

U(ξ) =
n
∑

i=0

ai

�

G′

G

�i

+
n
∑

j=1

b j

�

G′

G

�− j

, (11)

where G = G(ξ) satisfies

(G′)2 = h0+h1G+h2G2+h3G3+h4G4, (12)

where h0, h1, h2, h3 and h4 are arbitrary constants to
be determined later and an bn 6= 0. Substituting (11)
into (4) and using (12), we obtain a polynomial
in G i , G′G i(i = 1, 2. . .). Equating each coefficient
of the resulting polynomial to zero yields a set of
algebraic equations for ai , b j and hi . Substituting
ai , bi and the general solutions of (12) into (11),
we obtain travelling wave solutions of the nonlinear
(3).

The extended G′/G-expansion method

In the extended form of this method13, the solution
U(ξ) of (4) can be expressed as

U(ξ) = a0+
n
∑

i=1

§

ai g
i + bi g

i−1

√

√

σ

�

1+
1
µ

g2

�ª

,

(13)
where g ≡ G′/G and a0, ai , bi(i = 1, 2, . . ., n) are
constants to be determined later, σ = ±1, n is a
positive integer, and G = G(ξ) satisfies

G′′+µG = 0, (14)

where µ is a constant. Substituting (13) into (4) and
using (14) and collecting all terms with the same or-
der of (G′/G)k and (G′/G)k

p

σ(1+(1/µ)(G′/G)2)
together, and then equating each coefficient of the
resulting polynomial to zero yields a set of algebraic
equations for µ, a0, ai , bi(i = 1, . . . , n). On solving
these algebraic equations, we obtain the values of
the constants µ, a0, ai , bi(i = 1, . . . , n) and then
substituting these constants and the known general
solutions of (14), which can be obtained by setting
λ = 0 in (8)–(10), into (13), we obtain the explicit
solutions of nonlinear differential (3).

NEW EXACT SOLUTIONS TO KdV EQUATION
WITH DRIFTING

Making the transformation w(x , t) =φ(ξ) with ξ=
αx +β t, (2) reduces to

α3φ′′′+k2αφ′+εcλ3(α
2φ′2−α2φφ′′)−

2k2β

c
φ′ = 0

(15)
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where α, β , k, c, ε, and λ3 are non-zero constants.
Balancing φ′′′ and φφ′′ in (15), we obtain n+ 3 =
n+ n+2 which gives n= 1.

Using the G′/G-expansion method

Suppose that (15) have solutions in the form

φ(ξ) = a0+ a1
G′

G
+ b1

�

G′

G

�−1

. (16)

Substituting (16) along with (7) into (15) and
then setting all the coefficients of (G′/G)k for k =
0,1, . . . of the resulting system’s numerator to zero
yields a set of over-determined nonlinear algebraic
equations about a0, a1, b1,α,β . Solving the over-
determined algebraic equations we obtain

a0 =
α2c2εb1λ3+α3cλ2+αck2−2k2β

α2c2λελ3
,

a1 = 0, b1 = b1, α= α, β = β , λ= λ, µ= 0,
(17)

where λ 6= 0. Otherwise

a0 =
λa1

2
, b1 = 0, α= −

cελ3a1

6
, µ= 0,

β =
c2εa1λ3(c2λ2ε2a1

2λ3
2−18k2)

216k2
.

(18)

a1 = 0, b1 =
k2(2β −αc)
α2c2ελ3

, λ= 0, µ= 0. (19)

When µ= 0,λ 6= 0, (7) has the solution

G(ξ) = A1+A2 e−λξ, (20)

where A1 and A2 are arbitrary constants. Substi-
tuting (17) and (18) into (16) and using (20), we
can obtain exponential function solutions of (2) as
follows:

w(x , t) =
α3cλ2+αck2−2k2β

α2c2λελ3
−

b1A1

λA2
eλξ,

where ξ= αx +β t and

w(x , t) = a0+ a1
G′

G
=
λa1

2
−

a1A2λe−λξ

A1+A2 e−λξ
,

where ξ= αx+β t, α and β are determined in (18).
When λ= 0,µ= 0, (7) has the solution

G(ξ) = A1ξ+A2, (21)

where A1 and A2 are arbitrary constants.

Substituting (18) and (19) into (16) and using
(21), we obtain rational function solutions

w(x , t) = a1
G′

G
=

a1A1

A1ξ+A2
,

where ξ= − 1
6 cελ3a1 x − 1

12 c2ελ3a1 t and

w(x , t) = a0+
k2(2β −αc)
α2c2ελ3

�

ξ+
A2

A1

�

,

where ξ= αx +β t.
Suppose that (2) has the solutions in the form

φ(ξ) = a0+ a1
G′

G+σG′
+ b1

�

G′

G+σG′

�−1

, (22)

where G = G(ξ) satisfies (14). Substituting (22)
along with (14) into (15) and then setting all
the coefficients of (G′/G)k for k = 0, 1, . . . of the
resulting system’s numerator to zero yields a set
of over-determined nonlinear algebraic equations
about a0, a1, b1,α,β . Solving the over-determined
algebraic equations we obtain

a1 = −
a0(µσ2+1)

µσ
, b1 = 0, α=

a0cελ3

6µσ
,

β =
a0c2ελ3(2a2

0c2ε2λ3
2+9k2µσ2)

108µ2σ3k2
,

(23)

where σ 6= 0. Otherwise

a0 = −σb1, a1 = 0, α=
b1cελ3

6µ
,

β =
b1c2ελ3(2b2

1c2ε2λ3
2+9k2µ)

108µ2k2
.

(24)

Substituting (23) and (24) into (22) and using
solutions of (14) which can be obtained by setting
λ = 0 in (8)–(10), we can obtain exact solutions
of (2) as follows. When µ > 0, we obtain the
trigonometric function solutions

w(x , t) = a0−
a0(µσ2+1)

µσ

G′

G+σG′

where G = A1 cos(pµξ)+A2 sin(pµξ), ξ= αx+β t,
α and β are determined in (23) and

w(x , t) = −σb1+ b1
G+σG′

G′
= b1

G
G′

= b1
A1 cos(pµξ)+A2 sin(pµξ)

p
µ(−A1 sin(pµξ)+A2 cos(pµξ))

,
(25)

where ξ= αx+β t, α and β are determined in (24).
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It is easy to see that the trigonometric function
solution (25) can be rewritten when A2

1+A2
2 6= 0 as

w(x , t) =
b1p
µ

tan(
p
µξ+ξ0)

where ξ0 = tan−1(A1/A2). When µ < 0, we obtain
the hyperbolic function solutions

w(x , t) = a0+
a0(µσ2+1)

µσ

G′

G+σG′

where G = A1 cosh(
p
−µξ) + A2 sinh(

p
−µξ), ξ =

αx +β t, α and β are determined in (23) and

w(x , t) = −σb1+ b1
G+σG′

G′
= b1

G
G′

=
b1(A1 cosh(

p
−µξ)+A2 sinh(

p
−µξ))

p
−µ(A1 sinh(

p
−µξ)+A2 cosh(

p
−µξ))

,
(26)

where ξ= αx+β t, α and β are determined in (24).
It is easy to see that the hyperbolic function solution
(26) can be rewritten as

w(x , t) =
b1p
−µ

tanh(
p

−µξ+ξ0),

where ξ0 = tanh−1(A1/A2) when A1
2 < A2

2 and as

w(x , t) =
b1p
−µ

coth(
p

−µξ+ξ0),

where ξ0 = coth−1(A1/A2) when A1
2 > A2

2.

Using the generalized G′/G-expansion method

Suppose that (15) has solutions in the form

φ(ξ) = a0+ a1
G′

G
+ b1

�

G′

G

�−1

. (27)

In this case, G = G(ξ) satisfies the Jacobi elliptic
(12). Substituting (27) along with (12) into (15)
and then setting all the coefficients of G i , G′G i(i =
1,2. . .) of the resulting system’s numerator to zero,
yields a set of over-determined nonlinear algebraic
equations about a0, a1, b1,α,β . Solving the over-
determined algebraic equations, we can obtain the
following results:

a0 = 0, a1 = 0, h0 = 0, h1 = 0, h4 =
h2

3

4h2
,

β =
αc(−αb1cελ3+α2h2+ k2)

2k2
.

(28)

a0 = 0, a1 = 0, h2 =
h2

1

4h0
, h3 = 0, h4 = 0,

β =
αc(4αb1cεh0λ3+α2h1

2+4k2h0)
8k2h0

.

(29)

Considering (28), (12) becomes

(G′)2 = h2G2+h3G4+
h2

3

4h2
G4. (30)

The general solutions of (30) are

G1(ξ) =
−h2

h3

�

1± coth
�

p

h2

2
ξ+ξ0

��

, (31)

G2(ξ) =
−h2

h3

�

1± tanh
�

p

h2

2
ξ+ξ0

��

, (32)

where h2 > 0, ξ0 are arbitrary constants.
Substituting (28) into (27) and making use of

(31) and (32), we can obtain hyperbolic function
solutions of (2).

w(x , t) =
−2b1

p

h2

�

coth(
p

h2

2 ξ+ξ0)±1
� ,

w(x , t) =
−2b1

p

h2

�

tanh(
p

h2

2 ξ+ξ0)±1
� ,

where ξ= αx +(αc(−αb1cελ3+α2h2+ k2)/2k2)t.
Considering (29), (12) becomes

(G′)2 = h0+h1G+
h2

1

4h0
G2. (33)

The general solutions of (33) are

G(ξ) =
Ce±h1/2

p
h0ξ−2h0

h1
, (34)

where h0 > 0, C are arbitrary constants.
Substituting (29) into (27) and making use of

(34), we can obtain exponential function solutions
of (2):

w(x , t) = ±
2b1

p

h0

h1
∓

4b1

q

h3
0

h1C
e∓(h1/2

p
h0)ξ,

where ξ = αx + (αc(4αb1cεh0λ3 + α2h1
2 +

4k2h0)/8k2h0)t.

Remark 1 Besides (28) and (29), we can also ob-
tain many other cases. Because of the similarities
with the results discussed in the previous section,
we do not list them in detail.
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Using the extended G′/G-expansion method

Suppose that (15) has solutions in the form

φ(ξ) = a0+ a1
G′

G
+ b1

√

√

√

σ

�

1+
1
µ

�

G′

G

�2�

, (35)

where a0, a1, b1 are constants to be determined
later, σ = ±1, n is a positive integer, and G = G(ξ)
satisfies the second order linear ODE (14).

Substituting (35) along with (14) into (15)
and then setting all the coefficients of (G′/G)k

and (G′/G)k
p

σ(1+(1/µ)(G′/G)2) (k= 0, 1, . . .) of
the resulting system to zero yields a set of over-
determined nonlinear algebraic equations about a0,
a1, b1, α, β . Solving the over-determined algebraic
equations, we can obtain the following results:

a0 = 0, a1 =
−3α
cελ3

, b1 = ±
3α

cελ3

s

µ

σ
,

α= α,β =
cα(2α2µ+ k2)

2k2
,

(36)

where σµ > 0. Otherwise

a0 = 0, a1 =
−6α
cελ3

, b1 = 0, β =
8α3cµ+αck2

2k2
.

(37)
Using (36) and the general solutions of (14), we

can find the following travelling wave solutions of
(2). When µ < 0,σ = −1, we have the hyperbolic
function solution

w(x , t) = a1
G′

G
+ b1

√

√

√

σ

�

1+
1
µ

�

G′

G

�2�

=
−3α
p
−µ

cελ3

§

A1 sinh(
p
−µξ)+A2 cosh(

p
−µξ)

A1 cosh(
p
−µξ)+A2 sinh(

p
−µξ)

±

√

√

√

−1+
�

A1 sinh(
p
−µξ)+A2 cosh(

p
−µξ)

A1 cosh(
p
−µξ)+A2 sinh(

p
−µξ)

�2ª

,

(38)
where ξ= αx+(cα(2α2µ+k2)/2k2)t. In particular,
setting A1 6= 0, A2 = 0, then (38) can be written as

w(x , t) =
−3α
p
−µ

cελ3
(tanh(
p

−µξ)± isech(
p

−µξ)).

Setting A1 = 0, A2 6= 0, then (38) can be written as

w(x , t) =
−3α
p
−µ

cελ3
(coth(
p

−µξ)± csch(
p

−µξ)).

When µ > 0,σ = 1, we have the trigonometric

function solution

w(x , t) = a1
G′

G
+ b1

√

√

√

σ

�

1+
1
µ

�

G′

G

�2�

=
−3α
p
µ

cελ3

§−A1 sin(pµξ)+A2 cos(pµξ)
A1 cos(pµξ)+A2 sin(pµξ)

±

√

√

√

1+
�−A1 sin(pµξ)+A2 cos(pµξ)

A1 cos(pµξ)+A2 sin(pµξ)

�2ª

(39)
where ξ= αx+(cα(2α2µ+k2)/2k2)t. In particular,
setting A1 6= 0, A2 = 0, then (39) can be written as

w(x , t) =
3α
p
µ

cελ3
(− tan(

p
µξ)± sec(

p
µξ)),

setting A1 = 0, A2 6= 0, then (39) can be written as

w(x , t) =
3α
p
µ

cελ3
(cot(

p
µξ)± csc(

p
µξ)).

Using (37) and the general solutions of (14),
we can find the exact travelling wave solutions of
(2). The process is similar to (36). Hence we omit
it for convenience. Note that σ can be a non-zero
constant.

The correctness of all the solutions is verified by
substituting them into (2).
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