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ABSTRACT: Optimal partitioning of a square is the search for the least-diameter way to partition a unit square into n
pieces. The problem is here solved for some small n values. Although this problem has recently been approached by
transforming the problem into a graphical enumeration, the algorithm had too large a computational cost for cases of
n¾ 7. In this paper, the existence of solutions in a more general sense is established and the graphical transformation
method is improved by generating dual graphs of the combinatorial patterns. In particular, combinatorial patterns were
generated using the triangulation of planar graphs. Theorems to eliminate some unnecessary partitions are presented
and numerical optimization by convex programming is used to find the minimum diameters. Our results confirm the
earlier reported cases for n= 9 and 10 and the predictions made for the case of n= 11.
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INTRODUCTION

The optimal partitioning of a square is the search
for the least-diameter way to partition a unit square
into n pieces. The problem was first solved for the
case of n = 3 in 1958 after being formulated as
the following problem by Wenceslas and Lipman1.
Prove that a unit square which is dissected by a 1

8×1
rectangular piece and two 1

2 ×
7
8 rectangular pieces

cannot be covered by three sets having diameters
less than d =

p
65/8. A similar problem in the case

of n= 5 was posed in 1959 by Page2 and later solved
in Ref. 3. The problem was extended from the case
n= 3 to find the minimum d such that the square is
covered by five sets each of which has diameter d.

Graham4 studied a similar problem on the par-
titioning of an equilateral triangle into n pieces for
n up to 15, while the most significant process on the
unit square was performed by Guy and Selfridge5.
In brief, they defined the optimal diameter of parti-
tioning the unit square into n pieces by the infimum
among all possible patterns of the maximum of a
polygonal diameter of an n-piece partition. They
found and proved the exact values of the optimal
diameters for the cases of n = 4 to 10, and gave
numerical bounds and a prediction for cases of a
larger n. Unfortunately, the proof for each n has

its own unique technique with no relation to the
proof for the other cases. Later, Jepsen6 worked
independently to prove the cases up to n= 6.

In our recent work7, the optimal partitioning of
a square from a new viewpoint of transforming the
problem into graphical enumeration was proposed
along with the algorithm to generate all the possi-
ble patterns and optimize them in the case n = 4
to 7, along with the numerical optimal diameter.
However, for larger n values the algorithm is too
computationally costly.

In this paper, we present an algorithm to find
the numerical optimal diameter, the results from
which were found to agree with the previous work
of Guy and Selfridge5 up to the 6th decimal place
for n values up to 11. This paper is organized
as follows. In the first section, we establish the
existence of a solution in a more general sense
and then review the problem transformation from a
geometric problem to a graphical enumeration and
give an overview of the process. We then propose
the algorithm that relates the dual graphs and their
triangulation and provide the necessary condition
of optimal partition which can eliminate some un-
necessary patterns during the pattern enumeration
process. The enumeration for n = 9 to 11 is also
included in this part. Numerical results and patterns
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for the cases of n = 9 to 11 are given in the final
section.

PROBLEM FORMULATION

Throughout this paper, we denote S as a unit square
in R2. For any set T in R2, we define the diameter
of T by diam(T ) = sup{d(p, q) | p, q ∈ T}, where
d(p, q) is the Euclidean distance between p and q.

Existence of the solution

To prove the existence of the solution, the problem
was evaluated in a more general sense as follows.
The original problem asks for the diameter optimiz-
ing partition {Si} of a closed unit square in R2, and
the authors show the existence of such optimizing
partitions and that each one may be considered to
be composed of convex polygons5. In this work,
we allow S′i s to overlap and then show later that it
suffices to consider only convex polygonal S′i s with
disjoint interiors.

Since diam(C) = diam(C), where C is a closure
of C in R2, it is necessary to focus on covering by
closed sets as in the following definition.

Definition 1 Let S be a unit square and Ci ⊆ S for
i = 1, 2, . . ., n be closed subsets. C = {C1, C2, . . ., Cn}
is called the closed covering set of a square S if
⋃n

i=1 Ci = S.

Theorem 1 shows that the solutions to the gen-
eralized problem are still virtually unchanged.

Theorem 1 For a given natural number n, there
exists a closed covering with the minimum diameter
of the square.

Proof : Let C be a family of closed covering sets of a
square. For C ∈ C, such that C = {C1, C2, . . ., Cn},
we define Diam(C ) =maxi∈{1,2,...,n} diam(Ci). Since
Diam(C )¾ 0, there exists infC∈C Diam(C ), denoted
by α. Next, we will find C0 with diameter α.

When α ∈ { Diam(C ) | C ∈ C} it is clear that
there exists C0 such that Diam(C0) = α.

When α /∈ {Diam(C ) | C ∈ C} there
is a sequence of covers {Ck} such that
α = limk→∞Diam(Ck). By the compactness
argument under the Hausdorff metric, there exists
a subsequence {Ck,m}∞m=1 converging to a covering
set C in C. Clearly, diam(C ) = α, a contradiction.
Hence this case is impossible. Hence there exists
a closed covering of a square with a minimum
diameter. 2

Theorem 1 shows that we can cover the square
with any closed sets. However, it suffices to cover a
square by convex sets by the following arguments.

Let H (Ci) be the convex hull of Ci . Note that
diam(Ci) = diam(H (Ci)), and for any convex set
K , diam(K) = diam(K). Hence we can focus on
the closed convex C ′i s. In this case, Ci may be
overlapped by the adjacent set C j . If the interior of
Ci and C j are not disjoint, it is possible to construct
a cover of a smaller diameter by replacing Ci by

Ci \
i−1
⋃

j=1

C j .

When any two closed convex sets have disjoint
interiors, they may overlap only at their boundaries.
By convexity, the overlapped boundaries should be
straight lines.

By the previous arguments, we can consider the
covering problem with partitioning a square into
convex polygonal pieces, which is similar to the
original problem by Guy and Selfridge5.

We define the optimal diameter to be consistent
to the previous studies5. The rigorous definition of
optimal diameter and numerical optimal diameter is
defined as follows.

Definition 2 For a closed unit square S, we denote
the family Π of all partition π of S into n disjoint
subset Si such that ∪Si = S. The optimal diameter
dn is defined by

dn = inf
π∈Π

max
1¶i¶n

sup
P,Q∈Si

d(P,Q), (1)

where P and Q are points in Si , and d(P,Q) is the
Euclidean distance between P and Q. Such π ∈ Π
attaining the optimal diameter is said to be the
optimal partition.

We denote the optimal diameter numerically
computed from the frameworks in the previous
study7 and in this paper by Dn.

Problem transformation

Based upon the original problem by Guy and Self-
ridge5, we consider each partition as an embedded
planar graph with straight edges. Our main con-
cern is to generate all the possible graphs satisfying
the condition of being necessary optimal partitions.
Furthermore, we found that it suffices to consider
only the graphs with vertices of degree 3. This is
because each vertex of a degree greater than three
may be viewed as a bunch of vertices of degree 3
with extra edges of length zero, while a vertex of
degree 2 can be ignored since each face is convex.

We define the generation of the graph of degree
3 vertices corresponding to the partitioning of the
square as follows.
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Definition 3 A straight line planar graph π is said
to be a combinatorial pattern if π satisfies: (i) π
is a 3-regular graph, (ii) π does not have a loop
or multiple edges, (iii) the internal edges form a
connected graph.

Ifπ1 andπ2 are combinatorial patterns, thenπ1 and
π2 are distinct if they are not isomorphic.

The overview process for transforming a prob-
lem has been presented in our previous work7, and
in brief is as follows.
(i) Construct a condition to enumerate the number

of vertices and edges by Euler’s formula and the
condition of 3-regular graphs.

(ii) Join the vertices with edges of every possible
case that leads to a combinatorial pattern.

(iii) Optimize each combinatorial pattern.

Notation

Let S be a unit square on the plane; π be a combina-
torial pattern; and V , E andF be the set of vertices,
edges and faces, respectively. Let V1, V2, V3 and V4
be the set of vertices on the top, left, bottom and
right sides of the square, respectively; and similarly
forFi . Let V0 andF0 be the set of vertices and faces
that are not adjacent to any side of the square. The
cardinality of Vi and Fi are denoted by Vi and Fi .

For faces in F1, the faces are designated from
the upper right corner proceeding anticlockwise by
f11, f12, . . ., f1F1

. They are designated by starting
at the upper left corner in the same manner by
f21, f22, . . ., f2F1

. The third and fourth sides are
designated similarly. We also obtain f1F1

= f21,
f2F2
= f31, f3F2

= f41, f4F4
= f11. A face in the graph

π is considered as a vertex in the dual graphπ∗. The
notation fi j also represents a vertex inπ∗. If a face fi
is adjacent to f j , we write fi ' f j , otherwise fi 6' f j .
In the dual graph construction, if fi connects to f j ,
then fi ∼ f j , otherwise fi 6∼ f j . Fig. 1 illustrates the
usage of provided notation.

THE PROPOSED ALGORITHM

Definition 4 Let π be a combinatorial pattern. The
dual graph π∗ of π is called the dual combinatorial
pattern.

Triangulation process

Suppose thatπ is a combinatorial pattern. Sinceπ is
a 3-regular graph, the dual graph π∗ of π is a planar
graph composed of triangular faces. Hence we need
to triangulate a set of vertices of a dual graph π∗.

Let Fout be a sequence of outer vertices, Fin
be a set of interior vertices, F4 be a set of current

Fig. 1 An example of a pattern π (left) and its dual graph
π∗ (right). In this example, V1 = {v11, v12}, V2 = {v21, v22},
V3 = {v31, v32}, V4 = {v41, v42}, V0 = {v01, . . ., v010} and
f11 ' f12, f11 ' f42, f11 ' f01 but f11 6' f02. The numbers
1–4 in the left panel represent the side of the square.

triangles initially set to be empty, and P be a set of
prohibiting connections.

The following algorithm is a recursive pro-
cess:
(i) Join the vertices Fout sequentially.
(ii) Triangulation Process: Consider Fin and
Fout.
A. If Fin 6=∅, then

1. construct a triangle whose vertices are
from two consecutive vertices ( fα fβ) in
a sequence Fout and a vertex fγ in Fin;

2. add a triangle fα fβ fγ to F4, delete fγ
from Fin, and add edge fα fβ to P ;

3. insert fβ between fα and fβ in Fout;
4. go back to (ii).

B. If |Fout|¾ 3, then
1. construct a triangle by three consecutive

vertices fil, f jm, fkp in Fout that satisfy
at least one of the following conditions:
i 6= j or j 6= k or i 6= k;

2. add a triangle fil f jm fkp to F4;
3. delete f jm from Fout;
4. go back to (ii).

(iii) If |Fout| = 3 and Fin = ∅, then the process is
complete.
We note that the condition of P will be con-

trolled in every step of the triangulation process.
The prohibited condition will be provided in the
next section. Fig. 2 illustrates the mentioned algo-
rithm.

The main process of this work is to generate all
the possible dual combinatorial patterns. After all
the dual combinatorial patterns are obtained, they
are converted back to the respective combinatorial
patterns and each pattern is optimized. To clarify,
the overall process is summarized in the following
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Fig. 2 Illustration of the triangulation algorithm:
(a) Fin 6=∅; (b) |Fout|¾ 3.

steps.
(i) Consider the number of faces on each side by

doing an integer partition. To clarify this, we
find the possible integer solutions of

F0+ F1+ F2+ F3+ F4 = n+4, (2)

where the condition of F0, . . ., F4 is determined
in the next section. The solution of
(2) is written as (F0, F1, F2, F3, F4). By
fixing F0, the following solutions are the
same by rotating and flipping the square:
(F0, F1, F2, F3, F4) = (F0, F2, F3, F4, F1) =
(F0, F3, F4, F1, F2) = (F0, F4, F1, F2, F3), and
(F0, F1, F2, F3, F4) = (F0, F3, F2, F1, F4) =
(F0, F2, F1, F4, F3) = (F0, F1, F4, F3, F2).

(ii) For each solution (F0, F1, F2, F3, F4) from (i),
choose a representation of each face to be a
vertex in the dual graph, and consider a set of
Fout, Fin, F4 and Fproh.

(iii) Triangulate a set Fin∪Fout by the stated algo-
rithm. The results are called dual combinatorial
patterns. Each prohibited connection will be
denoted by an element { fik, fjl} in P if fik ∼ fjl
is not allowed.

(iv) Convert the dual combinatorial patterns to
combinatorial patterns.

(v) Optimize each combinatorial pattern.
To speed up the generating process, and so

avoid generating isomorphic patterns, the symmet-
rical patterns were considered as follows.

Definition 5 Let T = (F0, F1, F2, F3, F4) be a solu-
tion of (2). T is symmetric with respect to X -axis
if F1 = F3. T is symmetric with respect to Y -axis
if F2 = F4. T is diagonal symmetric if F1 = F2 and
F3 = F4 or F1 = F4 and F2 = F3.

We conclude that if T1 is symmetric with respect
to T2, the graphs generated from T1 will be isomor-
phic to those generated from T2.

Optimization process

For each vertex (P, Q) in a combinatorial pattern,
we denote the coordinates by P(x i , yi) and Q(x j , y j)
and define

f (x i , yi , x j , y j) =
q

(x i − x j)2+(yi − y j)2.

Then f is a convex function. When the domain of f
is convex, minimizing f is of the type called convex
programming. For each face in a combinatorial pat-
tern, the maximum max fk(x i , yi , x j , y j),π ∈Π over
all possible pairs of vertices is also convex. Hence
the maximum (dmax) of these max fk(x i , yi , x j , yi)
over all faces of π is convex.

METHODS TO ELIMINATE THE UNNECESSARY
PARTITIONS

Although the proposed algorithm can generate all
the possible combinatorial patterns, some of the
generated patterns do not turn out to be the optimal
partition. Those patterns are called unnecessary
partitions. In this section, we provide the neces-
sary conditions of a combinatorial pattern to be
the optimal partition, which can help to eliminate
the unnecessary combinatorial patterns. Note that
the lemmas and theorems were constructed using
the proved results of an earlier report by Guy and
Selfridge5.

Theorems to eliminate unnecessary partitions

For a unit square S, we define A, B, C and D as
vertices of the unit square, starting from the lower
left corner and going anticlockwise. Hence A is at
(0,0).

Lemma 1 (Ref. 7) A subdivided partition has a
smaller or equal diameter than the original partition.

By Lemma 1, dn is a non-increasing sequence. The
following lemma and theorems show the necessary
condition of being an optimal partition or combina-
torial pattern.

Lemma 2 For n ¾ 4, if the optimal partition has
the combinatorial pattern π, then π has at least one
vertex on each side.

Proof : Suppose that there is a side which does
not contain a vertex. Without loss of generality,
assume that the side is AD. Since

�

�AD
�

� = 1, a piece
containing AD has diameter of at least 1. However,
d4 =

p
2/2< 1, a contradiction. 2
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Fig. 3 The situation f11 ' f0i ' f31.

Theorem 2 For n ¾ 9, if the optimal partition has
the combinatorial pattern π, then (i) π has at least
two vertices on each side and (ii) π has at lease one
interior piece.

Proof : (i) The proof is similar to that in Lemma 2 but
using d9 = 5/11. (ii) Suppose that π has no interior
piece. Choose a point R( 1

2 , 1
2 ) in the square S. Hence

there is a piece fi j . Since fi j is placed on the ith side,
d(R, X )¾ 1/2> d9 such that X is a point on the ith
side that belongs to fi j . Thus π does not give the
optimal diameter. 2

Theorem 3 (Ref. 7) For n ¾ 4, the combinatorial
pattern π of an optimal partition may not satisfy
either of the following conditions: (i) there is no edge
from Vi to V j for i 6= j; (ii) there is no interior vertex
incident to two vertices from opposite boundaries.

We denote a set satisfying Theorem 3(i) by O , which
we put in the set P .

Theorem 4 For n ¾ 9, the combinatorial pattern π
of an optimal partition may not satisfy the conditions:
(i) there are two adjacent faces from opposite bound-
aries; (ii)there is no face adjacent to both f11 and f31
or both f21 and f41.

Proof : (i) Without loss of generality, suppose that
there is a face in F1 and a face in F3 that are
adjacent. Denote a point on the first side which
belongs to f1i and a point on the third side which
belongs to f3 j as v1 and v2, respectively. Hence there
is x ∈ f1i∩ f3 j such that d(v1, x)+d(x , v2)¾ 1. Hence
the length of segment v1 x or x v2 should be greater
or equal to 1/2 which means that d9 = 5/11< 1/2.

(ii) Suppose that f0i is a face satisfying f11 '
f0i ' f31. Note that f11 and f31 are laid on the
corners of a square which is shown in Fig. 3. The

Fig. 4 The initial combinatorial pattern of the solution
(1,3, 3,3, 3) (left); the corresponding initial triangulating
data (right).

points A and C are on the boundary of the square
which is the vertex of f31 and f11, respectively. We
note that d(A, C) =

p
2. By the assumption that

f11 ' f01 ' f31 and the segment AC meets f11, f01
and f31, there are x ∈ f11 ∩ f01 and y ∈ f31 ∩ f01
such that d(C , x)+d(x , y)+d(y, A)> d(A, C) =

p
2.

Hence one of the segments C x , x y , or yA has length
greater or equal to

p
2/3. This contradicts that

d9 = 5/11<
p

2/3. 2
Hence we may define a partition or a combinato-
rial pattern to be unnecessary if it does not satisfy
Lemma 2, Theorem 2, Theorem 3, or Theorem 4.

COMBINATORIAL PATTERNS ENUMERATION

To enumerate combinatorial patterns efficiently, we
do not generate some of unnecessary patterns as
they do not lead to optimal partitions. We put
those unnecessary conditions in P . We enumerate
patterns for n= 9 to 11 as follows.

Enumeration of the case n = 9

Equation (2) is written in the form

F0+ F1+ F2+ F3+ F4 = 13. (3)

From Theorem 2, we have the conditions F0 ¾ 1 and
F1, F2, F3, F4 ¾ 3. Hence the only solution of (3) is
(1,3, 3,3, 3). We consider the initial triangulation
data in Fig. 4.

From Theorem 4, we must avoid the situation
f11 ∼ f01 ∼ f31 and f21 ∼ f01 ∼ f41. Using a tree-
diagram and the symmetry, the only condition we
have is ( f01 6∼ f11)∧ ( f01 6∼ f21).

Since the solution (1, 3,3, 3,3) is symmetric
with respect to the X -axis and Y -axis and is also
diagonally symmetric, it suffices to consider the
condition ( f01 6∼ f11) ∧ ( f01 6∼ f21) together with
the condition from Theorem 3. Hence we have to
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Fig. 5 The initial combinatorial pattern of the solution
(2, 3,3, 3,3) (left); the corresponding initial triangulating
data (right).

triangulate:

Fout = { f11, f12, f21, f22, f31, f32, f41, f42},
Fin = { f01},
P = {{ f01, f11}, { f01, f21}}∪O .

Enumeration of the case n = 10

Equation (2) is written in the form

F0+ F1+ F2+ F3+ F4 = 14. (4)

The lower bound condition is similar to the n = 9
case. The solutions of (4) are (1,3, 3,4, 3) and
(2, 3,3, 3,3). Enumeration of (1, 3,3, 4,3) is similar
to the case of (1, 3,3,3, 3) for n = 9 without the
symmetry with respect to the Y -axis. We therefore
consider the solution (2, 3,3,3, 3) by the initial tri-
angulation data shown in Fig. 5.

In this case, f01 was fixed with the conditions
( f01 6∼ f11) ∧ ( f01 6∼ f21), ( f01 6∼ f21) ∧ ( f01 6∼ f31),
( f01 6∼ f31)∧( f01 6∼ f41) and ( f01 6∼ f11)∧( f01 6∼ f41),
followed by that for f02 in a similar manner. By
the multiplication principle, this gives 16 conditions.
Because (2,3, 3,3, 3) is symmetric with respect to
the X -axis and Y -axis, and is diagonally symmetric,
the condition is reduced to the following condi-
tions:
(i) ( f01 6∼ f11)∧ ( f01 6∼ f21) and ( f02 6∼ f11)∧ ( f02 6∼

f21),
(ii) ( f01 6∼ f11)∧ ( f01 6∼ f21) and ( f02 6∼ f11)∧ ( f02 6∼

f41),
(iii) ( f01 6∼ f11)∧( f01 6∼ f21) and ( f02 6∼ f31)∧( f02 6∼

f41).
Thus we have to triangulate: Fout =
{ f11, f12, f21, f22, f31, f32, f41, f42}, Fin = { f01, f02},
and a set P will be considered by the above
condition individually.

Fig. 6 Initial triangulating data for the solution
(3,3, 3,3, 3) when n= 11.

Enumeration of the case n = 11

Equation (2) is rewritten as

F0+ F1+ F2+ F3+ F4 = 15, (5)

with the conditions F0 ¾ 1 and F1, F2, F3, F4 ¾ 3.
The solutions of (5) are (1, 3,3, 3,5), (1, 3,3, 4,4),
(1,3, 4,3, 4), (2, 3,3, 3,4) and (3, 3,3, 3,3). The
enumeration of the first four solutions are combi-
nations of the case given above for n = 10 without
any symmetric cases. Hence we specify the solution
for (3,3, 3,3, 3).

If F0 ¾ 3, the initial triangulating data will be
larger. Hence we consider whether each corner is
either a quadrilateral or an n-gon, where n ¾ 5. If
a combinatorial pattern π consists of a quadrilat-
eral at a corner, the dual combinatorial pattern π∗

consists of a triangle with the same corner. Along
this part, we focus on the enumeration of the dual
combinatorial pattern. The figures of dual combina-
torial patterns are shown in Fig. 6 which indicates
the initial triangulating data. The data in Fig. 6 are
similar to the cases for n= 9 and 10 and were hence
generated by considering the following cases.
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Case 1: every corner of the combinatorial pat-
tern is a quadrilateral. For a quadrilateral Q at the
corner of a combinatorial pattern π, there exists
edges from two consecutive sides that are adjacent
to v0k ∈V0 for some k. Since v0k is a vertex of degree
3, there is an edge from v0k that is laid outside Q.
Hence the f12 f22, f22 f32, f32 f42 and f12 f42 edges
exist in the dual graph. The initial triangulation data
is shown in Fig. 6 in case 1 with P = O .

Case 2: only three corners of the combinatorial
pattern are quadrilateral. In the dual graph, without
loss of generality, suppose that f32 6∼ f42. Thus a
triangle f42 f32 f41 does not exist and an edge from
f41 exists. If we consider the combinatorial pattern,
the piece containing f41 is consecutive to the piece
containing f32. From theorems 2 and 4, there exists
an internal piece consecutive to faces f41 and f32.
That is, there is f01 ∈ F0 such that f32 ∼ f01 ∼ f41.
The initial triangulation data is shown in case 2 of
Fig. 6 with P = O .

Case 3: only two consecutive corners of the
combinatorial pattern are quadrilateral. Now, sup-
pose that f32 6∼ f42 and f22 6∼ f32. We can consider
case 2 together with case 3 by supposing that two
consecutive corners are quadrilateral. To avoid
overlapping with case 1, we suppose that one corner
is not quadrilateral and put no condition on the re-
maining corner. Without loss of generality, suppose
that two upper corners are quadrilateral and the
lower left corner is not a quadrilateral. The initial
triangulation data is shown in the case 2+3 of Fig. 6
with P = O .

Case 4: only two opposite corners of the com-
binatorial pattern are quadrilateral. Without loss
of generality, suppose that the upper left and lower
right corner are quadrilateral. Hence we have f12 ∼
f22 and f42 ∼ f32. As with case 2, suppose that there
is f01 ∈ F0 such that f31 ∼ f01 ∼ f32. We can leave
the condition of the upper right corner and employ
the condition f12 6∼ f42.

Case 5: only one corner is quadrilateral in a
combinatorial pattern. Suppose that there exists a
triangle f32 f41 f42 in a dual combinatorial pattern.
As with case 2, there exists f01, f02, f03 ∈ F0 such
that f12 ∼ f01 ∼ f21, f31 ∼ f02 ∼ f32 and f11 ∼
f03 ∼ f42, which is shown in case 5 of Fig. 6. In
the dual combinatorial pattern, however, we can
combine cases 4 and 5 by determining one corner
as a triangle, omitting the occurrence of triangle
in the two opposite corners, and put no condition
on the remaining corner. The initial triangulation
data is shown in case 4+5 of Fig. 6 with P =
{{ f02, f11}, { f03, f31}}∪O .

Case 6: every corner in a combinatorial pattern
is not quadrilateral. Because we determined that
each corner is not quadrilateral, there are edges
from the corner point of the dual combinatorial
pattern, i.e., face f11, f21, f31, and f41, as shown in
case 6 of Fig. 6. Define points a, b, c and d as in
Fig. 6 case 6. Since we have three interior points,
there are two possible cases as follows.

Subcase 6.1 a and b coincide, and c and d
coincide. In subcase 6.1 of Fig. 6, we denote
the merged point from a and b as f02 and the
merged point from c and d as f01. Let f03 be the
remaining internal vertex. Hence we triangulate
the data shown in subcase 6.1 of Fig. 6 with P =
{{ f01, f31}, { f01, f41}, { f02, f11}, { f02, f21}}.

Subcase 6.2: c and d coincide, but a and b
do not coincide. Firstly, we show that the initial
triangulation data in this case appears in the sub-
case 6.2 of Fig. 6, i.e., a ∼ f32 and b ∼ f32. Denote
a vertex f01 as with subcase 6.1 and let a and b
be f02 and f03, respectively. It suffices to construct
a triangle f02 f31 f32 and f03 f32 f41 by the following
arguments. Note that the edge f31 f32 must be
contained in a triangle. From Theorem 4, f01, f22,
f41 and f42 may not be the vertex of this triangle.
To ovoid overlapping with the previous subcase, f02
must be the other vertex of that triangle. For a
triangle with respect to f32 f41, a similar argument
was applied for the vertex f03. Hence, in this case,
we will triangulate with the initial triangulation
data obtained in subcase 6.2 of Fig. 6 with P =
{{ f01, f31}, { f01, f41}, { f02, f11}, { f03, f21}}.

COMPUTATIONAL EXPERIMENTS

We implemented the provided framework using
MATHEMATICA 9.0 with NMinimize, an optimiza-
tion tool for finding the global minimum of a func-
tion. We let dn denote the optimal diameter shown
in the original results5, and Dn the optimal diameter
obtained from our proposed algorithm. In the com-
putations we used a default setting for which the
working precision was equal to 16. Note that the
optimization in this work is convex programming.

In the case for n = 11, we can generate 4642
distinct combinatorial patterns that satisfy our con-
ditions. Fig. 7 shows the optimized results from
the combinatorial patterns for each n. From the
experiments, d9 = 0.454545, D9 = 0.454545, d10 =
0.436467, D10 = 0.436467. In the case of D11,
the experimental result yields D11 = 0.416777 such
that 0.388730 < D11 < 0.416778, which fits to the
bound5. The results show that our results agree
with their results in the cases of n = 9 and 10, and
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Fig. 7 The combinatorial pattern (left) and the optimized
results (right). Results of n = 9 (top), 10 (middle), 11
(bottom).

D11 in this study also agrees with the prediction of
Guy and Selfridge5.
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