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ABSTRACT: In this paper, we give a smoothing Fletcher-Reeves conjugate gradient method for finite minimax problems.
The functions of the finite minimax problem are all continuous differentiable functions. Under general conditions, we
present the global convergence of the method. The final discussion and preliminary numerical experiments indicate
that the method works quite well in practice.
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INTRODUCTION

In this paper, we consider the following finite mini-
max problem

min max
1¶i¶m

fi(x), (1)

where fi : Rn → R are continuously differentiable
functions for i = 1, . . . , m. Problem (1) and its
related optimization problems have broad applica-
tions in engineering technology, economic manage-
ment, and many other fields1–3. How to design
the numerical algorithms for solving (1) is one
of the most fundamental themes in optimization
research4–6.

Let
f (x) = max

1¶i¶m
fi(x).

Then (1) can be transformed into the following
nonsmooth (nondifferentiable) unconstrained opti-
mization problem

min
x∈Rn

f (x). (2)

The nonsmooth unconstrained optimization prob-
lem is a kind of optimization problem with a broad
application background (see, e.g., Ref. 7). The
methods for solving the nonsmooth unconstrained
optimization problem are more complex than the
methods for solving the smooth optimization prob-
lem. During the last thirty years, many numerical
methods have been proposed for the solution of the
finite minimax problem, such as in Refs. 2, 3, but

there have only been a few methods for solving
large-scale problems. Furthermore, fi , i = 1, . . . , m
in (1) are often twice continuously differentiable
functions. To overcome the drawback, in this paper,
we consider using the smoothing Fletcher-Reeves
conjugate gradient method to solve (1) and the
functions in (1) are only continuously differentiable,
not necessarily twice continuously differentiable.
The main advantage of our method is that the
conjugate gradient method only uses the first order
information8, 9 and so is suitable for solving large-
scale optimization problems10–12.

The first nonlinear conjugate gradient method
was introduced by Fletcher and Reeves13, it is one
of the earliest known techniques for solving non-
linear optimization problems. Zoutendijk14 estab-
lished a convergence result for the Fletcher-Reeves
conjugate gradient method under the exact line
search. Al-Baali15, Liu et al16 and Dai and Yuan17

dealt with the convergence of the Fletcher-Reeves
conjugate gradient method with the strong Wolfe
line search. A comprehensive study on the con-
vergence of the Fletcher-Reeves conjugate gradient
method has been made in Ref. 18. Notwithstand-
ing the strong convergence properties, numerical
performance of the Fletcher-Reeves conjugate gradi-
ent method is essentially affected by jamming18, 19,
i.e., the method can take many short steps with-
out making significant progress to the minimum.
To achieve good computational performance and
to maintain the attractive feature of strong global
convergence, we focus on hybridizing the Fletcher-
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Reeves conjugate gradient method with smoothing
techniques2–4, 7. Also, the simple use of smoothing
techniques can help prevent ill-conditioning.

Here, we consider using the following iterative
formula for solving (1):

xk+1 = xk +αkdk, k = 0, 1, . . . ,

where αk > 0 is the step size and dk is a search
direction.

This paper is organized as follows. In the second
section, we present the smoothing Fletcher-Reeves
conjugate gradient method for solving (1) and give
its convergence analysis. In the third section, we
discusses the convergence of the method with other
inexact line search and exact line search conditions.
In the fourth section, we give some numerical results
of the method. In the last section, we give the appli-
cations in solving constrained optimization problem
and conclusions.

Throughout the paper, ‖.‖ denotes the l2 norm;
R+ = {t | t ¾ 0, t ∈ R}; ∇ef (x ,µ) =∇x

ef (x ,µ); egk =
∇ef (xk,µk).

METHOD AND ITS CONVERGENCE ANALYSIS

We start by giving some definitions. If H(x) is locally
Lipschitz continuous but not necessarily differen-
tiable, then the generalized gradient of H at x is
defined by

∂ H(x) = conv
§

lim
x i→x ,x i∈DH

∇H(x i)
ª

,

where conv denotes the convex hull of a set and
DH is the set of points at which H is differentiable6.
Because f in (2) is a locally Lipschitz continuous and
not differentiable function, we need to smoothen f
first. As in Ref. 7, we introduce the definition of
the smoothing function and the gradient consistency
property.

Definition 1 Let f : Rn → R be a continuous func-
tion. We call ef : Rn × R+ → R a smooth function of
f , if ef (·,µ) is continuously differentiable in Rn for
any fixed µ > 0 and

lim
µ↓0

ef (x ,µ) = f (x),

for any x ∈ Rn. Furthermore, if for any x ∈ Rn,

lim
µ↓0,x→x∗

∇ef (x ,µ) = ∂ f (x∗),

then we say f satisfies the gradient consistency
property.

Now we give the smoothing Fletcher-Reeves conju-
gate method for solving (2).

Algorithm 1
Step 1: Choose σ1 ∈ (0,0.5), γ > 0, γ1 ∈ (0,1),

µ0 > 0 and give an initial point x0 ∈ Rn. Let
k := 0, compute eg0 =∇ef (x0,µ0). Let d0 =−eg0.

Step 2: Compute αk by the Armijo line search,
where αk =max{ρ0,ρ1 . . .} and ρi satisfies

ef (xk +αkdk,µk)− ef (xk,µk)¶ σ1ρ
i
egT

k dk. (3)

Set xk+1 = xk +αkdk.
Step 3: If ‖∇ef (xk+1,µk)‖ ¾ γµk, then set µk+1 =

µk; otherwise, let µk+1 = γ1µk.
Step 4: Compute dk+1 by the following the

Fletcher-Reeves conjugate gradient formula

dk+1 = −egk+1+β
FR
k · dk, (4)

where

βFR
k =

egT
k+1egk+1

egT
k egk

.

Step 5: Set k := k+1; go to Step 2.

We now give the convergence result for Algorithm 1.

Theorem 1 Suppose ef (x ,µ) : Rn → R is continu-
ously differentiable and egT

k dk−1 < 0. Then

egT
k dk ¶ −‖egk‖

2 .

Proof : According to the definition,

egT
k dk = −‖egk‖

2+βFR
k egT

k dk−1,

and
egT

k dk−1 < 0.

We obtain

egT
k dk = −‖egk‖

2+βFR
k egT

k dk−1 ¶ −‖egk‖
2 . (5)

From (5),
egT

k dk ¶ −‖egk‖
2 .

2

Theorem 2 Suppose that f̃ (·,µ) is a smoothing func-
tion of f . If for any constant µ> 0, ef (·,µ) is bounded
on the level set L(x0) = {x ∈Rn | f (x)¶ f (x0)}, then
{x k} generated by Algorithm 1 satisfies

lim
k→∞

µk = 0

and
lim

k→∞
inf




∇ef (xk,µk−1)




= 0.
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Proof : Define K = {k | µk+1 = γ1µk}. If K is a finite
set, then there exists an integer k̄ such that for all
k > k̄





∇ef (xk,µk−1)




¾ γµk−1. (6)

And µk = µk̄ = µ̄ in Step 3 of Algorithm 1. Since
ef (·, µ̄) is bounded on the level set L(x0), from
Theorem 1 and the conjugate gradient method8, we
deduce that

lim
k→∞

inf




∇ef (xk, µ̄)




= 0,

which contradicts (6). This shows that K must be
infinite and

lim
k→∞

µk = 0.

Since K is infinite, we can assume that K =
{k0, k1, . . .}, where k0 < k1 < . . .. Then we have

lim
i→∞





∇ef (xki+1,µki
)




¶ γ lim
i→∞

µki
= 0.

2
According to Theorem 2 and the definition of gra-
dient consistency, it is easy to obtain the following
result.

Theorem 3 Any accumulation point x∗ of {x k} gen-
erated by Algorithm 1 is a Clark stationary point, i.e.,
0 ∈ ∂ f (x∗).

COMPARISON OF THE GLOBAL CONVERGENCE
OF THE METHOD WITH OTHER LINE
SEARCHES

The line search in Algorithm 1 can also be changed
to a strong Wolfe line search, i.e., αk satisfying (3)
and

�

�∇ f̃ (xk +αkdk,µk)
Tdk

�

�¶ σ2

�

�

egT
k dk

�

� , (7)

where 0 < σ1 < σ2 <
1
2 . In order to obtain the

global convergence of Algorithm 1 under the strong
Wolfe line search, we first consider the descent
property of the search direction.

Lemma 1 Suppose {xk} is generated by Algorithm 1
with a strong Wolfe line search, which is under the
strong Wolfe line search (0<σ1 <σ2 <

1
2 ). Then we

have
egT

k dk < 0.

Proof : We use induction to prove the following
inequality:

−
k
∑

i=0

σi
2 ¶

egT
k dk

‖egk‖
2 ¶ −2+

k
∑

i=0

σi
2, (8)

for ∀k = 0, 1, . . .. Suppose (8) is established. By

k
∑

i=0

σi
2 <

∞
∑

i=0

σi
2 =

1
1−σ2

< 2,

we deduce that the right-hand side of (8) is less than
0. It follows that

egT
k dk < 0.

Obviously, when k = 0, d0 = −eg0.
Suppose (8) holds for some k¾ 0. From (4), we

can know that

egT
k+1dk+1

‖egk+1‖
2 = −1+

egT
k+1dk

‖egk‖
2 .

By (7) and egT
k dk < 0, we have

−1+σ2

egT
k dk

‖egk‖
2 ¶

egT
k+1dk+1

‖egk+1‖
2 ¶ −1−σ2

egT
k dk

‖egk‖
2 .

Using the left side of the induction hypothesis,

−
k+1
∑

i=0

σi
2 = −1−σ2

k
∑

i=0

σi
2 ¶

egT
k+1dk+1

‖egk+1‖
2

¶ −1+σ2

k
∑

i=0

σi
2 = −2+

k+1
∑

i=0

σi
2.

Hence (8) holds. Then from the right-hand side of
(8) we obtain

egT
k dk < 0.

2

Theorem 4 Suppose ef (x ,µ) : Rn → R is continu-
ously differentiable, the level set L(x0) is bounded, and
the gradient function eg(x) is Lipschitz continuous on
this level set. Then {x k} generated by Algorithm 1
satisfies

lim
k→∞

inf‖egk‖= 0.

Proof : From (3), (7), and (8), we have

�

�

egT
k dk−1

�

�¶ −σ2eg
T
k−1dk−1 ¶

σ2

1−σ2
‖egk−1‖

2 . (9)

From (4), we know that

‖dk‖
2 = ‖egk‖

2−2βk−1eg
T
k dk−1+β

2
k−1 ‖dk−1‖

2

= ‖egk‖
2−

2‖egk‖
2

egT
k−1egk−1

· egT
k dk−1

+β2
k−1 ‖dk−1‖

2 .
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By (9), we know that

‖dk‖
2 ¶ ‖egk‖

2+
2σ2

1−σ2
‖egk‖

2+β2
k−1 ‖dk−1‖

2

=
1+σ2

1−σ2
‖egk‖

2+β2
k−1 ‖dk−1‖

2 .

Using the recursion relations, we obtain

‖dk‖
2 ¶

1+σ2

1−σ2
‖egk‖

4
k
∑

i=1

1

‖egi‖
2 +
‖egk‖

4

‖eg0‖
2 . (10)

If the conclusion of the theorem is not true, then
there exists a constant ε0 > 0 such that for any k

‖egk‖¾ ε0. (11)

Because the gradient function eg(x) is Lipschitz con-
tinuous on the level set, the norm of eg(x) is bounded
on the level set. From (10), there exists a constant
M1 > 0 such that for any k

‖dk‖
2 ¶ M1(1+ k). (12)

Assume the angle between dk and (−egk) is θk. From
(8), we have

cosθk = −
egT

k dk

‖egk‖‖dk‖
¾

1−2σ2

1−σ2

‖egk‖
‖dk‖

. (13)

Since σ2 <
1
2

1−2σ2

1−σ2
> 0.

By (11), (12), and (13), there exists a constant M2 >
0 such that
∞
∑

k=0

cos2 θk ¾
�

1−2σ2

1−σ2

�2 ∞∑

k=0

‖egk‖
2

‖dk‖
2 ¾ M2

∞
∑

k=0

1
k+1

.

So
∑∞

k=0 cos2 θk is not convergent. On the other
hand, because eg(x) is Lipschitz continuous on the
level set (suppose the Lipschitz constant is L),

σ2eg
T
k dk ¶ egT

k+1dk = eg
T
k dk +(egk+1− egk)

Tdk

¶ egT
k dk +αk L ‖dk‖

2 .

Thus

αk ¾ −
1−σ2

L ‖dk‖
2 eg

T
k dk.

By (3), we obtain

efk+1 ¶ efk −σ1
1−σ2

L

�

egT
k dk

‖dk‖

�2

= efk −σ1
1−σ2

L
‖egk‖

2 cos2 θk.

Because {efk} is monotonically decreasing and has
a lower bound,

∑∞
k=0 ‖egk‖

2 cos2 θk is convergent.
From ‖egk‖ ¾ ε0, we know that

∑∞
k=0 cos2 θk is con-

vergent. This contradicts that
∑∞

k=0 cos2 θk is not
convergent. So the assumption does not hold. That
is

lim
k→∞

inf‖egk‖= 0.

2

Remark 1 Theorem 2 and Theorem 3 obviously
hold for Algorithm 1 with a strong Wolfe line search.
If we choose the exact line search to determine the
step-size factor αk in Algorithm 1, i.e.,

αk = argmin
α¾0

f (xk +αdk),

then we can obtain the convergence theorem of
Algorithm 1 with the exact line search.

Theorem 5 Let {xk} be generated by Algorithm 1
with the exact line search. Suppose ef (x ,µ) : Rn →
R is first order continuously differentiable, and the
level set L(x0) is bounded. Then Algorithm 1 either
terminates or limk→∞ eg(xk) = 0.

Proof : Without loss of generality, suppose {xk} is an
infinite sequence. Because we choose the exact line
search in Algorithm 1, we have

egT
k dk−1 = 0.

From

egT
k dk = −‖egk‖

2+βFR
k−1eg

T
k dk−1 = −‖egk‖

2 < 0,

we know that dk is a descent direction. Thus from
the exact line search rule we know that { f̃ (xk,µk)}
is monotonically decreasing, and so {xk} ⊂ L(x0).
Hence {xk} is bounded. There exists an accu-
mulation point x∗, i.e., there exists {xk | k ∈ K1}
convergent to x∗. According to the continuity of f̃ ,
we have

f ∗ = lim
k(∈K1)→∞

ef (xk,µk)

= ef
�

lim
k(∈K1)→∞

(xk,µk)
�

= ef (x∗).

Similarly, {xk+1 | k ∈ K1} is also a bounded se-
quence, so there exists a subsequence {xk+1 | k ∈ K2}
which converges to x̄∗, where K2 ⊂ K1 is an infinite
subsequence. Hence we obtain

f ∗ = lim
k(∈K2)→∞

ef (xk+1,µk)

= ef
�

lim
k(∈K2)→∞

(xk+1,µk)
�

= ef ( x̄∗).
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Table 1 Numerical results for Example 1 by Algorithm 1
and the smoothing gradient method 7.

x0 x∗(Al g1) x∗ (SGM 7)

(1,−1) (1.1358, 0.9002) (1.1413, 0.8961)
(1.3,−0.8) (1.1391, 0.8986) (1.1415, 0.8959)

(1.2,−0.69) (1.1360, 0.9009) (1.1410, 0.8963)
(1.3,−1.6) (1.1402, 0.8976) (1.1415, 0.8959)
(1.4,−0.9) (1.1396, 0.8981) (1.1413, 0.8960)
(1.4,−0.7) (1.1370, 0.9002) (1.1414, 0.8960)

Table 2 Numerical results for Example 2 by Algorithm 1
and the smoothing gradient method 7.

x0 x∗(Al g1) x∗ (SGM 7)

(1.4,−0.7) (1.0033, 0.9916) (1.0033, 0.9916)
(3.1,−2.7) (1.0033, 0.9916) (1.0033, 0.9916)
(2.9,−1.7) (1.001, 0.9957) (1.0033, 0.9916)
(2.4,−1.9) (1.0016, 0.9958) (1.0033, 0.9916)

(3,−2) (1.0017, 0.9956) (1.0033, 0.9916)
(1,−1) (1.0018, 0.9956) (1.0033, 0.9916)

It follows that

ef ( x̄∗) = ef (x∗) = f ∗. (14)

Next, we will use reduction to absurdity to prove
g̃(x∗) = 0. If g̃(x∗) 6= 0, then for sufficiently small
α > 0, we have

ef (xk+1,µk) = ef (xk +αkdk,µk)¶ ef (xk +αdk,µk).

For k ∈ K2 ⊂ K1, let k→∞. We obtain

ef ( x̄∗)¶ ef (x∗+αd∗)< ef (x∗).

This contradicts (14). Hence

eg(x∗) = 0.

2

Remark 2 Theorem 2 and Theorem 3 clearly hold
for Algorithm 1 with the exact line search.

NUMERICAL EXPERIMENTS

We used the examples in Ref. 3 to test Algorithm 1.
All codes were run on MATLAB 8.0. Throughout our
computational experiments, the parameters used in
Algorithm 1 were δ1 = 0.25, γ= γ1 = 0.5. We used
the following smoothing function2

ef (x ,µ) = µ ln
m
∑

i=1

exp
�

fi(x)
µ

�

.

Table 3 Numerical results for Example 3 by Algorithm 1
and the smoothing gradient method 7.

x0 x∗(Al g1) x∗ (SGM 7)

(−1.4,1.6) (0.0016, −0.0021) (−0.0077, −0.0042)
(−1.45,1.7) (0.0009, −0.0021) (−0.0032, −0.0042)
(−1.69,1.3) (0.0035, −0.0021) (−0.0009, −0.0042)
(−1.6,1.4) (−0.0046, −0.0042) (−0.0021, −0.0042)
(−1.4,1.4) (−0.0022, −0.0021) (−0.0063, −0.0042)
(−1.4,1.5) (0.0013, −0.0021) (−0.0082, −0.0042)

Table 4 Numerical results for Example 4 by Algorithm 1
and the smoothing gradient method 7.

x0 x∗(Al g1) x∗ (SGM 7)

(−1.5,2) (0.0000, −3.0001) (NaN, NaN)
(−1.3,2.1) (0.0000, −3.0000) (NaN, NaN)

(1,1) (−0.0000, −3.0000) (NaN, NaN)
(1.7,1.3) (−0.0000, −2.9999) (NaN, NaN)

(−1.2,1.3) (0.0000, −3.0000) (NaN, NaN)
(−1.4,1.6) (−0.0000, −3.0000) (0.0000, −2.9998)

We use ‖∆x‖ ¶ 10−5 as the stopping rule. x0 is
the initial point, x∗ is the optimal value point. In
the following, we will give several initial points and
the results in Table 1, Table 2, Table 3, and Table 4.
We also compare Algorithm 1 with the smoothing
gradient method7.

Example 1 Charalambous-Conn 13.

f (x) =max{x2
1 + x4

2 , (2− x1)
2+(2− x2)

2,

2 exp(−x1+ x2)}.

Example 2 Charalambous-Conn 23.

f (x) =max{x4
1 + x2

2 , (2− x1)
2+(2− x2)

2,

2 exp(−x1+ x2)}.

Example 3 Crescent3.

f (x) =max{x2
1 +(x2−1)2+ x2−1,

− x2
1 − (x2−1)2+ x2+1}.

Example 4 Demyanov-Malozemov3.

f (x) =max{5x1+ x2,−5x1+ x2, x2
1 + x2

2 +4x2}.

DISCUSSION

Bandler and Charalambous gave a special trans-
formation method in Ref. 5, where the nonlinear
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Table 5 Numerical results for Example 5 by Algorithm 1
and the smoothing gradient method 7.

x0 x∗

By Algorithm 1.
(0.3,1.4,1,−0.4) (−0.0021, 1.0019, 1.9986, −0.9962)

(0.2,1.2,1.9,−0.3) (−0.0035, 0.9997, 2.0001, −0.9948)
(0.2,1.1,2.2,−0.1) (−0.0057, 0.9980, 1.9998, −0.9905)
(0.2,1.9,1.3,−0.17) (−0.0018, 0.9971, 1.9973, −0.9937)

(0.18,1.4,1.89,−0.25) (−0.0000, 0.9971, 1.9960, −0.9953)
(0.28,1.6,1.79,−0.23) (−0.0011, 0.9992, 1.9967, −0.9936)

By the SGM 7.
(0.3,1.4,1,−0.4) (0.0483, 0.8403, 1.9961, −1.0171)

(0.2,1.2,1.9,−0.3) (0.0037, 0.9667, 1.9995, −0.9880)
(0.2,1.1,2.2,−0.1) (−0.1158, 0.9993, 2.0759, −0.8289)
(0.2,1.9,1.3,−0.17) (−0.1157, 0.9940, 2.0791, −0.8238)

(0.18,1.4,1.89,−0.25) (0.0005, 0.9667, 2.0010, −0.9868)
(0.28,1.6,1.79,−0.23) (−0.1531, 0.9676, 2.1100, −0.7765)

constrained optimization problem

min g1(x)
s.t. gi(x)¾ 0 i = 2, . . . , m, x ∈ Rn,

where gi : Rn → R are continuously differentiable
functions for i = 1, . . . , m was transformed into (1).
From Ref. 5, for sufficiently large αi , i = 1, . . . , m,
we know that the above nonlinear constrained opti-
mization problem coincides with the unconstrained
minimax problem

min max
1¶i¶m

fi(x), (15)

where f1(x) = g1(x), fi(x) = g1(x)−αi gi(x), 2 ¶
i ¶ m, αi > 0, 2 ¶ i ¶ m. We can see that (15)
is a special case of (1). Hence we can solve the
nonlinear constrained optimization problem by Al-
gorithm 1.

Example 5 Rosen-Suzuki problem3

min g1(x)
s.t. gi(x)¾ 0 i = 2,3, 4, x ∈ Rn,

where g1(x) = x2
1+x2

2+2x2
3+x2

4−5x1−5x2−21x3+
7x4, g2(x) =−x2

1−x2
2−x2

3−x2
4−x1+x2−x3+x4+8,

g3(x) =−x2
1−2x2

2− x2
3−2x2

4+ x1+ x4+10, g4(x) =
−x2

1 − x2
2 − x2

3 −2x1+ x2+ x4+5.

Using Algorithm 1, we obtain the numerical results
for Example 5 in Table 5 where the numerical results
for Example 5 by the smoothing gradient method7

are also given.
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