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ABSTRACT: The boundedness and semi-cycle analysis of positive solutions, existence of period-2 solutions, and local
and global asymptotic stability of the recursive sequence xn+1 = α+β xn−1+xn−1/xn, n= 0,1, . . . are investigated where
α ∈ [0,∞), β ∈ [0,1) and the initial conditions x−1 and x0 are arbitrary positive real numbers. The paper concludes
with some numerical examples to illustrate the theoretical results.
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INTRODUCTION

Difference equations can be used to model and anal-
yse many real-world processes where the current
state is evaluated in terms of some previous states.
Because of their wide range of applications1–4 many
researchers have studied these systems5–8.

The aim of this paper is to examine the bound-
edness character and the semi-cycle analysis of the
positive solutions, the periodic nature, and the sta-
bility of the difference equation

xn+1 = α+β xn−1+
xn−1

xn
, n= 0,1, . . . , (1)

where α ∈ [0,∞), β ∈ [0, 1) and the initial condi-
tions x−1 and x0 are arbitrary positive real numbers.
Equation (1) with β = 0 becomes

xn+1 = α+
xn−1

xn
, n= 0, 1, . . . , (2)

which has been dealt with by many authors. Also,
the recursive sequence (2) for negative values of
α has been examined in Refs. 9, 10, and for non-
negative values of α has been studied in Ref. 11.
Some of the types of behaviour that are studied in
this paper have been investigated in Refs. 12, 13 for
xn+1 = α+ xn−k/xn for k ∈ Z+.

Equation (1) can be written as

xn+1 = f (xn, xn−1), n= 0, 1, . . . , (3)

where f (x , y) = α+β y + y/x . Since f : (0,∞)×
(0,∞) → (0,∞) is a continuously differentiable
function, (3) and hence (1) have a unique solution
{xn}∞n=−1 for all initial conditions x−1, x0 ∈ (0,∞).

PRELIMINARIES

The definitions provided in this section can be found
in many books2, 7 and papers (see Refs. 9, 11 and
the references therein), and the preliminary results
are either given in these references or can be derived
as a simple consequence of those obtained in there.

A point x̄ ∈ (0,∞) is said to be a fixed point or
an equilibrium solution of (3) if f ( x̄ , x̄) = x̄ . Clearly,
the only fixed point of (1) is

x̄ = (1+α)/(1−β).

Let {xn}∞n=−1 be a positive solution of (1). A
positive semi-cycle of {xn}∞n=−1 consists of a string of
terms {x l , x l+1, . . . , xm}, all greater than or equal to
x̄ , with l ¾ −1 and m¶∞ and such that

either l = −1, or l > −1 and x l−1 < x̄

and

either m=∞, or m<∞ and xm+1 < x̄ .

A negative semi-cycle of {xn}∞n=−1 consists of a string
of terms {x l , x l+1, . . . , xm}, all less than x̄ , with l ¾
−1 and m¶∞ and such that

either l = −1, or l > −1 and x l−1 ¾ x̄

and

either m=∞, or m<∞ and xm+1 ¾ x̄ .

A solution {xn}∞n=−1 of (1) is nonoscillatory if
there exists N ¾ −1 such that either

xn > x̄ for all n¾ N
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or
xn < x̄ for all n¾ N .

A solution {xn}∞n=−1 is called oscillatory if it is not
nonoscillatory.

A fixed point x̄ of (1) is said to be locally stable
if there exists an interval I ⊂ (0,∞) such that
to any ε > 0 there corresponds a δ = δ(ε) > 0
with the property that x−1, x0 ∈ I and |x−1− x̄ | +
|x0− x̄ | < δ implies |xn− x̄ | < ε for all n ¾ −1;
locally asymptotically stable if it is locally stable
and there exists γ > 0 such that x−1, x0 ∈ I and
|x−1− x̄ | + |x0− x̄ | < γ implies limn→∞ xn = x̄; a
global attractor if limn→∞ xn = x̄ for any x−1, x0 ∈ I ;
globally asymptotically stable if it is locally asymptot-
ically stable and a global attractor; and unstable if it
is not locally stable.

In general, the local stability analysis of the
fixed point of a nonlinear equation is carried out by
means of linearization about the fixed point. Setting
A= (∂ f /∂ x)( x̄ , x̄) and B= (∂ f /∂ y)( x̄ , x̄), one can
write the so-called linearized equation of (3) about
x̄ as

yn+1 = Ayn+ B yn−1, n= 0,1, . . . , (4)

whose characteristic equation is

λ2−Aλ− B = 0. (5)

Let λ1 and λ2 denote the roots of (5). Then the
following theorem holds7.

Theorem 1 (Linear stability)
(i) If |λ1|< 1 and |λ2|< 1, then the fixed point x̄ of

(1) is locally asymptotically stable.
(ii) If |λ1| > 1 or |λ2| > 1, then the fixed point x̄ of

(1) is unstable.
(iii) A necessary and sufficient condition for both

roots of (5) to lie in the open unit disk |λ| < 1
is

|A|< 1− B < 2.

(iv) A necessary and sufficient condition for at least
one root of (5) to have |λ|> 1 is

|B|> 1 and |A|< |1− B|

or
A2+4B > 0 and |A|> |1− B| .

A solution {xn}∞n=−1 of (1) is said to be periodic
with period p if xn+p = xn for all n ¾ −1. The
smallest positive integer p is called the prime period
of {xn}∞n=−1.

Lemma 1 Let {xn}∞n=−1 be a solution of (1), and let
L > α/(1−β). Then
(i) limn→∞ x2n = L ⇔ limn→∞ x2n+1 = L/[(1 −

β)L−α];
(ii) limn→∞ x2n+1 = L ⇔ limn→∞ x2n = L/[(1 −

β)L−α].

Proof : Taking the limit of (1) as n→∞ yields the
required result. 2

Lemma 2 Let {xn}∞n=−1 be a positive solution of (1).
Then the following statements are true for all n.
(i) xn+1 < xn−1⇔ xn−1+αxn+(β −1)xn−1 xn < 0.
(ii) xn+1 = xn−1⇔ xn−1+αxn+(β−1)xn−1 xn = 0.
(iii) xn+1 > xn−1⇔ xn−1+αxn+(β−1)xn−1 xn > 0.

Proof : The lemma follows immediately from the fact
that

xn+1− xn−1 = α+β xn−1+
xn−1

xn
− xn−1

=
xn−1+αxn+(β −1)xn−1 xn

xn
.

2

Corollary 1 Let {xn}∞n=−1 be a positive solution (1),
and α= 1. Then
(i) If x−1 < x1, then x−1 < x1 < x3 < · · · and x0 <

x2 < x4 < · · · ;
(ii) if x−1 = x1, then x−1 = x1 = x3 = · · · and x0 =

x2 = x4 = · · · ;
(iii) if x−1 > x1, then x−1 > x1 > x3 > · · · and x0 >

x2 > x4 > · · · .

Proof : Observe that, for n¾ 0,

xn+ xn+1+(β −1)xn xn+1 =
(1+β xn)(xn−1+ xn+(β −1)xn−1 xn)

xn

and, hence by Lemma 2 with α = 1 one has the
required results. 2

Theorem 2 of Ref. 10 states that ifαn is a period-
2 sequence, f and g are non-decreasing continuous
functions which map the interval (0,∞) into itself,
and {xn} is a positive solution of

xn = αn+
f (xn−2)
g(xn−1)

, (6)

then the sequences {x2n} and {x2n+1} are eventually
monotonic.

Taking αn =α, f (x) = x and g(x) = x/(β x+1),
in Theorem 2 of Ref. 10, the following result can be
deduced.
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Lemma 3 Let α ¾ 0, 0 ¶ β < 1, and {xn}∞n=−1
be a positive solution of (1). Then {x2n}∞n=0 and
{x2n−1}∞n=0 are eventually monotonic.

MAIN RESULTS

Boundedness

In this part, the boundedness of positive solutions
of (1) is addressed. For this purpose, firstly the
following lemma which will be important to prove
the existence of an unbounded solution is given.

Lemma 4 Let α ¾ 0, 0 ¶ β < 1, and {xn}∞n=−1 be
a positive solution of (1). Then at least one of the
subsequences {x2n}∞n=0 and {x2n−1}∞n=0 is bounded.
Also,
(i) limn→∞ x2n =∞⇔ limn→∞ x2n−1 =α/(1−β).
(ii) limn→∞ x2n−1 =∞ ⇔ limn→∞ x2n = α/(1 −

β).

Proof : Suppose that {xn}∞n=−1 is a positive solution
of (1) such that both {x2n}∞n=0 and {x2n−1}∞n=0 are
unbounded. Using Lemma 3, it is easy to see that
limn→∞ x2n =∞ and limn→∞ x2n+1 =∞. Then

lim
n→∞

x2n+1

x2n−1
= lim

n→∞

�

α

x2n−1
+β +

1
x2n

�

= β .

Now, for ε= (1−β)/2, there exists N ∈ N such that
�

�

�

�

x2n+1

x2n−1
−β

�

�

�

�

<
1−β

2
for all n> N ,

which gives us x2n+1 <
1
2 (1+β) x2n−1 for all n> N .

Using this inequality repeatedly, one obtains

x2n+1 <

�

1+β
2

�n−N

x2N+1 for all n> N .

Since (1 + β)/2 < 1, the above estimate leads to
limn→∞ x2n+1 = 0, which is a contradiction. Ad-
ditionally, one can show that if one of the sub-
sequences {x2n}∞n=0 and {x2n−1}∞n=0 is unbounded,
then the other one converges to α/(1−β). 2

In the next theorem, it is shown that there exist
positive solutions of (1) which are unbounded.

Theorem 2 Let 0¶ α < 1, 0¶ β < 1, and {xn}∞n=−1
be a solution of (1) satisfying 0 < x−1 < 1/(1− β)
and x0 > 1/[(1−α)(1−β)]. Then

lim
n→∞

x2n =∞ and lim
n→∞

x2n+1 =
α

1−β
.

Proof : Since 0 ¶ α < 1, it is clear that 1/(1−α) ¾
α+1. Hence x0 > x̄ . Also,

x1 = α+β x−1+
x−1

x0
<

1
1−β

and

x1 = α+β x−1+
x−1

x0
> α.

That is, α < x1 < 1/(1−β). On the other hand,

x2 = α+β x0+
x0

x1
= α+

�

β +
1
x1

�

x0 > α+ x0,

x3 = α+β x1+
x1

x2
< α+β x1+

x1

x0
<

1
1−β

.

By induction, one can show that

x2n > nα+ x0 and x2n−1 ∈
�

α,
1

1−β

�

for all n¾ 1. (7)

Hence if α 6= 0, then limn→∞ x2n =∞ and, hence
by Lemma 4, limn→∞ x2n+1 = α/(1−β) as claimed.

For α= 0 one has

x2n+2− x2n =
�

β −1+
1

x2n+1

�

x2n > 0

and

x2n+1− x2n−1 =
�

β −1+
1

x2n

�

x2n−1 < 0

which means that {x2n} is strictly increasing and
{x2n+1} is strictly decreasing. If limn→∞ x2n = L <
∞, then by Lemma 1 one obtains limn→∞ x2n+1 =
1/(1−β). Taking the limit as n→∞ on both sides
of x2n+1 = (β + 1/x2n)x2n−1 yields L = 1/(1− β),
which is not possible since {x2n} is increasing and
x0 ¾ x̄ . Hence limn→∞ x2n =∞ and, by Lemma 4,
limn→∞ x2n+1 = 0 as required. 2

Periodicity and semi-cycle analysis

In this part, the period-2 solutions of (1) are con-
sidered. Also, the semi-cycle analysis of positive
solutions is performed and the convergence of any
positive solution to the fixed point or a period-2
solution of (1) is dealt with alongside this.

Lemma 5 Equation (1) has period-2 solutions if and
only if α = 1. Moreover, when α = 1, {xn}∞n=−1 is
period-2 if and only if x−1 6= 2/(1−β), x−1 6= 1/(1−
β) and x0 = x−1/(x−1(1−β)−1).

Proof : Suppose that (1) has a period-2 solution

. . . , x , y, x , y, . . .
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where x 6= y . Then

x = α+β x +
x
y

, (8a)

y = α+β y +
y
x

. (8b)

Subtraction of the latter equation from the former
one yields y = x/[x(1−β)− 1]. Plugging this into
(8a) gives α = 1. Notice that x = 2/(1−β) results
in y = 2/(1−β), which contradicts the assumption
that x 6= y .

Conversely, assume that α= 1. Let x−1 6= 2/(1−
β), x−1 6= 1/(1−β) and x0 = x−1/(x−1(1−β)−1).
From (1), the following can be deduced:

x1 = 1+β x−1+
x−1

x0
= x−1

x2 = 1+β x0+
x0

x1
= 1+β x0+

x0

x−1
= x0.

By induction, it is now easy to see that {xn}∞n=−1 is a
period-2 solution. 2

Lemma 6 Let {xn}∞n=−1 be a positive solution of (1)
which consists of a single semi-cycle. Then {xn}∞n=−1
converges to x̄ = (1+α)/(1−β).

Proof : Suppose that {xn}∞n=−1 is a positive solution
of (1) which is a negative semi-cycle. Then, using
1−β = (1+α)/ x̄ and 0< xn < x̄ , one obtains

x2n+2− x2n = α+
�

β −1+
1

x2n+1

�

x2n

> α
�

1−
x2n

x̄

�

¾ 0

and

x2n+1− x2n−1 = α+
�

β −1+
1

x2n

�

x2n−1

> α
�

1−
x2n−1

x̄

�

¾ 0,

implying that the subsequences {x2n+1}∞n=−1 and
{x2n}∞n=0 are both strictly increasing. Hence the lim-
its limn→∞ x2n+1 = L1 and limn→∞ x2n = L2 exist.
Also, L1, L2 ∈ (0, x̄]. Since L1 = α+ β L1 + L1/L2,
one has

α

L1
+

1
L2
= 1−β . (9)

Now, if L1 < x̄ or L2 < x̄ , then α/L1 + 1/L2 >
(α + 1)/ x̄ = 1 − β , which contradicts (9). Hence
L1 = L2 = x̄ and, hence, {xn}∞n=−1 converges to x̄ ,
as claimed.

The case when {xn}∞n=−1 is a positive semi-cycle
can be handled in a similar way. 2

Lemma 7 Let {xn}∞n=−1 be a positive solution of (1)
which consists of at least two semi-cycles. Then
{xn}∞n=−1 is oscillatory. Moreover, with the possible
exception of the first semi-cycle, every semi-cycle has
length 1. Aside from that, for any ε > 0, except possi-
bly for finitely many terms, every term of {xn}∞n=−1 is
strictly greater than α/(1−β)− ε.

Proof : Suppose that {xn}∞n=−1 is a positive solution
which consists of at least two semi-cycles. Then
there exists m ¾ −1 such that xm < x̄ ¶ xm+1 or
xm+1 < x̄ ¶ xm. Only the former case will be
considered since the latter can be treated similarly.
Now,

xm+2 = α+β xm+
xm

xm+1
< α+β x̄ +1= x̄

and

xm+3 = α+β xm+1+
xm+1

xm+2
> α+β x̄ +1= x̄ .

Again by induction, it can be shown that

α < xm+2k < x̄ ¶ xm+2k+1 for k ¾ 0. (10)

That is, every semi-cycle, except possibly for the
first one, say {x−1, . . . , xm}, has length 1, and the
solution {xn}∞n=−1 is oscillatory.

Additionally, by Lemma 3, it is clear that the sub-
sequences {xm+2k}∞k=0 and {xm+2k+1}∞k=0 are even-
tually monotonic. Hence, xm+2k → L1 as k →∞,
where α ¶ L1 ¶ x̄ . In the case when {xm+2k+1}∞k=0
is not bounded from above, one has xm+2k+1 →∞
as k →∞ which, by Lemma 4, implies that L1 =
α/(1 − β). On the other hand, if {xm+2k+1}∞k=0 is
bounded from above, then it has a finite limit, say
L2. Clearly,

α

L1
+

1
L2
= 1−β =

1
L1
+
α

L2
,

and L1 > α/(1−β) since, otherwise,

1−β =
α

L1
+

1
L2
¾ 1−β +

1
L2

implies that L2 ¶ 0, which is an obvious contradic-
tion. Thus in all cases, L1 ¾ α/(1− β). Using this
together with (10), one obtains the final result of
Lemma 7. 2

Theorem 3 Let α= 1, 0¶ β < 1, and {xn}∞n=−1 be a
positive solution of (1). Then the following statements
hold:
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(i) if {xn}∞n=−1 consists of a single semi-cycle, then
{xn}∞n=−1 converges to x̄ = 2/(1−β);

(ii) if {xn}∞n=−1 consists of at least two semi-cycles,
then {xn}∞n=−1 converges to a period-2 solution of
(1).

Proof : It is known by Lemma 6 that if {xn}∞n=−1 con-
sists of a single semi-cycle, then {xn}∞n=−1 converges
to x̄ . Otherwise, by Lemma 7, {xn}∞n=−1 is oscillatory
and, except possibly for the first semi-cycle, every
semi-cycle has length 1 and every term of {xn}∞n=−1
is greater than α = 1. The proof of the second part
follows from Corollary 1 and Lemma 1. 2

Stability analysis

Lemma 8 For the equilibrium point x̄ = (1+α)/(1−
β) of (1), we have
(i) x̄ is locally asymptotically stable if α > 1;
(ii) x̄ is unstable if 0¶ α < 1.

Proof : The linearized equation of (1) about x̄ is

yn+1 = Ayn+ B yn−1,

where A=−(1−β)/(1+α) and B = (1+αβ)/(1+α).
Let 0¶ β < 1.
(i) If α > 1, then

|A|+ B−1=
(1−α)(1−β)

1+α
< 0

and

1− B =
α(1−β)

1+α
< 2,

and hence, by Theorem 1(iii), x̄ is locally
asymptotically stable.

(ii) If 0¶ α < 1, then

A2+4B > 0

and

|A| − |1− B|=
(1−α)(1−β)

1+α
> 0,

and hence, by Theorem 1(iv), x̄ is unstable.
2

Lemma 9 Let α > 1, and let {xn}∞n=−1 be a positive
solution of (1). Then

α

1−β
+
α−1
α
¶ lim inf

n→∞
xn

¶ lim sup
n→∞

xn ¶
α2

(α−1)(1−β)
.

Proof : Because of Lemmas 6 and 7, it may be as-
sumed that every semi-cycle of {xn}∞n=−1 has length
1, that α/(1 − β) < xn for all n ¾ −1, and that
α/(1−β) < x0 < (1+α)/(1−β) < x−1. Note that
for n¾ 0,

x2n+1 = α+β x2n−1+
x2n−1

x2n

< α+
�

β +
1−β
α

�

x2n−1.

Thus

x2n+1 < α+α
�

β +
1−β
α

�

+
�

β +
1−β
α

�2

x2n−3.

Successive application of the previous inequality
leads to

x2n+1 <
α2

(α−1)(1−β)

�

1−
�

β +
1−β
α

�n�

+
�

β +
1−β
α

�n

x−1. (11)

Since β + (1− β)/α < 1, it follows from (10) with
m= 0 and (11) that

lim sup
n→∞

xn ¶
α2

(α−1)(1−β)
.

That is, for any ε > 0, there exists N ¾ 0 such that

x2n+1 <
α2+ ε

(α−1)(1−β)
for all n¾ N .

Thus for any n> N ,

x2n = α+β x2n−2+
x2n−2

x2n−1

> α+
�

β +
(α−1)(1−β)

α2+ ε

�

α

1−β

=
α

1−β
+
α(α−1)
α2+ ε

.

Since ε is arbitrary, it follows that

lim inf
n→∞

xn ¾
α

1−β
+
α−1
α

.

2
The following theorem, also given in Ref. 7, will

be useful to obtain the global asymptotic stability
condition of the fixed point x̄ of (1).

Theorem 4 Let f : (0,∞) × (0,∞) → (0,∞) be
a continuous function and consider the difference
equation

xn+1 = f (xn, xn−1), n= 0,1, . . . , (12)

where x−1, x0 ∈ (0,∞). Suppose f satisfies the
following conditions:
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(i) there exist positive numbers a and b with a < b
such that

a ¶ f (x , y)¶ b for all x , y ∈ [a, b];

(ii) f (x , y) is non-increasing in x ∈ [a, b] for each
y ∈ [a, b], and f (x , y) is non-decreasing in y ∈
[a, b] for each x ∈ [a, b];

(iii) (12) has no period-2 solutions in [a, b].
Then there exists exactly one equilibrium point x̄ of
(12) which lies in [a, b]. Also, every solution of (12)
which lies in [a, b] converges to x̄.

Theorem 5 Let α > 1. Then x̄ = (1+α)/(1−β) is
a globally asymptotically stable equilibrium point of
(1).

Proof : It is known from Lemma 8 that x̄ = (1 +
α)/(1−β) is a locally asymptotically stable equilib-
rium point of (1). Let {xn}∞n=−1 be a positive solution
of (1). It suffices to show that

lim
n→∞

xn =
1+α
1−β

.

For x , y ∈ (0,∞), set f (x , y) = α+β y + y/x , a =
α/(1−β), and b = α2/[(α−1)(1−β)]. Then,

f (a, b) = α+
βα2

(α−1)(1−β)
+

α

α−1

=
α2

(α−1)(1−β)
= b

and

f (b, a) = α+
αβ

1−β
+
α−1
α
=

α

1−β
+
α−1
α

> a.

Hence

a ¶ f (x , y)¶ b for all x , y ∈ [a, b].

By Lemma 9,

α

1−β
<

α

1−β
+
α−1
α
¶ lim inf

n→∞
xn

¶ lim sup
n→∞

xn ¶
α2

(α−1)(1−β)

and, by Theorem 4,

lim
n→∞

xn =
1+α
1−β

.

2
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Fig. 1 Odd indexed terms of the solution of (13).
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Fig. 2 Even indexed terms of the solution of (13).

NUMERICAL EXAMPLES

This part of the paper is devoted to some numerical
tests to illustrate the theoretical results obtained in
here.

Example 1 Consider the initial value problem (IVP)

xn+1 = 0.2+0.5xn−1+
xn−1

xn
, n= 0,1, . . . ,

x−1 = 1, x0 = 3. (13)

Clearly, the conditions of Theorem 2 are sat-
isfied and, as a result, limn→∞ x2n = ∞ and
limn→∞ x2n+1 = α/(1 − β) = 0.4 as seen in Fig. 1
and Fig. 2.

Example 2 Consider the IVP

xn+1 = 1+0.5xn−1+
xn−1

xn
, n= 0,1, . . . ,

x−1 = 1, x0 = 5. (14)

www.scienceasia.org

http://www.scienceasia.org/2015.html
www.scienceasia.org


356 ScienceAsia 41 (2015)

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

 n

 x
n

Fig. 3 The solution of (14).
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Fig. 4 The solution of (15).

Obviously, the solution {xn}∞n=−1 of (14) consists
of at least two semi-cycles. Then, by Theorem 3,
this solution converges to a period-2 solution as per
Fig. 3.

Example 3 Consider the IVP

xn+1 = 2+0.5xn−1+
xn−1

xn
, n= 0, 1, . . . ,

x−1 = 1, x0 = 3. (15)

Since, in this example, α = 2 > 1, by Theorem 5,
the equilibrium point x̄ = 6 of (15) is globally
asymptotically stable. As it can be seen in Fig. 4,
the solution {xn} of (15) converges to the fixed point
x̄ = 6.
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