Is *Halophila major* (Zoll.) Miquel a big *H. ovalis* (R. Brown) J.D. Hooker? An evaluation based on age, morphology, and ITS sequence

Piyalap Tuntiprapas^a, Satoshi Shimada^b, Supattra Pongparadon^c, Anchana Prathep^{c,*}

- ^a Excellence Centre for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Thailand
- ^b Graduate School of the Natural/Applied Sciences, Division Ochanomizu University, Tokyo
- ^c Seaweed and Seagrass Research Unit, Department of Biology, Faculty of Science,
- Prince of Songkla University, HatYai, Songkhla 90112 Thailand

*Corresponding author, e-mail: anchana.p@psu.ac.th

Received 26 Dec 2014 Accepted 1 Mar 2015

ABSTRACT: The common seagrass, *Halophila ovalis* (R. Brown) J.D. Hooker, is highly variable morphologically. It adapts well to various environmental conditions rendering the various forms unclear taxonomically. *Halophila* species were collected along the coast of southern Thailand. The morphology was quantified according to different parts of the leaf and the ages of leaves. Some samples had significantly different characters from *H. ovalis*: the lengths of their leaves ranged from 11.7–29.4 mm, and the widths from 5.6–14.8 mm; there were 9–18 cross veins. Phylogenetic analyses based on ribosomal internal transcribed spacer sequences divided them into two groups: one agrees with *H. ovalis* and the other with *H. major*. We suggest that leaf size at maturity (age iii-iv) and the $\frac{1}{2}$ ratio between the leaf width and the space between the intra-marginal vein and lamina margin are important characters that distinguish *Halophila* species.

KEYWORDS: seagrass, nrITS, leaf age, Thailand

INTRODUCTION

The genus *Halophila* Thouars (1806), family Hydrocharitaceae (Alismatales, Monocots)¹ has a broad global distribution², and is one of the most important marine plant due to its ecological roles as primary producer in marine environments³. *Halophila ovalis* (R. Brown) J.D. Hooker is the most common species in this genus found in the Indo-Pacific, the temperate North Pacific, the temperate Southern Oceans, and has recently been observed in the Tropical Atlantic Ocean⁴. It is well known for its variable morphology and adaptability to various environmental conditions^{5–8}. Although *H. ovalis* is widely distributed, it has been represented as a single collective species^{1,9}.

The five species of *Halophila* reported from Thailand are *H. ovalis*, *H. beccarii*, *H. minor*, *H. decipiens*, and *H. major*^{10–12}. *H. ovalis* is also common in Thai waters, forming extensive beds along the Andaman coast. It is well documented as food for the dugong, an endangered marine mammal^{11, 13, 14}. Seagrass studies in Thailand are however scant^{15, 16}

and taxonomic studies have not been revised in the last 10 years. For example, only H. decipiens, H. ovalis, and H. ovata have been reported in the Flora of Thailand¹⁷, where *H. ovata* was placed as a synonym of H. minor. Later however it was recognized as two distinct species¹⁸. *H. ovata* is now an illegitimate name and is proposed as H. gaudichaudii¹⁹; but a recent study¹² suggested that H. gaudichaudii was a synonym of H. nipponica. These observations reveal that the taxonomic status of the group is still unclear. Besides, molecular studies by Uchimura et al¹² revealed that *H. major* occurred in Thailand, which was the first record of H. major in Thailand. A recent report by Nguyen et al²⁰ suggested the occurrence of *H. major* in Thailand; however its morphological features had never been examined.

During our recent surveys, we have found many *Halophila* specimens in several locations with similar characters to *H. ovalis*, but some with greater leaf size and thick leaf. Both forms grow in the subtidal zones also mixed with *Thalassia hemprichii* and *Cymodocea serrulata*. Recent studies using var-

Fig. 1 Field collection sites along the coastal southern Thailand.

ious genetic markers of plastid sequences have clarified the identification of the *Halophila* species^{21, 22}. Ribosomal internal transcribed spacer (ITS) sequences could be used to study and identify the genetic relation between *Halophila* closely related species^{12, 20, 23, 24}. It is unknown weather there is any difference in ITS molecular analysis between big and small leaf morphological forms of *H. ovalis*. Thus this study evaluates the taxonomic status of this large *Halophila* sp. by analysing the nuclear ribosomal internal transcribed spacer (nrITS) sequences and measuring different leaf parts at various ages.

MATERIALS AND METHODS

Seagrasses were collected from the intertidal and subtidal zones along the coastal line in southern Thailand (Fig. 1). Samples were collected by walking survey during low tide at intertidal zone area and by using SCUBA diving or snorkelling at the subtidal area. At each sampling point plants containing leaf, root, and rhizome having at least 3–4 leaf pairs were selected, cleaned, and preserved as dried herbarium specimens. New and/or young leaves of *Halophila* with no epiphytes were preserved in silica gel for molecular studies. These vouchers herbarium specimens were deposited at Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai.

Total DNA was extracted from 38 samples (Table 1) using the DNeasy Plant Mini Kit (QIA-GEN, Valencia, CA, USA) following the protocol of the manufacturer. The nuclear ribosomal internal transcribed spacer (nrITS) region including the 5.8S gene was selected for PCR amplification and auto-

mated sequencing. The following pair of primers was used for PCR and cycle-sequencing reactions: ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'). PCR amplification was run on a PROGRAM TEMP CONTROL SYS-TEM (Astec, Fukuoka, Japan) and the profile of the reactions was an initial denaturation 1 min at 94 °C followed by 35 cycles of denaturation 45 s at 94 °C, the primers annealing 45 s at 50 °C, and extension 60 s at 72 °C, terminated by a final hold at 4 °C. The presence of the PCR-amplified products was verified by agarose gel electrophoresis, followed by staining with ethidium bromide. Prior to cyclesequencing, PCR-amplified products were cleaned using the OIAquick PCR Purification Kit (OIAGEN, Valencia, CA, USA) and directly sequenced using the ABI PRISM BigDye Terminator Cycle Sequencing Kit ver. 3.1 (Applied Biosystems, CA, USA) according to the manufacturers. Cycle-sequencing reactions consisted of an initial step of 96 °C for 10 s, followed by 25 cycles (96 °C for 10 s, 50 °C for 5 s, 60 °C for 4 min) and a final hold at 4°C. Only the forward strand was sequenced using a DNA autosequencer (ABI PRISM, 3130 Genetic Analyser, Applied Biosystems, CA, USA).

The sequences were aligned using CLUSTAL X²⁵. Identical sequences within each species were excluded from the alignment. Additional 29 ingroup sequences were loaded from GenBank (Table 1). H. decipiens Ostenfeld (AF366412) and H. stipulacea (Forssk.) Asch. (AF366436) designated as outgroups. Phylogenetic analysis were implemented using maximum likelihood (ML) and Bayesian Inference (BI). Prior to ML and BI analysis, the best-fit model of nucleotide substitution was selected using the JMODELTEST 2.1.1 tool²⁶. The ML tree was constructed using RAxML²⁷ with the HKY+I+G model. Support for branches was obtained from 1000 bootstrap replications. BI analysis was performed using MRBAYES v.3.2.1²⁸, with a random starting tree run for 5 000 000 generations, sampling tree every 1000 generations and a with a burning of 5000 trees.

The herbarium specimens were closely examined under a stereo microscope (Olympus SZX 12) and photographed using an Olympus DP 71. Each leaf was divided into 4 equal sections from the base to the apex (Fig. 2). The leaf morphological characters were quantified as follows: leaf length (LL) and leaf width (LW) in each of the four sections, number of cross veins (CV), counted from the base of all cross vein (secondary vein) which are connected with the mid rib (primary vein), cross

ScienceAsia 41 (2015)

No.	Taxon	Location	Voucher No.	GenBank No.	Source
1	H. ovalis	Okinawa, Japan		AB243973	23
2	H. ovalis	Okinawa, Japan		AB243975	23
3	H. ovalis	Trang, Thailand		AB436938	12
4	H. OValls	Ouconsland Australia		AB430939 AE266421	12
5	П. Ovalis Н ovalis	Marakanam India		KF620355	29 20
7	H. ovalis	Kanyakumari, India		KF620353	20
8	H. ovalis	Trang. Thailand		KF620350	20
9	H. ovalis	Nakhon Si Thammarat, Thailand		KF620345	20
10	H. ovalis	Satun, Thailand		KF620347	20
11	H. ovalis	Lantau Island, Hong Kong		KF620337	20
12	H. ovalis	Cu Mong Lagoon, Vietnam		KC175909	20
13	H. ovalis	Sarawak, Malaysia		KF620338	20
14	П. Ovalis Н ovalis	Inga Island, Malaysia		KF020339 KE620346	20
15	H ovalis	Flores Island Indonesia		AB436930	20 12
17	H. ovalis	Leam Yong Lum, Trang, Thailand	PT 45.1.1*	KP408228	\dagger (Group Ho. 1)
18	H. ovalis	Leam Yong Lum, Trang, Thailand	PT 45.2.1	KP408229	[†] (Group <i>Ho.1</i>)
19	H. ovalis	Leam Yong Lum, Trang, Thailand	PT 49.1.1 [*]	KP408230	(Group Ho.1)
20	H. ovalis	Leam Yong Lum, Trang, Thailand	PT 49.2.2	KP408231	(Group Ho.1)
21	H. ovalis	Leam Yong Lum, Trang, Thailand	PT 49.3.4	KP408232	(Group <i>Ho.1</i>)
22	H. ovalis	Leam Yong Lum, Trang, Thailand	PT 52.1.2	KP408233	(Group <i>Ho.1</i>)
23	H. ovalis	Leam Yong Lum, Trang, Thailand	CK 13-1 CK 14-2	KP408234	(Group Ho.1)
24 25	П. Ovalis Н ovalis	Leam Yong Lum, Trang, Thailand	CK 14-2 CK 14-6	KP408235 VD408236	(Group Ho.1)
25	H ovalis	Leam Yong Lum, Trang, Thailand	CK 14-0 CK 14-7	KP408230	(Group Ho.1)
27	H. ovalis	Leam Yong Lum, Trang, Thailand	CK 15-5	KP408238	[†] (Group Ho.1)
28	H. ovalis	Leam Yong Lum, Trang, Thailand	CK 15-7	KP408239	[†] (Group <i>Ho.1</i>)
29	H. ovalis	Leam Yong Lum, Trang, Thailand	CK 19-5	KP408240	(Group Ho.1)
30	H. ovalis	Koh Tan, Suratthani, Thailand	CK 24-1	KP408241	(Group <i>Ho.1</i>)
31	H. ovalis	Koh Tan, Suratthani, Thailand	CK 24-2	KP408242	(Group <i>Ho.1</i>)
32	H. ovalis	Koh Tan, Suratthani, Thailand	CK 24-3	KP408243	(Group <i>Ho.1</i>)
33	H. ovalis	Koh Tan, Suratthani, Thailand	CK 24-3.4	KP408244	(Group Ho. 1)
34 25	П. Ovalis Н ovalis	Koli Tali, Sufattilalli, Tilallallu Koh Tan, Suratthani, Thailand	CK 24-4 CV 24-5	KP408245 VD408246	(Group Ho.1)
36	H ovalis	Ban Pak Meang Trang Thailand	PT 46 1 2	KP408240	(Group Ho.1)
37	H. ovalis	Ban Pak Meang, Trang, Thailand	PT 46.1.3	KP408248	[†] (Group Ho.1)
38	H. ovalis	Ban Pak Meang, Trang, Thailand	PT 46.2.4	KP408249	(Group Ho.1)
39	H. ovalis	Ban Pak Meang, Trang, Thailand	PT 46.3.1	KP408250	† (Group <i>Ho.1</i>)
40	H. ovalis	Ban Pak Meang, Trang, Thailand	PT 47.2.2	KP408251	(Group <i>Ho.1</i>)
41	H. ovalis	Ban Pak Meang, Trang, Thailand	PT 47.1.3	KP408252	(Group Ho.1)
42	H. OVALIS	Ban Pak Meang, Irang, Inaliand	PI 62.1	KP408253	(Group Ho.1)
43 44	H ovalis	Leam Yong Lum Trang Thailand	PT 57.1.1 PT 49 1 5*	KP408254 KP408255	(Group Ho.1)
45	H. maior	Trang Thailand	11 49.1.5	AB436927	(010up 110.2) 12
46	H. major	Okinawa, Japan		AB243967	23
47	H. major	Sumbawa, Indonesia		AB436926	12
48	H. major	Bali, Indonesia		AB436928	12
49	H. major	Nha Trang, Vietnam		KC175910	20
50	H. major	Gyeiktan, Myanmar		KF620352	20
51	H. major H. major	Madul Island, Malaysia	DT /Q 1 1*	KF020340 VD408256	$\frac{20}{(\text{Group Hm 2})}$
53	H major	Leam Yong Lum, Trang, Thailand	PT 48 1 2 [*]	KP408257	(Group Hm.2)
54	H. major	Leam Yong Lum, Trang, Thailand	PT 48.2.3	KP408258	(Group Hm.1)
55	H. major	Leam Yong Lum, Trang, Thailand	PT 48.3.1 [*]	KP408259	(Group Hm.1)
56	H. major	Leam Yong Lum, Trang, Thailand	PT 51.1.2 [*]	KP408260	(Group Hm.1)
57	H. major	Koh Libong, Trang, Thailand	PT 133.10	KP408261	(Group <i>Hm</i> .1)
58	H. major	Koh Muk, Trang, Thailand	CK 16-3	KP408262	(Group Hm.1)
59	H. major	Ko Lao Liang, Irang, Inaliand	SP 348	KP408263	(Group Hm.1)
61	п. major H major	Ao Nang, Krabi, Thailand	AD 178 h	KP406204 KD408265	(Group Hm.1)
62	H. australis	South-Western Australia	10 1/00	AF366414	29
63	H. hawaiiana	Hawaii, USA		AF366426	29
64	H. johnsonii	Florida, USA		AF366425	29
65	H. mikii	Kagoshima Pref., Japan		AB436929	12
66	H. minor	Guam		AF366405	29
67	H. minor	Philippines		AF366406	29
60	п. supulacea Н deciniens	Sicily, Italy Malawsia		AF300430 AF366412	29
57	in acquins	manyon		11 300712	47

 Table 1
 Samples collected from southern Thailand and sequence data that use in this study.

 * measurement samples in this study † this study

Fig. 2 Leaf characters of *Halophila major* that were measured in each section. LL: leaf length; LW: leaf width; AG: angle between cross veins and mid veins; CVB: cross veins branching; SC: space between cross veins; SM: distance between intramarginal veins and lamina margin. Scale bar is 5 mm.

Fig. 3 Leaf age classes. (i) Young or new leaf without the petiole; (ii) young leaf nearly mature and shot petiole length (2nd of leaf pairs); (iii) fully youngest mature (3rd leaf pairs); (iv) old leaf (4th–5th leaf pairs). Scale bar is 3 cm.

vein branching counted from the base of cross vein which branched in the end of cross vein. The space between cross veins (SC) and the space between the intra-marginal vein and the lamina margin (SM) measured as the distance between each characters. The angle of cross veins ascending measured at the angle between the mid vein and the cross vein in each section. All these character parameters were examined using an image analysis program (imageJ software version 1.46r). Three replicates of each character parameters were made. The leaves were also divided into 4 age classes (Fig. 3): Age (i) is the young or new apical leaf with petiole development, age (ii) is young leaf nearly mature and with a short petiole (2nd leaf pairs), age (iii) is fully young mature (3rd leaf pairs), and age (iv) is an old leaf (4th leaf pairs). Leaves at each age were divided into the 4 sections and examined as above. The homoscedasticity of data was tested using Levene's test; and Two-ways ANOVA was employed to compare the difference in those characters with respect to species at each age; and Welch ANOVA was employed if data are heteroscedasticity.

RESULTS

Molecular phylogeny and ecological aspects

The phylogenetic tree obtained with the Ml method is presented in Fig. 4. Both maximum likelihood (Ml) and Bayesian Inference trees have the same topology. Thirty eight ITS sequences were divided into two clades consisting of clade I and clade II with 99 bootstrap percentages and 1 of Bayesian Inference posterior probabilities. In clade I, both haplotype Ho.1 and Ho.2 were grouped with known sequences. H. ovalis from GenBank. The 27 samples (Ho.1) were identical but different by 2 bp from H. ovalis AB243973 (JP). The haplotype Ho.2 was identical with H. ovalis sequences KF620345(TH), KF620347(TH), AB436938(TH), KF620337(HK), KF620338(ML2) and KF620339(ML3) but different by 2 bp from haplotype Ho.1. In clade II, haplotype Hm.1, Hm.2 and Hm.3 were clustered with known sequences, H. major from GenBank. Haplotype Hm.1 (8 samples) were identical with H. major AB436927(TH). Haplotype Hm.2 and Hm.3 were grouped with AB436928 and AB436926 from Indonesia, respectively. Hm.1 differed by 5 bp from *Hm.2* and 6 bp from *Hm.3*, while *Hm.2* and Hm.3 differed only 1 bp. The results showed the nucleotide differences among individuals of H. ovalis clade and H. major clade were 0-15 nucleotides and 0-14 nucleotides, respectively. Intraspecies variations were 0-0.014% (H. major), 0-0.015% (H. ovalis) and 0-0.018% (H. nipponica). Inter-species variations between H. major/H. ovalis, H. major/H. nipponica or H. ovalis/H. nipponica were 0.04-0.057%, 0.05-0.068% or 0.031-0.047%, respectively.

H. ovalis has occurred in both Andaman Sea and Gulf of Thailand while *H. major* was found only in the Andaman Sea. *H. ovalis* and *H. major* from In Leam Yong Lum, Trang province showed great genetic variations, covered both haplotypes of *H. ovalis* (*Ho.1* and *Ho.2*) and all of *H. major* (*Hm.1*, *Hm.2*, and *Hm.3*).

Morphological observations

The molecular analysis revealed that the largeleafed Halophila species is H. major (Zoll.) Miq.

Fig. 4 ML tree of *Halophila* species (nrITS: 635 bp). ML bootstrap values (> 50) and BI posterior probabilities (> 0.80) are indicated at nodes.

A total of 20 morphological leaf characters in 4 age classes were examined and compared between *H. major* and *H. ovalis*. The leaf characters showed the variation between the species among age classes (Table 2). Out of the 20 examined characters, there were 9 morphological leaf characters that featured significant differences between species in each age; which were leaf length, leaf width in each section, number of cross veins, space between cross veins (SC) in each section (except at 25% leaf area), space between the intra-marginal vein and lamina margin (SM) at the leaf tip and ratio between ¹/₂ leaf width and the space between the intra-marginal vein and lamina margin (Fig. 5a–i). The differences in leaf

character between *H. major* and *H. ovalis* were closely observed as also summarized in Table 2. Leaf length and width ranged 23.9–29.4 mm and 10.8– 12.6 mm in *H. major* and 10–17 mm and 4.3– 836 mm in *H. ovalis*, respectively, (Fig. 5a–d). The numbers of cross veins were 14–18 veins in *H. major* and were 9–16 veins in *H. ovalis* (Fig. 5e). Space between cross veins at 50%, 75% and 100% leaf area were slightly increased in space with aged. However, *H. major* had wider space between cross veins than *H. ovalis* (Fig. 5f–h). Interestingly, the ratio between $\frac{1}{2}$ leaf width and the space between the intra-marginal vein and lamina margin was clearly different. A much greater ratio was found

Characters [†]		LW	CV	CVB*	SC	SM	SMa	AG	¹ / ₂ LW/SM
	(mm)	(mm)	(no.)	(no.)	(mm)	(mm)	(mm)	()	
H. ovalis (n)									
age [‡] (i) (8)	6.8–10.1	4.6–5.6	7–8	(2–3)	$n/d^{\#}$	0.1-0.4	0.37–0.39	59.3–77.3	1:8-9.2
age [‡] (ii) (7)	12.7 - 18.2	6.1-8.2	11–14	(1–4)	0.4–1.3	0.2 - 1.2	0.3–0.5	36.3–89.4	1:3.6–12.7
age [‡] (iii) (11)	11.2 - 17.0	4.3-8.3	9–16	(0–3)	0.4–1.4	0.2 - 1.1	0.3–0.5	30.4-88.5	1:4.1–9.7
age [‡] (iv) (12)	10.0–15.0	4.6–7.6	9–14	(0–3)	0.3–1.1	0.2–0.6	0.3–0.5	43.4–79.4	1:6.8–12.1
Japan ¹⁹	12–18	4–8	12–16	n/d	0.8–1.1	0.25-0.4	n/d	n/d	1:10–16
Vietnam ²⁴	9–12	3.7–7.0	8–16	n/d	n/d	0.3	n/d	45-80	1:9–17
H. major (n)									
age [‡] (i) (9)	11.7–19.5	7.1–12.6	9–16	(0–5)	0.5-1.5	0.1-0.5	0.2-0.5	36.5-87.4	1:16.6-22.2
age [‡] (ii) (5)	13.0–25.7	5.6–14.8	12–18	(1–6)	0.5–1.5	0.1–1.5	0.2–0.5	30.1–77.7	1:18.5–19.9
age [‡] (iii) (15)	25.9–29.4	10.8–12.6	14–18	(1–6)	0.6–2.0	0.1–0.6	0.4–0.6	27.7–75.4	1:16.6–27.1
age [‡] (iv) (8)	23.9–27.4	10.8–12.3	15–18	(1–6)	0.6–1.5	0.2-0.6	0.4–0.6	36.9–67.3	1:17.2-27.7
Japan ¹⁹	10–25	9–11	18–22	n/d	0.7-1.25	0.16-0.5	n/d	n/d	1:20-25
Japan ²³	10–30	5–15	12–19	n/d	0.7 - 1.25	0.1-0.2	n/d	n/d	1:20-25
Vietnam ²⁴	10–18	9–12	16–22	n/d	n/d	0.2-0.25	n/d	60–80	1:24-25

 Table 2
 Summary of morphological characters between H. major and H. ovalis populations.

[†] LL: leaf length; LW: Leaf width; CV: cross veins; CVB: cross veins branching; SC: space between cross veins; SM: space between intra-marginal veins and leaf margin; SMa: space between intra-marginal veins and leaf margin at apex of leaf; AG: cross veins angle; ½ LW/SM: Half of leaf width per space between intra-marginal veins and leaf margin.

^{*} Populations in this study from Andaman Sea, Thailand.

^{*} Cross veins branching is common for all populations except for *H. ovalis* from Vietnam²⁴.

 $^{\#}$ n/d = no data.

in *H. major* and ranged between 1:16.58–27.74 and 1:3.59–12.65 in *H. ovalis* without any overlapping values (Fig. 5i). This, in fact, could be a dependable character for the identification of *H. major*.

DISCUSSION

H. major is reported to be distributed in Western Pacific region including Vietnam, Indonesia, Malaysia and the Indian Ocean including Thailand and Myanmar either through the morphological or molecular information^{12, 19, 20}. This study was the first report, which combined both morphological features and molecular information to identify H. major and suggested some key characters to identify this closely similar species. Unlike the study of Nguyen et al²⁰, where high genetic diversity of *H. ovalis* was reported across the Indo-Pacific Ocean, our results showed the identical sequences of H. major or between Trang and Krabi provinces (haplotype Hm.1, Fig. 4), however a much smaller scale. The distance between those sites are less than 100 km, where both influenced by the same water current thus low genetic diversity was expected. It would be interesting to further understand, dispersal, recruitment and sexual reproduction of this species.

Although H. major and H. ovalis have similar

shape and shows some overlap in size among leaf age groups (Table 2), they can be clearly distinguished by (1) a significant larger leaf size in all leaf ages, especially in the age (iii) and (iv); and (2) The $\frac{1}{2}$ ratio between leaf width and the space between the intra-marginal vein and lamina margin is significantly higher in *H. major* than in *H. ovalis*. Thus we suggest that leaf ages as well as the $\frac{1}{2}$ ratio are important for distinguishing these 2 closely similar species; and as well as other *Halophila* spp.

Although there are significantly more cross veins in H. major in most mature leaves, the number of cross veins in this study ranged only 14-18, which is much lower than those reported from Japanese populations (18–22 cross veins)¹⁹. This suggested that there is high variability in this character in Halophila spp. between various populations (Table 2). Overlap of characters is common and conspecific within this group, e.g., H. minor and H. ovalis, H. major and H. miki, H. nipponica, H. ok*inawensis* and *H. gaudichaudii*²³. The nomenclature of the Halophila group is still confounding which limits the risk assessment of the dangers to the world's seagrass species²⁹. In addition to the distinguishing morphological and ITS characters, sexual reproductive features, flowers and fruits, would

ScienceAsia 41 (2015)

Fig. 5 Summary of morphological characters between *H. major* (*Hm-*) and *H. ovalis* (*Ho-*) populations among 4 age classes. Medians are highlighted in bold; bars represent the 25% and 75% quartiles; whiskers represent the lowest and highest data points. (a) Leaf length (Welch = 145.99, *p*-value = 0.000); (b) leaf width at 25% leaf area (Welch = 90.46, *p*-value = 0.000); (c) leaf width at the 50% leaf area (Welch = 183.19, *p*-value = 0.000); (d) leaf width at 75% leaf area (Welch = 597.11, *p*-value = 0.000); (e) number of cross veins (Welch = 44.69, *p*-value = 0.000); (f) space between cross veins at 50% leaf area (Welch = 11.09, *p*-value = 0.000) and * = no data; (g) space between cross at 75% leaf area (Welch = 12.34; *p*-value = 0.000); (h) space between cross at 100% leaf area (Welch = 5.52, *p*-value = 0.000) and * = no data; (i) ratio between 0.5 leaf width and space between intra marginal vein and leaf edge (Welch = 77.52, *p*-value = 0.000).

complete the description of the species. Establishing those characters was outside the realm of this study.

Acknowledgements: This study was supported by Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (NRU). Prof. Larry B Liddle has improved the English of this manuscript. AP and SS would like to thank National Research Council of Thailand (NRCT)-Japan Society for the Promote of Science (JSPS) research collaboration scheme.

REFERENCES

- den Hartog C (1970) Seagrasses of the World, North Holland Publishing Company, Amsterdam, The Netherlands.
- Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: A bioregional model. *J Exp Mar Biol Ecol* **350**, 3–20.
- Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: Biology, Ecology, and Conservation, Springer, Dordrecht, The Netherlands.

- Short FT, Moore GE, Peyton KA (2010) Halophila ovalis in the Tropical Atlantic Ocean. Aquat Bot 93, 141–6.
- Ralph PJ, Burchett MD (1995) Photosynthetic responses of the seagrass *Halophila ovalis* (R. Br.) Hook. f. to high irradiance stress, using chlorophyll *a* fluorescence. *Aquat Bot* 51, 55–66.
- Ralph PJ (1998) Photosynthetic response of laboratory-cultured *Halophila ovalis* to thermal stress. *Mar Ecol Progr* 171, 123–30.
- Shafer DJ, Sherman TD, Wyllie-Echeverria S (2007) Do desiccation tolerances control the vertical distribution of intertidal seagrasses? *Aquat Bot* 87, 161–6.
- Tanaka Y, Nakaoka M (2004) Emergence stress and morphological constraints affect the species distribution and growth of subtropical intertidal seagrasses. *Mar Ecol Progr* 284, 117–31.
- Kuo J, den Hartog C (2001) Seagrass taxonomy and identification key. In: Short FT, Coles RG (eds) *Global Seagrass Research Methods*, Elsevier Science B.V., Amsterdam, pp 31–58.
- 10. Chansang H, Poovachiranon S (1994) The distribution and species composition of seagrass beds along the Andaman Sea coast of Thailand. *Phuket Mar Biol*

Cent Res Bull **59**, 43–52.

- Supanwanid C, Lewmanomont K (2003) The seagrasses of Thailand. In: Green EP, Short FT (eds) *World Atlas of Seagrasses*, UNEP World Conservation Monitoring Centre, Univ of California Press, Berkeley, USA, pp 144–51.
- 12. Uchimura M, Faye EJ, Shimada S, Aral S, Inoue T, Nakamura Y (2008) A reassessment of *Halophila* species (Hydrocharitaceae) diversity with special reference to Japanese representatives. *Bot Mar* **51**, 258–68.
- 13. Marsh H, Penrose H, Eros C, Hugues J (2002) Dugong: Status reports and action plans for countries and territories. UNEP Early Warning and Assessment Report Series UNEP/DEWA/RS. 02-1.
- 14. Hines EM, Adulyanukosol K, Duffus DA (2005) Dugong (*Dugong dugon*) abundance along the Andaman coast of Thailand. *Mar Mamm Sci* **21**, 536–49.
- Prathep A, Rattanachot E, Tuntiprapas P (2010) Seasonal variations in seagrass percentage cover and biomass at Koh Tha Rai, Nakhon Si Thammarat Province, Gulf of Thailand. *Songklanakarin J Sci Tech* 32, 497–504.
- Rattanachot E, Prathep A (2011) Temporal variation in growth and reproduction of *Enhalus acoroides* (L.f.) Royle in a monospecific meadow in Haad Chao Mai National Park, Trang Province, Thailand. *Bot Mar* 54, 201–7.
- 17. Haynes RA (2001) Hydrocharitaceae. In: Santisuk T, Larsen K (eds) *Flora of Thailand*, Vol. 7, Part 3, The Forest Herbarium, Royal Forest Department, Bangkok, pp 365–82.
- Kuo J (2000) Taxonomic notes on Halophila ovata and Halophila minor. In: Pergemp G, Pergemp-Marpini C, Buia M, Gambia M (eds) Proceedings 4th International Seagrass Biology Workshop, Biol Mar Mediterr 7, 79–82.
- 19. Kuo J, Kanamoto Z, Iizumi H, Mukai H (2006) Seagrasses of the genus *Halophila* Thouars (Hydrocharitaceae) from Japan. *Acta Phytotax Geobot* **57**, 129–54.
- Nguyen XV, Detcharoen M, Tuntiprapas P, Soe-Htun U, Sidik JB, Harah MZ, Prathep A, Papenbrock J (2014) Genetic species identification and population structure of *Halophila* (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. *BMC Evol Biol* 14, 92.
- 21. Lucas C, Thangaradjou T, Papenbrock J (2012) Development of a DNA barcoding system for seagrasses: successful but not simple. *PLoS ONE* **7**, e29987.
- 22. Nguyen XV, Japar SB, Papenbrock J (2013) Variability of leaf morphology and marker genes of members of the *Halophila* complex collected in Viet Nam. *Aquat Bot* **110**, 6–15.
- 23. Uchimura M, Faye EJ, Shimada S, Aral S, Inoue T, Nakamura Y (2006) A re-evaluation of the taxonomic status of *Halophila euphlebia* Makino (Hydrochar-

itaceae) based on morphological features and ITS sequence data. *Bot Mar* **49**, 111–21.

- 24. Nguyen XV, Holzmeyer L, Papenbrock J (2013) New record of the seagrass species *Halophila major* (Zoll.) Miquel in Vietnam: Evidence from leaf morphology and ITS analysis. *Bot Mar* **56**, 313–21.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res* 25, 4876–82.
- Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14, 817–8.
- Stamatakis A (2006) Phylogenetic models of rate heterogeneity: a high performance computing perspective. In: *Proceedings of the IPDPS2006 HiCOMB Workshop*, Rhodes Island, Greece.
- Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572–4.
- 29. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, et al (2011) Extinction risk assessment of the world's seagrass species. *Biol Conservat* 144, 1961–71.