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ABSTRACT: In this paper we use a Fredholm integral equation approach to derive an explicit formula for the average
run length (ARL) of a cumulative sum (CUSUM) chart for random observations described by a moving average process
of order q (MA(q)) with exponential white noise. We compare the computational times required for calculating the
ARL from our exact formula with the computational times required for solving the Fredholm integral equations using a
Gauss-Legendre numerical scheme. We find that the computational times are approximately 1 s for the explicit formula
and approximately 13 min for the numerical integration scheme.

KEYWORDS: moving average process of order q, white noise, exponential distribution

MSC2010: 97N40 34K07 46N20

INTRODUCTION

The cumulative sum (CUSUM) chart is a common
and effective graphical procedure for monitoring
quality control in a manufacturing industry. The
CUSUM chart1 is good for detecting small changes
in observed parameters in statistical process control.
CUSUM charts have been applied in a range of
different areas. A review of CUSUM charts has
been given by Mazalov and Zhuravlev2, who imple-
mented CUSUM charts to identify change points in
traffic in computer networks. Dong3 has employed
CUSUM charts in economics and finance to detect
turning points in IBM stock prices. Corbett and
Pan4 have used CUSUM charts in environmental
science to monitor emission data. Kennedy5 has
applied CUSUM charts in queueing processes to
compute the distribution of the first passage times
for an M/M/l queue. CUSUM charts have also been
used to calculate stopping times associated with
sequential cumulative sum tests in health care and
public health6, 7.

A common characteristic of control charts is the
average run length (ARL), which is defined as the
expectation of the alarm time taken to trigger a
signal about a possible change in parameters of a
distribution. Ideally, an acceptable ARL for an in-
control process should be large enough to avoid an

excessive number of false alarms. In this paper we
adopt the notation for the in-control ARL as ARL0 =
E∞(τ) for the expectation of stopping time τ cor-
responding to a target value T which is assumed to
be large enough. The out-of-control ARL is denoted
by ARL1 and is defined as the expectation of delay
time for a true alarm. This time should minimize
the quantity

ARL1 = Eθ (τ−θ +1|τ¾ θ )

where Eθ is the expectation under the assumption
that a change-point occurs at a given time θ .

In the literature, several methods have been
described for evaluating the ARL of CUSUM and
EWMA procedures, e.g., Monte Carlo simulation
(MC), integral equation (IE)8, 9, and Markov chain
approximation10, 11. Zhonghua et al12 intensively
reviewed the integral equation and Markov chain
methods for computing the average run length.
Sukparungsee and Novikov13 derived closed-form
formulae for the ARL for light-tailed distributions
using a martingale approach. Areepong14 presented
an analytical derivation of the ARL of an EWMA
chart for exponentially distributed observations us-
ing an integral equation approach. Mititelu et al15

used the Fredholm integral equations approach to
derive analytical expressions for the ARL of EWMA
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and CUSUM charts when observations have a hy-
perexponential distribution. Petcharat et al16 de-
rived closed-form expressions for the ARL of CUSUM
charts for Pareto and Weibull distributed observa-
tions by approximating these distributions with the
hyperexponential distribution.

CUSUM control charts have traditionally been
designed for independent and identically dis-
tributed (i.i.d.) observations. However, in real life
problems, correlated observations may be present in
some processes17 and these correlations can affect
properties of CUSUM charts. Jacob and Lewis18

analysed autoregressive-moving average processes
of order (1,1) (ARMA(1,1)) when observations are
exponentially distributed with exponential white
noise. Lawrance and Lewis19 studied exponential
moving average processes of the first order. These
processes are important in queueing and network
problems. Mohamed and Hocine20 used Bayesian
methods to analyse an autoregressive model with
exponential white noise.

In this paper, we derive an analytical expression
for the ARL of a CUSUM chart when the random ob-
servations are modelled as a moving average process
of order q (MA(q)) with exponential white noise.
We then use the Banach fixed point theorem (see,
e.g., Ref. 21) to prove the existence and uniqueness
of solutions of this analytical expression. Finally,
we compare numerical results obtained from the
analytical expression for the ARL of MA(q) processes
with results obtained from a numerical solution of
an integral equation for the ARL. We also compare
CPU times for the analytical and integral equation
computations.

AVERAGE RUN LENGTH FOR CUSUM CHARTS
FOR MOVING AVERAGE PROCESSES OF ORDER
q WITH EXPONENTIAL WHITE NOISE

A CUSUM chart is most often implemented for mon-
itoring and detecting small changes in parameters
of a given distribution. Let ξn be the observations
of a stationary moving average process of order q
with exponential white noise defined as Zn = ξn −
θ1ξn−1−θ2ξn−2−. . .−θqξn−q, where |θi |< 1, for i =
1,2, . . ., and ξn ∼ Exp(λ). The CUSUM recurrence
chart is defined by

Xn =max(Xn−1+ Zn− a, 0), n= 1, 2,. . ., (1)

where Xn are random variables, and a is a non-
zero CUSUM reference value. The corresponding
stopping time for (1) is defined as

τb = inf{n> 0 : Xn > b} (2)

where b denotes the out-of-control parameter limit.
Let Px and Ex be the probability measure and the
induced expectation corresponding to the initial
value X0 = x . Then the ARL = j(x) = Ex(τb) <∞
is the unique solution of the ARL integral equation15

j(x) = 1+Ex [I{0< X1 < b} j(X1)]
+Px{X1 = 0} j(0), x < b (3)

where the indicator function I(0 < X1 < b) = 1 if
0< X1 < b and 0 otherwise.

Uniqueness of solution of an integral equation
for the ARL

Mititelu et al15 have used the integral equation
approach to analyse the ARL for first order station-
ary autoregressive processes with exponential white
noise for the case of i.i.d. random variables. In this
section, we use the integral equation approach to
prove the uniqueness of solutions for the ARL for
stationary moving average processes by using the
following theorem.

Theorem 1 (Banach Fixed Point Theorem) . Let
(X , d) be a non-empty complete metric space with a
contraction mapping T : X → X . Then T admits a
unique fixed-point x∗ ∈ X (i.e., T (x∗) = x∗). Fur-
thermore, x∗ can be found as follows: start with an
arbitrary element x0 ∈ X and define a sequence {xn}
by xn = T (xn−1), then xn→ x∗.

A stationary first order moving average process,
MA(1), with exponential white noise ξn is defined
by the recurrence relation Zn = ξn − θ1ξn−1, where
|θ1| < 1, and ξn ∼ Exp(λ). A stationary second
order moving average process, MA(2) with expo-
nential white noise ξn is defined by the recurrence
Zn = ξn − θ1ξn−1 − θ2ξn−2, where |θ1+θ2| < 1,
|θi | < 1, for i = 1,2, and ξn ∼ Exp(λ). Following
the method used for deriving (3) for MA(1), we can
derive an integral equation for an MA(q) process.
We obtain

j(x) = 1+λeλ(x−a−(θ1ξ0+···+θqξ1−q))

∫ b

0

j(y) e−λy dy

+
�

1− eλ(x−a−(θ1ξ0+···+θqξ1−q))
�

j(0), x ∈ [0, a). (4)

Since the right-hand side of (4) is continuous,
the solution of (4) is also a continuous function.
Now, consider the non-empty complete metric space
(C(I),‖ ‖∞), where C(I) denotes the space of all
continuous functions on a compact interval I and
the norm ‖ j‖∞ = supx∈I | j(x)|. Recall that an
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operator T is a contraction (see, e.g., Ref. 21) if
there exists a real constant 0 ¶ q < 1 such that
‖T ( j1)− T ( j2)‖ ¶ q ‖ j1− j2‖ for all j1, j2 ∈ C(I). In
our case, let T be an operator in the class of all
continuous functions C(I), where I = [0, a], and let
T be defined by

T ( j(x))

= 1+λe−λ(a−x+θ1ξ0+···+θqξ1−q)

∫ b

0

j(y) e−λy dy

+
�

1− e−λ(a−x+θ1ξ0+···+θqξ1−q)
�

j(0), x ∈ [0, a). (5)

Then (5) can be written in operator form as
T ( j(x)) = j(x). To prove the uniqueness of solution
of (5) we first prove the following theorem.

Theorem 2 On the metric space (C(I),‖ ‖∞) with
the norm ‖ j‖∞ = supx∈I | j(x)| the operator T is a
contraction.

Proof : To show that T is a contraction we need to
prove that for all x ∈ I and j1, j2 ∈ C(I) we have
the inequality ‖T ( j1)− T ( j2)‖ ¶ q ‖ j1− j2‖, where
0¶ q < 1. From (5) we obtain

‖T ( j1)− T ( j2)‖∞ ¶ sup
x∈[0,a)

¦

| j1(0)− j2(0)|
�

1− e−λ(a−x+θ1ξ0+···+θqξ1−q)
�

+λe−λ(a−x+θ1ξ0+···+θqξ1−q)

×
∫ b

0

[ j1(y) − j2(y)]e
−λy dy

©

¶ ‖ j1− j2‖∞ sup
x∈[0,a)

¦

1− e−λ(a−x+θ1ξ0+···+θqξ1−q)

+λe−λ(a−x+θ1ξ0+···+θqξ1−q)

∫ b

0

e−λy dy
©

= ‖ j1− j2‖∞
sup

x∈[0,a)
{1− e−λ(a−x+θ1ξ0+···+θqξ1−q)−λb}

= (1− e−λ(θ1ξ0+...+θqξ1−q)−λb)‖ j1− j2‖∞
= q1‖ j1− j2‖∞,

where 0 < q1 = (1 − e−λ(θ1ξ0+···+θqξ1−q+b)) < 1. We
have used the triangle inequality for norms and the
fact that | j1(0)− j2(0)| ¶ supx∈[0,a) | j1(x)− j2(x)| =
‖ j1− j2‖∞. 2

Hence the uniqueness of the solution is guar-
anteed by Theorem 2 and the Banach Fixed Point
Theorem.

The exact solution for the ARL integral equation

Next, we derive the explicit solution of the Fredholm
integral equation (4).

Theorem 3 The solution of T ( j(x)) = j(x) is

j(x) = eλb
�

1+ eλ(b+a+θ1ξ0+···+θqξ1−q)−λb
�

− eλx ,

x ¶ a. (6)

Proof : From (6), we have for x ∈ [0, a) that

j(x) = 1+λeλ(x−a−θ1ξ0−···−θqξ1−q)

b
∫

0

j(y) e−λy dy

+
�

1− e−λ(a−x+θ1ξ0+...+θ1ξ1−q)
�

j(0). (7)

Let d =
∫ b

0 j(y) e−λydy . The function j(x) can
then be written as

j(x) = 1+λeλ(x−a−θ1ξ0−...−θqξ1−q)d

+
�

1− e−λ(a−x+θ1ξ0+...+θqξ1−q)
�

j(0). (8)

At x = 0 we have

j(0) = 1+λeλ(−a−θ1ξ0−...−θqξ1−q)d

+
�

1− e−λ(a+θ1ξ0+...+θqξ1−q)
�

j(0). (9)

Then from (9) we obtain

j(0) = eλ(a+θ1ξ0+...+θqξ1−q)+λd. (10)

Substituting (10) into (8), we obtain

j(x) = 1+λeλ(x−a−θ1ξ0−···−θqξ1−q)d

+
�

1− e−λ(a−x+θ1ξ0+···+θqξ1−q)
�

×
�

eλ(a+θ1ξ0+···+θqξ1−q)+λd
�

= 1+ eλ(a+θ1ξ0+···+θqξ1−q)+λd − eλx . (11)

Now, we can evaluate the constant d from (11) as

d =

∫ b

0

j(y) e−λy dy

=

∫ b

0

�

1+λd + eλ(a+θ1ξ0+···+θqξ1−q)− eλy
�

× e−λy dy

=
�

1+λd + eλ(a+θ1ξ0+···+θqξ1−q)
�

∫ b

0

e−λy dy

−
∫ b

0

eλy−λy dy . (12)
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Hence (12) can rewritten as

d =
eλb

λ
(1− e−λb)

�

1+ eλ(a+θ1ξ0+···+θqξ1−q)
�

− b eλb. (13)

Finally, substituting the constant d into (13), we
obtain

j(x) = eλb
�

1+ eλ(a+θ1ξ0+···+θqξ1−q)−λb
�

− eλx ,

x ¾ 0. (14)

2

Numerical solution for the ARL integral
equation

In this section, we present a numerical method to
compute the solution j(x) = Ex(τb) of the integral
equation (4) for the ARL of an MA(q) process with
exponential white noise. We first rewrite (4) in the
form

j(x) = 1+ j(0)F(a− x +θ1ξ0+ · · ·+θqξ1−q)

+

b
∫

0

j(y) f (a− x +θ1ξ0+ · · ·+θqξ1−q + y)dy

(15)

where F(x) = 1− e−λx and f (x) = (dF(x)/dx) =
λe−λx .

Now, we can approximate the integral j(x) us-
ing the Gauss-Legendre quadrature rule as follows:

j(ai)≈ 1+ j(0)F(a− ai +θ1ξ0+ · · ·+θqξ1−q)

+
m
∑

k=1

wk j(ak) f (ak + a− ai +θ1ξ0+ · · ·+θqξ1−q),

(16)

where i = 1,2, . . . , m, with the weights wk =
(b/m) ¾ 0 and ak = (b/m)(k−

1
2 ) for k =

1,2, . . ., m.
The integral equation (15) then becomes a sys-

tem of m linear equations (16) in the m unknowns
j(a1), j(a2), . . ., j(am). For numerical implementa-
tion, it is preferable to write the linear system (16)
in a matrix form as follows. We write

(Im−Rm×m)Jm×1 = Bm×1, (17)

where

Jm×1 =









j(a1)
j(a2)

...
j(am)









, (18)

Bm×1 =









1+ j(0)(a− a1+θ1ξ0+ · · ·+θqξ1−q)
1+ j(0)(a− a2+θ1ξ0+ · · ·+θqξ1−q)

...
1+ j(0)(a− am+θ1ξ0+ · · ·+θqξ1−q)









,

(19)
and

Rm×m =









r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
. . .

...
rm1 rm2 · · · rmm









with

ri j = F

�

a− ai +
q
∑

k=1

θkξ1−k

�

+w j f

�

a j + a− ai +
q
∑

k=1

θkξ1−k

�

,

1¶ i, j ¶ m, (20)

and Im = diag(1,1, . . . , 1) is the identity matrix of
order m. If the inverse (Im − Rm×m)−1 exists, then
the unique solution of (17) is

Jm×1 = (Im−Rm×m)
−1Bm×1. (21)

Then the approximate values of
j(a1), j(a2), . . ., j(am) can be obtained from the
solution (21) and we may approximate the function
j(x) by the function

jIE(x) = 1+ j(0)F(a− x +θ1ξ0+ · · ·+θqξ1−q)

+
m
∑

k=1

wk j(ak) f (ak + a− x +θ1ξ0+ · · ·+θqξ1−q)

(22)

where wk = b/m and ak = (b/m)(k−
1
2 ), k =

1,2, . . ., m.

NUMERICAL RESULTS

In this section, we present a comparison between
the closed form expression given in Theorem 3 for
j(x) = ARL for the CUSUM chart when random
observations are a moving average order q process
with exponential white noise and the approximate
numerical solution for the ARL jIE(x) given in (22).
As a measure of accuracy of this comparison we
define the relative error as

εr =

�

� j(x)− jIE(x)
�

�

j(x)
. (23)
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Table 1 Comparison of ARL0 values for MA(1) process
from explicit formula (exact) and numerical approxi-
mation (IE) for θ1 = 0.23, 0.53,0.83, a = 3.5,4, b =
0.38,1.7, 2, and m= 500.

θ b ARL
a = 3.5 a = 4

x = 0 x = 2 x = 0 x = 2

0.23 0.38 Exact 60.85 54.46 100.39 94.00
IE 60.38 54.40 100.35 93.97

Times (11.09) (11.08) (11.09) (11.07)
100εr 0.78 0.12 0.04 0.04

1.7 Exact 223.32 216.93 371.32 364.94
IE 222.95 216.57 370.70 364.32

Times (11.13) (11.13) (11.04) (11.05)
100εr 0.17 0.17 0.17 0.17

2.0 Exact 299.58 293.19 499.37 94.002
IE 298.99 292.62 498.38 492.01

Times (11.16) (11.20) (11.09) (11.09)
100εr 0.19 0.19 0.20 0.20

0.53 0.38 Exact 82.18 75.79 135.55 129.16
IE 82.15 75.76 135.5 129.11

Times (11.34) (11.31) (11.14) (11.25)
100εr 0.04 0.04 0.04 0.04

1.7 Exact 303.14 296.75 502.92 496.54
IE 302.63 296.25 502.07 495.7

Times (11.28) (11.28) (11.29) (11.29)
100εr 0.17 0.17 0.17 0.17

2.0 Exact 407.33 400.94 677.01 670.62
IE 406.53 400.15 675.67 669.29

Times (11.3) (11.18) (11.30) (11.29)
100εr 0.2 0.2 0.2 0.2

0.83 0.38 Exact 110.96 104.57 183.0 176.61
IE 110.92 104.53 182.93 176.55

Times (11.12) (11.35) (10.88) (11.12)
100εr 0.04 0.04 0.04 0.04

1.7 Exact 410.88 404.49 680.57 674.17
IE 410.19 403.82 679.42 673.04

Times (11.40) (11.45) (11.16) (11.17)
100εr 0.17 0.17 0.17 0.17

2.0 Exact 552.77 546.28 916.80 910.413
IE 551.68 545.3 914.98 908.61

Times (11.37) (11.36) (11.23) (11.11)
100εr 0.2 0.18 0.2 0.2

We used (14) and (22) to evaluate the ARL
for the first order moving average process (MA(1))
with exponential white noise and parameters θ =
0.23,0.53, 0.83, a= 3.5, 4 and b= 0.38, 1.7, 2. The
numerical values with the corresponding relative
errors are shown in Table 1. Table 1 shows that
for an MA(1) process with λ = 1 there is excellent
agreement between the values for ARL0 computed
from the exact expression j(x) and from the numer-

Table 2 Comparison of ARL0 values for MA(2) process
from explicit formula (exact) and numerical approxima-
tion (IE) for θ1 = 0.2, θ2 = 0.2, 0.4,0.6, a = 3, 4, b =
1,1.5, 2, and m= 500.

θ1 θ2 b ARL
a = 3 a = 4

x = 0 x = 1 x = 0 x = 1

0.2 0.2 1.0 Exact 80.45 78.73 220.41 218.69
IE 80.37 78.66 220.19 218.47

Times (11.58) (12.61) (12.0) (12.34)
100εr 0.1 0.1 0.1 0.1

1.5 Exact 131.05 129.33 361.8 360.08
IE 130.86 129.14 361.26 359.55

Times (11.94) (12.61) (12.13) (12.4)
100εr 0.15 0.15 0.15 0.15

2.0 Exact 213.02 211.3 593.46 591.74
IE 212.61 210.89 592.28 590.57

Times (12.16) (12.58) (11.92) (12.29)
100εr 0.19 0.19 0.2 0.2

0.4 1.0 Exact 98.48 96.77 269.43 267.71
IE 98.39 96.67 269.16 267.44

Times (12.23) (12.23) (12.26) (12.53)
100εr 0.1 0.1 0.1 0.1

1.5 Exact 160.78 159.06 442.62 440.9
IE 160.55 158.83 441.96 440.24

Times (12.25) (12.25) (12.26) (12.37)
100εr 0.15 0.15 0.15 0.15

2.0 Exact 262.04 260.32 726.71 724.99
IE 261.53 259.81 725.27 723.55

Times (12.36) (12.56) (12.23) (12.26)
100εr 0.2 0.19 0.2 0.2

0.6 1.0 Exact 120.51 118.79 329.3 327.58
IE 120.39 118.68 328.97 327.26

Times (12.23) (12.49) (12.26) (12.46)
100εr 0.1 0.1 0.1 0.1

1.5 Exact 197.1 195.38 541.33 539.61
IE 196.81 195.09 540.53 538.81

Times (12.22) (12.57) (12.29) (12.54)
100εr 0.15 0.15 0.15 0.15

2.0 Exact 321.91 320.19 889.46 887.74
IE 321.28 319.57 887.69 885.98

Times (12.22) (12.46) (12.23) (12.47)
100εr 0.2 0.2 0.2 0.2

ical solution of the integral equation jIE(x). Notice
that there is a relative error less than 0.2% between
the analytical expression and the Gauss-Legendre
numerical scheme for integral equation (22) with
m = 500 nodes. The computational times for the
exact formula are less than 1 s while the numerical
integral equation times are approximately 11 min.

The numerical results for the MA(2) case are
shown in Table 2. The results obtained from the two
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Table 3 Comparison of ARL(1) values for MA(1) process
from explicit formula (exact) and numerical approxima-
tion (IE) for ARL0 = 370, θ = 0.23, a = 4, b = 1.7, and
m= 500.

λ θ = 0.23 100εr

Exact IE

1.0 371.323 370.701 0.168
1.1 215.845 215.518 0.151
1.2 137.285 137.097 0.137
1.3 93.593 93.475 0.126
1.4 67.389 67.312 0.115
1.5 50.695 50.6407 0.106

Table 4 Comparison of ARL1 values for MA(1) process
from explicit formula (exact) and numerical approxima-
tion (IE) for ARL0 = 500, θ = 0.23, a = 4, b = 2, and
m= 500.

λ θ = 0.23 100εr

Exact IE

1.0 499.366 498.381 0.197
1.1 281.652 282.154 0.178
1.2 174.955 175.238 0.162
1.3 116.898 117.071 0.148
1.4 82.726 82.839 0.136
1.5 61.305 61.381 0.125

methods are again in good agreement with less than
0.2% relative errors for a range of parameter values.
The computational times based on the exact solu-
tion take less than one second while the numerical
integral equation takes approximately 12–13 min.

Tables 3 and 4 show a comparison of the exact
and numerical solutions for an MA(1) process for
given ARL0 = 370 and 500, respectively. In Table 3,
we assume ARL= 370, a = 4, b = 1.7, and θ = 0.23
and the number of division points in the Gauss-
Legendre rule m = 500. For λ = 1 the process is
in control whereas for λ > 1 the process is out of
control. The first row of Table 3 therefore shows
values of ARL0 and rows 2–6 show values of ARL1.
In Table 4, we assume ARL= 500, a = 4, b = 2, and
θ = 0.23 and the number of division points in the
Gauss-Legendre rule m = 500. As in Table 3, the
first row shows the values of ARL0 and rows 2–6
show values of ARL1

Tables 5–6 show a comparison of the exact and
numerical schemes for an exponential second order
moving average process MA(2) for ARL0 = 370 and
500, respectively. Table 5 shows the results for
ARL0 = 370, θ1 = 0.65, θ2 = 0.24, a = 4, b = 1.3.

Table 5 Comparison of ARL(1) values for MA(2) process
from explicit formula (exact) and numerical approxima-
tion (IE) for ARL0 = 370, θ1 = 0.65, θ2 = 0.24, a = 4,
b = 1.3, and m= 500.

λ θ1 = 0.65 θ2 = 0.24 100εr

Exact IE

1.0 371.328 370.948 0.013
1.1 216.580 216.545 0.093
1.2 138.176 138.103 0.085
1.3 94.456 94.383 0.077
1.4 68.171 68.122 0.072
1.5 51.385 51.351 0.066

Table 6 Comparison of ARL(1) values for MA(2) process
from explicit formula (exact) and numerical approxima-
tion (IE) for ARL0 = 500, θ1 = 0.65, θ2 = 0.24, a = 4,
b = 1.33, and m= 500.

λ θ1 = 0.65 θ2 = 0.24 100εr

Exact IE

1.0 500.455 499.795 0.132
1.1 283.886 283.547 0.112
1.2 176.948 176.755 0.109
1.3 118.591 118.473 0.100
1.4 84.147 84.069 0.093
1.5 62.498 62.445 0.085

For Table 6 the parameter values are ARL0 = 500,
θ1 = 0.65, θ2 = 0.24, a = 4, b = 1.33. In both
cases, there is good agreement between the exact
and numerical results with differences of less than
0.1%. Note that, as for the MA(1) results, λ = 1 is
assumed to be in-control parameter value and λ> 1
to be out-of-control parameter values.

CONCLUSIONS

We have derived explicit expressions for the ARL
of CUSUM charts for observations modelled as a
moving average process of order q (MA(q)) with
exponential white noise. We have also used a Gauss-
Legendre quadrature scheme to solve the integral
equations for the ARL of CUSUM charts for MA(q)
processes. We have shown by numerical computa-
tions that the explicit expression and the numerical
scheme give results that are in very good agreement.
We have shown that the explicit expression gives a
very fast and effective method for calculating ARL
for CUSUM charts with computation times of less
than 1 s compared with computation times of ap-
proximately 12 min for the Gauss-Legendre scheme.
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