
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2015.41.064
ScienceAsia 41 (2015): 64–72

On almost generalized 2-absorbing and weakly almost
generalized 2-absorbing structures
Sirawich Chinwarakorn, Sajee Pianskool∗

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,
Bangkok 10330 Thailand

∗Corresponding author, e-mail: sajee.pianskool.p.s@gmail.com
Received 20 May 2014
Accepted 17 Dec 2014
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INTRODUCTION

Throughout this paper, unless otherwise stated, all
rings are commutative with non-zero identity and
all modules over these rings are unitary. Let R
and M stand for a ring and a module over ring R,
respectively.

New objects related to prime and weakly prime
ideals were introduced and studied by Badawi and
Darani1. These are the concepts of 2-absorbing and
weakly 2-absorbing ideals of commutative rings.
Darani and Soheilnia2 introduced the concepts of
2-absorbing and weakly 2-absorbing submodules of
modules over rings.

In module theory, it is known that the inter-
section of each pair of distinct prime submodules
may no longer be a prime submodule. The intersec-
tion of each pair of distinct prime (weakly prime)
submodules is a 2-absorbing (weakly 2-absorbing)
submodule2. Note also that primary submodules
(ideals) are directly closed to prime submodules
(ideals). These inspired us to define almost gen-
eralized 2-absorbing and weakly almost general-
ized 2-absorbing submodules (ideals) in order that
the intersection of each pair of distinct primary
(weakly primary) submodules (ideals) is an almost
generalized 2-absorbing (weakly almost generalized
2-absorbing) submodule (ideal).

The rest of this paper contains four sections.
The first section introduces almost generalized 2-ab-
sorbing and weakly almost generalized 2-absorbing
structures. Almost generalized 2-absorbing struc-
tures are studied in two categories, namely, rings

and modules. We provide proofs of some properties.
In the second section, some results and some rela-
tions of almost generalized 2-absorbing submodules
of a multiplication module are discussed, especially
of a cyclic R-module. Then we investigate certain
rings with the property that all proper ideals are
weakly almost generalized 2-absorbing in the third
section. In the last section, we study those concepts
in decomposable commutative rings.

AG2-ABSORBING AND WEAKLY
AG2-ABSORBING STRUCTURES

Definition 1 [Ref. 2] A proper submodule N of M
is called a 2-absorbing (weakly 2-absorbing) sub-
module of M if whenever a, b ∈ R, m ∈ M and
abm ∈ N(0 6= abm ∈ N), then am ∈ N or bm ∈ N
or ab ∈ (N : M).

Definition 2 [Ref. 3] A proper ideal I of R is called
a 2-absorbing (weakly 2-absorbing) ideal of R if
whenever a, b, c ∈ R and abc ∈ I (0 6= abc ∈ I),
then ac ∈ I or bc ∈ I or ab ∈ I .

Definition 3 [Ref. 4] A proper submodule N of M
is called a primary (weakly primary) submodule of M
if whenever r ∈ R, m ∈ M and rm ∈ N(0 6= rm ∈ N),
then m ∈ N or rn ∈ (N : M) for some n ∈ N.

Definition 4 A proper ideal P of R is said to be a
primary (weakly primary) ideal if whenever a, b ∈ R
and ab ∈ P (0 6= ab ∈ P), then a ∈ P or bn ∈ P for
some n ∈ N.

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.064
http://www.scienceasia.org/2015.html
mailto:sajee.pianskool.p.s@gmail.com
www.scienceasia.org


ScienceAsia 41 (2015) 65

We extend these notions to almost generalized
2-absorbing and weakly almost generalized 2-ab-
sorbing submodules (ideals) as follows.

Definition 5 A proper submodule N of M is called
an almost generalized 2-absorbing or AG2-absorbing
(weakly almost generalized 2-absorbing or weakly
AG2-absorbing) submodule of M if whenever a, b ∈
R, m ∈ M and abm ∈ N (0 6= abm ∈ N), then aim ∈
N or b jm∈ N or (ab)k ∈ (N : M) for some i, j, k ∈N.

A proper ideal I of R is called an almost gener-
alized 2-absorbing or AG2-absorbing (weakly almost
generalized 2-absorbing or weakly AG2-absorbing)
ideal of R if whenever a, b, c ∈ R and abc ∈ I
(0 6= abc ∈ I), then aic ∈ I or b jc ∈ I or (ab)k ∈ I
for some i, j, k ∈ N.

It is obvious from the above definition that the
two AG2-absorbing (weakly AG2-absorbing) struc-
tures (in terms of submodules and ideals) are re-
lated, i.e., AG2-absorbing (weakly AG2-absorbing)
ideals of a ring R can be studied by considering
the ring R as an R-module. Note that the zero
submodule (ideal) need not be an AG2-absorbing
submodule (ideal) as the following example shows.

Example 1 By choosing M = R=Z30, we show that
2̄ · 3̄ · 5̄ ∈ {0̄} but 2̄i · 5̄ /∈ {0̄}, 3̄ j · 5̄ /∈ {0̄} and 6̄k /∈
{0̄} = ({0̄} : Z30) for all i, j, k ∈ N. Hence {0̄} is not
an AG2-absorbing submodule of Z30.

The following example shows a difference be-
tween AG2-absorbing submodules and weakly AG2-
absorbing submodules. Clearly, every AG2-absorb-
ing submodule is a weakly AG2-absorbing submod-
ule but not vice versa in general.

Example 2 Consider the case where R = Z, M =
Z/42Z and N = 0. Then N is a submodule of M
and 2 ·3 ·(7+42Z) = 0 ∈ N while 2i ·(7+42Z) /∈ N ,
3 j · (7+ 42Z) /∈ N and (2 · 3)k /∈ 42Z = (N : M) for
all i, j, k ∈ N. Hence the submodule N is not AG2-
absorbing but it is weakly AG2-absorbing.

One can see that AG2-absorbing submodules are
weakly AG2-absorbing submodules. Furthermore, it
is obvious that every 2-absorbing (weakly 2-absorb-
ing) submodule is an AG2-absorbing (weakly AG2-
absorbing) submodule of M . Likewise, it is clear
that 2-absorbing submodules and weakly 2-absorb-
ing submodules are generalizations of prime sub-
modules and weakly prime submodules, and AG2-
absorbing submodules and weakly AG2-absorbing
submodules are generalizations of primary submod-
ules and weakly primary submodules. Similarly,

these remarks also hold for ideals of the same kind.
In other words, the word ‘submodules’ can be re-
placed by ‘ideals.’

The intersection of each distinct pair of prime
(weakly prime) submodules is 2-absorbing (weakly
2-absorbing)2. This leads us to study the inter-
section of each distinct pair of primary (weakly
primary) submodules in the following.

Theorem 1 (1) The intersection of each pair of pri-
mary submodules of M (ideals of R) is an AG2-
absorbing submodule (ideal). (2) The intersection of
each pair of weakly primary submodules of M (ideals
of R) is a weakly AG2-absorbing submodule (ideal).

Proof : (1) Let N and K be two distinct primary
submodules of M . Moreover, let a, b ∈ R and m ∈ M
be such that abm ∈ N ∩ K but aim /∈ N ∩ K and
b jm /∈ N ∩ K for all i, j ∈ N. Then we conclude that
(a) for all i ∈ N(aim /∈ N or aim /∈ K) and (b) for all
j ∈ N(b jm /∈ N or b jm /∈ K). Thus there are 4 cases
to be considered:
(i) am /∈ N and bm /∈ N .
(ii) am /∈ N and bm /∈ K .
(iii) am /∈ K and bm /∈ N .
(iv) am /∈ K and bm /∈ K .

Case (i). Since N is primary, b(am) = abm ∈ N
and am /∈ N , we show that bn0 ∈ (N : M) for some
n0 ∈ N. Thus bkm ∈ N for all k ¾ n0. It follows
from the above conclusion (b) that bkm /∈ K for all
k ¾ n0 and then bkm /∈ K for all 1 ¶ k < n0. So
bk /∈ (K : M) for all k ∈ N. Similarly, ak /∈ (K : M)
for all k ∈N. Since K is primary, a(bm)∈ K and ak /∈
(K : M) for all k ∈ N, it follows that bm ∈ K which
is a contradiction. Hence case (i) is not possible.
Similarly, case (iv) is absurd.

Case (ii). Again, since N is primary, am /∈ N and
bm /∈ K , we show that bnb ∈ (N : M) and ana ∈ (K :
M) for some na, nb ∈ N. This yields

(ab)na+nb = ana+nb bna+nb ∈ (K : M)(N : M)
⊆ (N : M)∩ (K : M) = (N ∩ K : M).

Much as in case (ii), one can get that (ab)k ∈ (N∩K :
M) for some k ∈ N in case (iii). Hence we conclude
that the intersection of each pair of distinct primary
submodules of M is AG2-absorbing as desired.

(2) The proof is similar to that of (1). 2
Another way to verify whether a proper sub-

module N of M is AG2-absorbing is to consider
a particular submodule of the quotient R-module
M/N .
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Proposition 1 Let N and K be submodules of M with
K ⊆ N. Then N is an AG2-absorbing submodule of M
if and only if N/K is an AG2-absorbing submodule of
the R-module M/K.

Proof : Suppose first that N is an AG2-absorbing
submodule of M . Then N/K is a proper submodule
of the R-module M/K . Let a, b ∈ R and m ∈ M be
such that ab(m+ K) ∈ N/K . Then abm ∈ N , so N
being an AG2-absorbing submodule gives aim ∈ N
or b jm ∈ N or (ab)k ∈ (N : M) for some i, j, k ∈ N.
Therefore ai(m + K) ∈ N/K or b j(m + K) ∈ N/K
or (ab)k ∈ (N/K : M/K). Thus N/K is an AG2-
absorbing submodule of M/K .

Conversely, assume that N/K is an AG2-absorb-
ing submodule of the R-module M/K . Then N is a
proper submodule of M . Suppose that a, b ∈ R and
m ∈ M with abm ∈ N . Then ab(m+ K) ∈ N/K so
that ai(m+K)∈ N/K or b j(m+K)∈ N/K or (ab)k ∈
(N/K : M/K) for some i, j, k ∈N. Hence aim ∈ N or
b jm ∈ N or (ab)k ∈ (N : M). This implies that N is
an AG2-absorbing submodule of M . 2

Corollary 1 Let N be a submodule of M. Then N is
an AG2-absorbing submodule of M if and only if the
zero submodule of the R-module M/N is AG2-absorb-
ing.

Corollary 2 Let I and J be ideals of R with J ⊆ I .
Then I is an AG2-absorbing ideal of R if and only if
I/J is an AG2-absorbing ideal of the ring R/J.

If we consider Proposition 1 (Corollary 2) in
the case of weakly 2-absorbing submodules (ideals),
then only the sufficient condition is obtained as
follows.

Proposition 2 Let N and K be submodules of M with
K ⊆ N. If N is a weakly AG2-absorbing submodule of
M, then N/K is a weakly AG2-absorbing submodule
of the R-module M/K.

In particular, let I and J be ideals of R with J ⊆ I .
If I is a weakly AG2-absorbing ideal of R, then I/J is
a weakly AG2-absorbing ideal of the ring R/J.

Proof : Suppose that N is a weakly AG2-absorbing
submodule of M . Then N/K is a proper submodule
of the R-module M/K . Let a, b ∈ R and m ∈ M be
such that 0 6= ab(m+ K) ∈ N/K . Then abm /∈ K .
Thus abm 6= 0 so the result follows at once. 2

However, the necessary condition for Proposi-
tion 1 (Corollary 2) in the case of weakly 2-absorb-
ing submodules (ideals) does not hold, as is seen in
the following example.

Example 3 Consider M = R = Z, N = 180Z and
K = 5Z. Then N/K can be viewed as 36Z= 4Z∩9Z
which is the intersection of primary submodules.
Thus N/K is an AG2-absorbing submodule so that
it is weakly AG2-absorbing. Nevertheless, the sub-
module N is not weakly AG2-absorbing since 0 6= 22·
32 ·5 ∈ 180Z= N but

�

22
�i

5 /∈ 180Z,
�

32
� j

5 /∈ 180Z

and
�

22 ·32
�k
/∈ 180Z for all i, j, k ∈ N.

Knowing that AG2-absorbing submodules are
weakly AG2-absorbing submodules, submodules
that are weakly AG2-absorbing but not AG2-absorb-
ing should be taken into account. We found that
an almost generalized-triple-zero or an AG-triple-
zero is a handy tool for this matter. This notion is
analogous to triple-zeros given in Ref. 1.

Definition 6 Let N be a weakly AG2-absorbing sub-
module of M . An element (a, b, m) ∈ R × R × M
is called an almost generalized-triple-zero or an AG-
triple-zero of N if abm = 0, aim /∈ N , b jm /∈ N and
(ab)k /∈ (N : M) for all i, j, k ∈ N.

Let I be a weakly AG2-absorbing ideal of R.
An element (a, b, c) ∈ R× R× R is called an almost
generalized-triple-zero or an AG-triple-zero of I if
abc = 0, aic /∈ I , b jc /∈ I and (ab)k /∈ I for all
i, j, k ∈ N.

Proposition 3 If N is a weakly AG2-absorbing sub-
module of M which is not AG2-absorbing, then N has
an AG-triple-zero.

If I is a weakly AG2-absorbing ideal of R which is
not AG2-absorbing, then I has an AG-triple-zero.

Proof : The proof is obtained directly from the defini-
tions of a weakly AG2-absorbing submodule (ideal)
and an AG2-absorbing submodule (ideal). 2

Some properties of AG-triple-zeros which will be
used later are provided.

Proposition 4 If (a, b, m) is an AG-triple-zero of a
weakly AG2-absorbing submodule N of M, then (i)
abN = 0 (ii) (N : M)bm = a(N : M)m = (N :
M)am = b(N : M)m = 0 (iii) (N : M)bN = a(N :
M)N = (N : M)aN = b(N : M)N = 0 (iv) (N :
M)2m= 0 (v) (N : M)2N = 0.

Proof : Assume that (a, b, m) is an AG-triple-zero of
a weakly AG2-absorbing submodule N of M .
(i) Suppose that abn 6= 0 for some n ∈ N . Then

0 6= ab(m+ n) ∈ N . Since (ab)k /∈ (N : M) for
all k ∈N, we conclude that either ai(m+n) ∈ N
or b j(m+ n) ∈ N for some i, j ∈ N, and hence
aim ∈ N or b jm ∈ N . This is a contradiction.
Thus abN = 0.
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(ii) Suppose that r bm 6= 0 for some r ∈ (N : M).
Then 0 6= (a + r)bm ∈ N . Since b jm /∈ N for
all j ∈ N, we conclude that either (a+ r)p bp ∈
(N : M) or (a+ r)qm ∈ N for some p, q ∈N, and
hence by the Binomial theorem, (ab)p = ap bp ∈
(N : M) or aqm ∈ N , a contradiction. Thus (N :
M)bm = 0. Similarly, one can show that a(N :
M)m = 0. The other results are obtained from
the commutativity of R.

(iii) Suppose that r bn 6= 0 for some r ∈ (N : M) and
n∈ N . It follows from (i) and (ii) that 0 6= r bn=
(a+ r)b(n+m) ∈ N . Hence (a+ r)i(n+m) ∈ N
or b j(n + m) ∈ N or (a + r)k bk ∈ (N : M) for
some i, j, k ∈ N. Thus aim ∈ N or b jm ∈ N or
(ab)k ∈ (N : M)which is a contradiction. Hence
(N : M)bN = 0. Similarly, one can show that
a(N : M)N = 0. The commutativity of R leads
to the other results.

(iv) Suppose that rsm 6= 0 for some r, s ∈ (N : M).
We obtain from (ii) that 0 6= rsm = (a+ r)(b+
s)m ∈ N . Hence either (a + r)im ∈ N or (b +
s) jm ∈ N or (a+ r)k(b+ s)k ∈ (N : M) for some
i, j, k ∈ N. Thus aim ∈ N or b jm ∈ N or (ab)k ∈
(N : M) which is a contradiction. Hence (N :
M)2m= 0.

(v) Suppose that rsn 6= 0 for some r, s ∈ (N : M) and
n ∈ N . It follows from (i)–(iv) that 0 6= rsn =
(r+a)(s+b)(n+m)∈ N . Hence (r+a)i(n+m)∈
N or (s+b) j(n+m) ∈ N or (r+a)k(s+b)k ∈ (N :
M) for some i, j, k ∈ N. Thus aim ∈ N or b jm ∈
N or (ab)k ∈ (N : M) which is a contradiction.
Hence (N : M)2N = 0.

2

Corollary 3 If (a, b, c) is an AG-triple-zero of a
weakly AG2-absorbing ideal I of R, then (i) abI =
aIc = I bc = 0 (ii) aI2 = bI2 = cI2 = 0 (iii) I3 = 0.

For the rest of this section, we provide some
results on AG2-absorbing (weakly AG2-absorbing)
ideals that are not parallel to those in terms of
submodules.

Proposition 5 If I is an AG2-absorbing ideal of R,
then

p
I is an AG2-absorbing ideal of R.

Proof : Assume that I is an AG2-absorbing ideal of R.
Let a, b, c ∈ R be such that abc ∈

p
I . Thus (abc)k ∈

I for some k ∈ N. Then ak bkck ∈ I . Hence (ak)l ck ∈
I or (bk)mck ∈ I or (ak bk)n ∈ I for some l, m, n ∈
N. Hence we show that (al c)k ∈ I or (bmc)k ∈ I or
[(ab)n]k ∈ I , i.e., we have al c ∈

p
I or bmc ∈

p
I or

(ab)n ∈
p

I . Hence
p

I is an AG2-absorbing ideal of
R. 2

In the case of weakly AG2-absorbing ideals,
we also obtain the analogous result, but only for
integral domains.

Proposition 6 Let R be an integral domain. If I is a
weakly AG2-absorbing ideal of R, then

p
I is a weakly

AG2-absorbing ideal of R.

Proof : Assume that I is a weakly AG2-absorbing
ideal of an integral domain R. Let a, b, c ∈ R be such
that 0 6= abc ∈

p
I . Thus (abc)k ∈ I for some k ∈ N.

If (abc)k = 0, then abc = 0 which is a contradiction.
Then 0 6= ak bkck ∈ I . Hence the result follows in a
similar way to the proof of Proposition 5. 2

Recall that if I is a primary ideal of a ring R,
then (I : a) = {x ∈ R | ax ∈ I} is also a primary
ideal of R for any a ∈ Rr I . This result also holds
for AG2-absorbing ideals.

Proposition 7 If I is an AG2-absorbing ideal of R,
then (I : a) is also an AG2-absorbing ideal of R for
any a ∈ Rr I .

Proof : Assume that I is an AG2-absorbing ideal of
R. Let a ∈ R r I . Then (I : a) 6= R. Moreover,
let b1, b2, b3 ∈ R be such that b1 b2 b3 ∈ (I : a).
Then b1 b2(b3a) = ab1 b2 b3 ∈ I so that bi

1 b3a ∈ I or
b j

2 b3a ∈ I or (b1 b2)k ∈ I for some i, j, k ∈ N. Hence
bi

1 b3 ∈ (I : a) or b j
2 b3 ∈ (I : a) or (b1 b2)k ∈ I ⊆ (I :

a). Hence (I : a) is an AG2-absorbing ideal of R for
any a ∈ Rr I . 2

SOME RELATED RESULTS IN MULTIPLICATION
MODULES

In this section, we are concerned with a specific
type of modules. We provide some results and some
relations regarding AG2-absorbing (weakly AG2-
absorbing) submodules of a multiplication module
including some restricted to the special case of a
cyclic R-module.

Definition 7 [Ref. 5] A unitary R-module M is
called a multiplication R-module if for each submod-
ule N of M , there exists an ideal I of R such that
N = I M . In general, one can take N = (N : M)M
for any submodule N of a multiplication module M .

Let N and K be submodules of a multiplication
R-module M with N = I1M and K = I2M for some
ideals I1 and I2 of R. The product of N and K ,
denoted by NK , is defined to be I1 I2M .

The product of the submodules N = I1M and
K = I2M of a multiplication R-module M can be
shown to be independent of the choices of ideals
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I1 and I2 of R. For each integer k ¾ 2, we define
N k = NN k−1 recursively. Hence N k = (N : M)k M
for all k ∈ N.

Proposition 8 Let M be a multiplication R-module.
If N is a weakly AG2-absorbing submodule of M but
not AG2-absorbing, then N3 = 0.

Proof : The proof follows immediately from Proposi-
tion 4 and the assumption that M is a multiplication
R-module as follows:

N3 = (N : M)3M = (N : M)2(N : M)M

= (N : M)2N = 0.

2

Proposition 9 Let M be a faithful multiplication
R-module. If N is a weakly AG2-absorbing submodule
of M that is not AG2-absorbing, then N ⊆

p
0M.

Proof : Recall that (N : M)3M ⊆ (N : M)2N and
(N : M)2N = 0. Then we show that (N : M)3 ⊆
((N : M)2N : M) = (0 : M). Moreover, (0 : M) = 0
because M is faithful. Thus (N : M) ⊆

p
0. Hence

N = (N : M)M ⊆
p

0M . 2
Recall that an element a of a multiplication

module M is said to be nilpotent if ak = 0 for some
k ∈ N, see Ref. 2. The set of all nilpotent elements
of M is denoted by Nil(M). In particular, it is
obvious that a commutative ring R with identity is a
multiplication R-module and the set of all nilpotent
elements of the R-module R, which is Nil(R), is
simply the standard set of nilpotent elements of the
ring R.

Corollary 4 If N is a weakly AG2-absorbing but not
AG2-absorbing submodule of a multiplication R-mod-
ule M, then N ⊆ Nil(M).

Towards the end of this section, we provide
some relationships between AG2-absorbing (weakly
AG2-absorbing) submodules of M and AG2-absorb-
ing (weakly AG2-absorbing) ideals of R. However,
these results require that M be a cyclic R-module.
It is known that if M is a cyclic R-module with
M = Rm for some m ∈ M , then M is a multiplication
R-module and (N : M) = (N : m) for any submodule
N of M .

Proposition 10 Let M be a cyclic R-module and N
a submodule of M. (i) The submodule N of M is
AG2-absorbing if and only if the ideal (N : M) of
R is AG2-absorbing. (ii) If (N : M) is a weakly

AG2-absorbing ideal of R, then N is a weakly AG2-
absorbing submodule of M. (iii) If M is faithful and
N is weakly AG2-absorbing, then (N : M) is a weakly
AG2-absorbing ideal of R.

Proof : Let m ∈ M be such that M = Rm. Then (N :
M) = (N : m). (i) First, assume that N is an AG2-ab-
sorbing submodule of M . Let a, b, c ∈ R be such that
abc ∈ (N : M) = (N : m). Thus abcm ∈ N . Suppose
that aic /∈ (N : m) and b jc /∈ (N : m) for all i, j ∈ N.
Hence aicm /∈ N and b jcm /∈ N for all i, j ∈N. Since
N is AG2-absorbing, (ab)k ∈ (N : m) = (N : M) for
some k ∈ N. Hence (N : M) is an AG2-absorbing
ideal of R.

Conversely, assume that (N : M) is an AG2-ab-
sorbing ideal of R. Let a, b ∈ R and m′ ∈ M be such
that abm′ ∈ N . Thus there exists r ∈ R with m′ =
rm. This yields abrm = abm′ ∈ N . Consequently,
abr ∈ (N : m). Since (N : m) is an AG2-absorbing
ideal, ai r ∈ (N : m) or b j r ∈ (N : m) or (ab)k ∈ (N :
m) for some i, j, k ∈ N. Hence ai rm ∈ N or b j rm ∈
N or (ab)k ∈ (N : m). It follows that aim′ ∈ N or
b jm′ ∈ N or (ab)k ∈ (N : M) as desired.

(ii) Assume that (N : M) is a weakly AG2-ab-
sorbing ideal of R. Let a, b ∈ R and m′ ∈ M be such
that 0 6= abm′ ∈ N . Thus there exists r ∈ R with
m′ = rm. Hence 0 6= abrm ∈ N . Then 0 6= abr ∈
(N : m) for otherwise abrm = 0, a contradiction.
Now a similar argument to the one in the proof of (i)
completes this proof.

(iii) Assume that M is faithful and N is a weakly
AG2-absorbing submodule of M . Let a, b, c ∈ R
be such that 0 6= abc ∈ (N : M) = (N : m) but
ai b /∈ (N : m) and b jc /∈ (N : m) for all i, j ∈ N.
Then 0 6= abcm ∈ N for otherwise abcm= 0 implies
that abc ∈ (0 : m) = (0 : M) = 0, a contradiction.
Again, a similar argument to the one in the proof of
(i) completes this proof. 2

Example 4 Consider M = Z72 as a Z-module. Let
N = 〈36〉. Then (N : M) = 36Z= 4Z∩9Z is an AG2-
absorbing ideal of Z. Hence, by Proposition 10, we
show that N is an AG2-absorbing submodule of M .

Corollary 5 Let M be a faithful cyclic R-module and
N a submodule of M. Then N is a weakly AG2-ab-
sorbing submodule of M if and only if (N : M) is a
weakly AG2-absorbing ideal of R.

RINGS WITH THE PROPERTY THAT ALL
PROPER IDEALS ARE WEAKLY AG2-ABSORBING

In this section, regular rings with the property that
all proper ideals are weakly AG2-absorbing are in-
vestigated. We will provide some conditions on
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regular rings which are equivalent to all proper
ideals being weakly AG2-absorbing.

Definition 8 An element a of a ring (not necessarily
commutative with identity) R is said to be von Neu-
mann regular if there exists an element x of R such
that axa = a. A ring (not necessarily commutative
with identity) R is said to be von Neumann regular if
each element of R is von Neumann regular.

If R is a commutative von Neumann regular ring
and a, b, c ∈ R, then one can show that abc = 0 if
and only if ai b jck = 0 for some i, j, k ∈ N. For a
commutative ring R with identity 1, let J(R) denote
the Jacobson radical, i.e., the intersection of all
maximal ideals of R. Note that x ∈ J(R) if and only
if 1− r x is a unit for all r ∈ R.

Proposition 11 Let R be a commutative von Neu-
mann regular ring with identity and a, b, c ∈ J(R).
Then the ideal abcR is weakly AG2-absorbing if and
only if abc = 0.

Proof : If abc = 0, then it is obvious that abcR is a
weakly AG2-absorbing ideal of R. Now suppose that
abc 6= 0 and abcR is a weakly AG2-absorbing ideal
of R. Thus ai b jck 6= 0 for all i, j, k ∈ N. Since abc ∈
abcRr {0}, we conclude that either aic ∈ abcR or
b jc ∈ abcR or (ab)k ∈ abcR for some i, j, k ∈ N.
First, we assume that aic ∈ abcR. Since R is a
commutative von Neumann regular ring, abcR =
(ai x)bcR = ai bcxR ⊆ ai bcR for some x ∈ R. Thus
aic = ai bcd for some d ∈ R, and hence aic(1−bd) =
0. Since b ∈ J(R), it follows that bd ∈ J(R) so
that 1 − bd is a unit of R. Thus aic(1 − bd) = 0
implies that aic = 0, and thus ai bc = 0 which is a
contradiction. Similarly, the other two cases are not
possible. Hence abc = 0. 2

Corollary 6 Let R be a commutative von Neumann
regular ring with identity, n ∈ N and a1, a2, . . . , an ∈
J(R). Then the ideal a1a2 · · · anR is weakly AG2-ab-
sorbing if and only if a1a2 · · · an = 0.

Definition 9 A commutative ring R with identity
is called a local ring if it satisfies any one of the
following equivalent conditions: (a) R has a unique
maximal ideal. (b)1 6= 0 and the sum of any two
non-units of R is a non-unit. (c)1 6= 0 and if x is any
element of R, then x or 1− x is a unit.

Note that some authors require that local rings
be Noetherian, and non-Noetherian rings are then
called quasi local rings. In this work, R need not

be Noetherian. Since a local ring R has a unique
maximal ideal, say K , we denote this local ring R
by (R, K). Observe that in a local ring (R, K), its
Jacobson radical is K , i.e., J(R) = K . Moreover, if
a ∈ Rr K , then a is a unit of R.

Proposition 12 Let (R, K) be a commutative von
Neumann regular local ring. Then the following are
equivalent. (i) Every proper ideal of R is weakly AG2-
absorbing. (ii) K3 = 0. (iii) Kn = 0 for all n ∈N. (iv)
Kn = 0 for some n ∈ N.

Proof : (i) ⇔ (ii). Assume that every proper ideal
of R is weakly AG2-absorbing. Let a, b, c ∈ K . Since
abcR is a proper ideal of R, by (i) abcR is weakly
AG2-absorbing, so that abc = 0 by Proposition 11.
Thus K3 = 0. Conversely, assume that K3 = 0 and let
N be a proper ideal of R such that N 6= 0. Suppose
that abc ∈ N and abc 6= 0. Since K3 = 0 and abc 6=
0, we show that a /∈ K or b /∈ K or c /∈ K . But (R, K)
is a von Neumann regular local ring, thus a or b or
c is a unit of R and then either bc ∈ N or ac ∈ N or
ab ∈ N . Hence N is a weakly AG2-absorbing ideal
of R.

(ii)⇔ (iii). Since R is a regular ring, we obtain
this part immediately: For each n ∈ N,

K ⊆ KRK ⊆ K2 ⊆ (KRK)K ⊆ K3 ⊆ · · · ⊆ Kn ⊆ K . (1)

(iii)⇔ (iv). This follows directly from (1). 2
It is clear that any field F is a von Neumann

regular local ring (F, {0}).

Corollary 7 Any commutative von Neumann regular
local ring (R, K) in which every proper ideal is weakly
AG2-absorbing must be a field.

Proof : It follows from Proposition 12 that K = 0.
Thus the only ideals of R are {0} and R itself. Hence
R is a field. 2

The next theorem provides a characterization
of commutative von Neumann regular local rings in
which every proper ideal is AG2-absorbing.

Theorem 2 Let (R, K) be a commutative von Neu-
mann regular local ring. Then K2 = 0 if and only
if every proper ideal of R is AG2-absorbing.

Proof : Assume that K2 = 0. Let J be a proper
ideal of R and a, b, c ∈ R be such that abc ∈ J .
Note that J is a weakly AG2-absorbing ideal of R
by Proposition 12. Hence if 0 6= abc ∈ J , then there
is nothing to prove. Thus assume that abc = 0 so
that abc ∈ K . We divide our argument into 2 cases.
Case 1: a or b or c is a unit. Since abc = 0, it

www.scienceasia.org

http://www.scienceasia.org/2015.html
www.scienceasia.org


70 ScienceAsia 41 (2015)

follows that bc = 0 or ac = 0 or ab = 0. Case 2:
a, b and c are not units. Since R is local, a, b, c ∈ K .
Thus ac = bc = ab = 0 from K2 = 0. Thus either
ab = 0 ∈ J or bc = 0 ∈ J or ac = 0 ∈ J . Hence J is
an AG2-absorbing ideal of R.

Conversely, assume that every proper ideal of R
is an AG2-absorbing ideal. Since an AG2-absorbing
ideal is also a weakly AG2-absorbing ideal of R, by
Proposition 12 we show that K2 = 0 as desired. 2

Proposition 12, Corollary 7 and Theorem 2 pro-
vide conditions that make a commutative von Neu-
mann regular local ring be a field. This significant
result can be stated as follows.

Theorem 3 Let R be a commutative ring with iden-
tity. Then the following are equivalent. (i) R is a
field. (ii) R is a commutative von Neumann regular
local ring in which every proper ideal is weakly AG2-
absorbing. (iii) R is a commutative von Neumann
regular local ring in which every proper ideal is AG2-
absorbing.

Hence commutative von Neumann regular local
rings with the property that all proper ideals are
weakly AG2-absorbing must be fields. In such a ring,
an ideal is AG2-absorbing if and only if it is weakly
AG2-absorbing, in which case it is, of course, the
zero ideal.

Corollary 8 Let R be a commutative von Neumann
regular local ring with identity which is not a field.
Then there exist proper ideals I 6= {0} and J of R, not
necessary distinct, such that the ideal I is not weakly
AG2-absorbing and the ideal J is not AG2-absorbing.

PROPERTIES OF AG2-ABSORBING IDEALS AND
WEAKLY AG2-ABSORBING IDEALS OF
DECOMPOSABLE COMMUTATIVE RINGS

A commutative ring R is said to be decomposable
if it can be written as a product of commutative
non-zero rings, i.e., R = R1 ×R2 × · · · ×Rn for some
commutative non-zero rings R1, R2, . . . , Rn.

Proposition 13 Let R = R1 × R2 be a decomposable
commutative ring where each of R1 and R2 is a
commutative ring with identity and I is a proper ideal
of R1. The following statements are equivalent. (i)
I × R2 is a weakly AG2-absorbing ideal of R. (ii)
I × R2 is an AG2-absorbing ideal of R. (iii)I is an
AG2-absorbing ideal of R1.

Proof : (i)⇒ (ii). Assume that I×R2 is a weakly AG2-
absorbing ideal of R. Suppose that I × R2 ⊆ Nil(R).
Then for each r ∈ R2 there exists k ∈ N such that

rk = 0. In particular, 1k = 0 which is a contradiction.
Thus I×R2 is a weakly AG2-absorbing ideal of R such
that I ×R2 * Nil(R). By Corollary 4, the ideal I ×R2
must be AG2-absorbing.

(ii)⇒ (iii). Assume that I×R2 is an AG2-absorb-
ing ideal of R. Let a, b, c ∈ R1 be such that abc ∈ I .
Thus (a, 0)(b, 0)(c, 0)∈ I×R2, so (a, 0)i(c, 0)∈ I×R2
or (b, 0) j(c, 0) ∈ I ×R2 or [(a, 0)(b, 0)]k ∈ I ×R2 for
some i, j, k ∈ N. Then (aic, 0) ∈ I ×R2 or (b jc, 0) ∈
I×R2 or ((ab)k, 0) ∈ I×R2. Hence aic ∈ I or b jc ∈ I
or (ab)k ∈ I . Hence the result is obtained.

(iii) ⇒ (i). Assume that I is an AG2-absorbing
ideal of R1. Let (a, b), (c, d), (e, f ) ∈ R be such that
(a, b)(c, d)(e, f ) ∈ I × R2 r {(0,0)}. Then ace ∈ I .
Thus aie ∈ I or c je ∈ I or (ac)k ∈ I for some i, j, k ∈
N. Hence (a, b)i(e, f )∈ I×R2 or (c, d) j(e, f )∈ I×R2
or [(a, b)(c, d)]k ∈ I ×R2 as desired. 2

As a result, any ideal of the form I×R2 (where I
is a proper ideal of R1) is AG2-absorbing if and only
if it is weakly AG2-absorbing, and in this case I must
be an AG2-absorbing ideal of R1.

The next proposition gives conditions under
which AG2-absorbing ideals and weakly AG2-ab-
sorbing ideals of decomposable commutative rings
coincide.

Proposition 14 Let R = R1 × R2 be a decomposable
commutative ring where each of R1 and R2 is a
commutative ring with identity. Moreover, let I be a
non-zero proper ideal of R1 and J a non-zero ideal of
R2. The following statements are equivalent. (i) I × J
is a weakly AG2-absorbing ideal of R. (ii) J = R2 and
I is an AG2-absorbing ideal of R1, or both of I and
J are primary ideals. (iii) I × J is an AG2-absorbing
ideal of R.

Proof : (i)⇒ (ii). Assume that I×J is a weakly AG2-
absorbing ideal of R. If J = R2, then I is an AG2-
absorbing ideal of R1 by Proposition 13. Suppose
that J 6= R2. To show that J is a primary ideal of R2,
let a, b ∈ R2 be such that ab ∈ J and let 0 6= l ∈ I .
Then (1, a)(l, 1)(1, b) = (l, ab) ∈ I × J r {(0,0)}.
Since (1, a)i(1, b) = (1, ai b) /∈ I × J for all i ∈ N,
we have (l j , b) = (l, 1) j(1, b) ∈ I × J or (lk, ak) =
[(1, a)(l, 1)]k ∈ I × J for some j, k ∈ N. Thus b ∈ J
or ak ∈ J . Hence J is a primary ideal of R2. Similarly,
I is a primary ideal of R1.

(ii) ⇒ (iii). Assume (ii) holds. If J = R2
and I is an AG2-absorbing ideal of R1, then I × R2
is an AG2-absorbing ideal of R by Proposition 13.
Suppose that both I and J are primary ideals.
Moreover, let a1, a2, a3 ∈ R1 and b1, b2, b3 ∈ R2
be such that (a1, b1)(a2, b2)(a3, b3) ∈ I × J . Thus
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(a1a2a3, b1 b2 b3) ∈ I × J . Since I and J are primary
ideals, at least one api

i is in I for some pi ∈ N,
say ap1

1 , and at least one bqi
i is in J for some qi ∈

N. If bq1
1 ∈ J , then (a1, b1)p1+q1 ∈ I × J so that

[(a1, b1)(a2, b2)]p1+q1 ∈ I × J . Otherwise, without
loss of generality, assume that bq2

2 ∈ J . Hence
[(a1, b1)(a2, b2)]p1+q2 ∈ I×J . Hence I×J is an AG2-
absorbing ideal of R.

(iii)⇒ (i). This is clear. 2
Now, we consider weakly AG2-absorbing but

not AG2-absorbing ideals. The next result gives
their characterization in decomposable commuta-
tive rings.

Proposition 15 Let R = R1 × R2 be a decomposable
commutative ring where each of R1 and R2 is a
commutative ring with identity. Let I be a non-zero
proper ideal of R1 and J an ideal of R2. The following
statements are equivalent. (i) I × J is a weakly AG2-
absorbing but not AG2-absorbing ideal of R. (ii) I
is a weakly primary but not primary ideal of R1 and
J = {0} is a primary ideal of R2.

Proof : (i)⇒ (ii). Assume that I×J is a weakly AG2-
absorbing but not AG2-absorbing ideal of R. If J 6=
{0}, then I × J is an AG2-absorbing ideal of R by
Proposition 14, contradicting the hypothesis. Thus
J = {0}. Next, we show that J = {0} is a primary
ideal of R2. Let a, b ∈ R2 be such that ab ∈ {0} and
let 0 6= l ∈ I . Then (1, a)(l, 1)(1, b) = (l, ab) ∈ I ×
{0}r{(0,0)}. Since (1, a)i(1, b) = (1, ai b) /∈ I×{0}
for all i ∈N, we have (l j , b) = (l, 1) j(1, b)∈ I×{0} or
(lk, ak) = [(1, a)(l, 1)]k ∈ I × {0} for some j, k ∈ N.
Hence b ∈ {0} or ak ∈ {0}. Thus {0} is a primary
ideal of R2. Now, to show that I is a weakly primary
ideal of R1, let a, b ∈ R1 be such that ab ∈ I r {0}.
Since (a, 1)(1, 0)(b, 1) = (ab, 0) ∈ I ×{0}r {(0, 0)}
and (a, 1)i(b, 1) = (ai b, 1) /∈ I×{0} for all i ∈ N, we
conclude that either (b, 0) = (1,0) j(b, 1) ∈ I×{0} or
(ak, 0) = [(a, 1)(1, 0)]k ∈ I × {0} for some j, k ∈ N.
Thus either b ∈ I or ak ∈ I . Hence I is a weakly
primary ideal of R1.

Finally, suppose that I is a primary ideal of R1.
We claim that I×{0} is an AG2-absorbing ideal of R.
Let (ace, bd f ) = (a, b)(c, d)(e, f ) ∈ I ×{0}. Since I
and {0} are primary ideals of R1 and R2, respectively,
we may assume that ar ∈ I and bs ∈ {0} for some
r, s ∈N. Thus [(a, b)(c, d)]r+s ∈ I×{0}. Hence I×{0}
is an AG2-absorbing ideal of R as claimed which
contradicts the assumption. Hence I is a weakly
primary but not primary ideal of R1 as desired.

(ii) ⇒ (i). Assume that I is a weakly pri-
mary but not primary ideal of R1 and J = {0}

is a primary ideal of R2. Let a1, a2, a3 ∈ R1 and
b1, b2, b3 ∈ R2 be such that (a1a2a3, b1 b2 b3) =
(a1, b1)(a2, b2)(a3, b3) ∈

�

I × J
�

r {(0, 0)} =
�

I ×
{0}
�

r{(0, 0)}. Thus a1a2a3 ∈ Ir{0} and b1 b2 b3 ∈
{0}. Since I is weakly primary, we may assume ap1

1 ∈
I for some p1 ∈ N. Moreover, since {0} is a primary
ideal of R2, there is j ∈ {1, 2,3} such that b

q j

j ∈ {0}
for some q j ∈ N. Hence [(a1, b1)(a j , b j)]p1+q j ∈ I ×
{0}. Hence I×{0}= I×J is a weakly AG2-absorbing
ideal of R. Finally, we show that I × {0} is not
an AG2-absorbing ideal of R. Since I is a weakly
primary ideal of R1 but not primary, there are a,
b ∈ R1 such that ab = 0 but a /∈ I and bm /∈ I for
all m ∈ N. Since (a, 1)(1, 0)(b, 1) = (0,0) ∈ I × {0}
but

∀ i ∈ N, (a, 1)i(b, 1) = (ai b, 1) /∈ I ×{0} and

∀ j ∈ N, (1, 0) j(b, 1) = (b, 0) /∈ I ×{0} and

∀ k ∈ N, [(a, 1)(1, 0)]k = (ak, 0) /∈ I ×{0},

we conclude that I × {0} is not an AG2-absorbing
ideal of R. 2

It seems that Proposition 14 and Proposition 15
contradict each other. But, in fact, they do not. The
assumptions of these two propositions are different,
because J must be a non-zero ideal in Proposi-
tion 14 but J is just an ideal in Proposition 15.
This means that J = 0 or J 6= 0 are key conditions
that distinguish between them. Proposition 15 is
a very strong characterization; it ensures that in
a decomposable commutative ring an ideal of the
form I×J that is weakly AG2-absorbing but not AG2-
absorbing (where I is a non-zero proper ideal) can
only occur under the condition that J is a non-zero
primary ideal.

For the rest of this section, let R1, R2 and R3
be commutative rings with identities. Recall that
an ideal I of R1 × R2 × R3 must be of the form
I1 × I2 × I3 where I1, I2 and I3 are ideals of R1, R2
and R3, respectively. The next two theorems show
what weakly AG2-absorbing ideals of R1 × R2 × R3
look like.

Theorem 4 Let R = R1 ×R2 ×R3 be a decomposable
commutative ring. If I is a weakly AG2-absorbing
ideal of R, then either I = {(0,0, 0)} or I is an AG2-
absorbing ideal of R.

Proof : Assume that I is a weakly AG2-absorbing
ideal of R. Since {(0,0, 0)} is a weakly AG2-
absorbing ideal of any ring, we may assume that
I1 × I2 × I3 = I 6= {(0,0, 0)}. Thus there is an ele-
ment (0,0, 0) 6= (a, b, c) = (a, 1, 1)(1, b, 1)(1,1, c) ∈
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I . Hence (ai , 1, c) = (a, 1, 1)i(1, 1, c) ∈ I or
(1, b j , c) = (1, b, 1) j(1,1, c) ∈ I or (ak, bk, 1) =
[(a, 1, 1)(1, b, 1)]k ∈ I for some i, j, k ∈N. Thus I2 =
R2 or I1 = R1 or I3 = R3, respectively. Consequently,
I = I1×R2× I3 or I = R1× I2× I3 or I = I1× I2×R3.
If I ⊆ Nil(R), then R1 = {0} or R2 = {0} or R3 = {0},
which is a contradiction. Since I is a weakly AG2-
absorbing ideal of R such that I * Nil(R), the ideal I
must be an AG2-absorbing ideal of R. 2

The above theorem shows that in a ring R =
R1 × R2 × R3, a weakly AG2-absorbing ideal which
is not AG2-absorbing is unique and it must be the
zero ideal.

Theorem 5 Let R = R1 ×R2 ×R3 be a decomposable
commutative ring, I1 a proper ideal of R1, and I2
and I3 ideals of R2 and R3, respectively, such that
I = I1× I2× I3 6= {(0, 0,0)}. The following statements
are equivalent. (i) I = I1 × I2 × I3 is a weakly AG2-
absorbing ideal of R. (ii) I = I1 × I2 × I3 is an AG2-
absorbing ideal of R. (iii) I = I1×R2×R3 and I1 is an
AG2-absorbing ideal of R1 or I = I1× I2×R3 where I1
and I2 are primary ideals or I = I1×R2× I3 where I1
and I3 are primary ideals.

Proof : (i) ⇒ (ii). Assume that I is a weakly AG2-
absorbing ideal of R. Since I is non-zero, I is an
AG2-absorbing ideal of R by Theorem 4.

(ii)⇒ (iii). Assume that I is an AG2-absorbing
ideal of R. To show that I1 is an AG2-absorbing
ideal of R1, let a, b, c ∈ R1 be such that abc ∈ I1.
Then (abc, 0, 0) = (a, 0, 0)(b, 0, 0)(c, 0, 0) ∈ I so we
show that aic ∈ I1 or b jc ∈ I1 or (ab)k ∈ I1 for some
i, j, k ∈ N as desired, because the ideal I is AG2-
absorbing. Since I1 is a proper ideal, and by a proof
similar to that of Theorem 4, either I2 = R2 or I3 =
R3. We separate the remainder of the argument into
3 cases: Case 1 I2 = R2 and I3 = R3, Case 2 I2 6= R2
and I3 = R3, Case 3 I2 = R2 and I3 6= R3. The first
case leads us to the result that I = I1 ×R2 ×R3 and
I1 is AG2-absorbing. Next, assume that I2 6= R2 and
I3 = R3. In order to show that I1 and I2 are primary
ideals, let a, b ∈ R1 and c, d ∈ R2 be such that ab ∈
I1 and cd ∈ I2. Then (a, 1, 1)(1, cd, 1)(b, 1, 1) =
(ab, cd, 1) ∈ Ir{(0, 0,0)}. Since (a, 1, 1)i(b, 1, 1) =
(ai b, 1, 1) /∈ I for all i ∈ N, it follows that there exist
j, k ∈ N such that (b, (cd) j , 1) = (1, cd, 1) j(b, 1, 1) ∈
I or (ak, (cd)k, 1) = [(a, 1, 1)(1, cd, 1)]k ∈ I . Thus
b ∈ I1 or ak ∈ I1. Hence I1 is a primary ideal
of R1. Similarly, since (ab, 1, 1)(1, c, 1)(1, d, 1) =
(ab, cd, 1) ∈ I r {(0,0, 0)} and (1, c, 1)i(1, d, 1) =
(1, c id, 1) /∈ I for all i ∈ N, there are j, k ∈ N
such that ((ab) j , d, 1) = (ab, 1, 1) j(1, d, 1) ∈ I or

((ab)k, ck, 1) = [(ab, 1, 1)(1, c, 1)]k ∈ I . Thus d ∈
I2 or ck ∈ I2. Hence I2 is a primary ideal of R2.
Finally, assume that I2 = R2 and I3 6= R3. By an
argument similar to the one that we applied to the
ideal I1 × I2 × R3, we conclude that I1 and I3 are
primary ideals.

(iii) ⇒ (i). If I is one of the given three
forms, then by applying the proof of (iii) ⇒ (i) in
Proposition 13, it is easy to verify that I is a weakly
AG2-absorbing ideal of R as desired. 2

Note that Theorem 5 can be applied to decom-
posable commutative rings of the form R1×R2×· · ·×
Rm for any integer m¾ 4 by considering R3×· · ·×Rm
as a single ring.
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