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ABSTRACT: This study deals with the steady magnetohydrodynamics rotating boundary layer flow and heat transfer
of a viscous fluid over a permeable shrinking sheet. Similarity transformations have been used for reducing the partial
differential equations into a system of ordinary differential equations. The transformed ordinary differential equations are
solved numerically using a finite-difference scheme. The effects of the magnetic parameterM , suction parameter s, rotating
parameter λ, and Prandtl number Pr on the velocity and temperature fields are presented graphically and discussed in detail.
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INTRODUCTION

The study of flow or heat and mass transfer prob-
lems due to stretching boundary/surface has many
applications in technological processes, particularly in
polymer systems involving drawing of fibres and films
or thin sheets, production of paper, roofing shingles,
insulting material, and others. Since the pioneering
work of Sakiadis1, various aspects of boundary layer
flow due to a stretching sheet have been investigated.
Crane2 extended the idea to the two-dimensional
problem where the velocity is proportional to the
distance from the plate. The uniqueness of the exact
analytical solution presented in Ref. 1 is discussed by
McLeod and Rajagopal3. The study of heat and mass
transfer over a stretching sheet subject to suction or
blowing was investigated by Gupta and Gupta4 and
Magyari and Keller5.

In recent years, problems involving magneto-
hydrodynamics have become increasingly important
in industry. Pavlov6 considered the steady laminar
flow of an electrically conducting fluid caused by the
stretching of an elastic sheet in the presence of a uni-
form magnetic field and obtained an exact similarity
solution. Anderson7 obtained an analytically exact
solution for MHD flow of a viscoelastic fluid past a
stretching surface and he found that the elasticity and
magnetic field reduce the boundary layer thickness
and increase the skin friction. On the other hand,
Nazar et al8 investigated the unsteady boundary layer
flow due to a stretching surface in a rotating fluid
while Ishak et al9 studied the MHD boundary layer

flow and heat transfer adjacent to stretching vertical
sheet with power law velocity. Wang10 considered the
steady rotating fluid and heat transfer on a stretching
sheet while Abbas et al11 investigated the unsteady
MHD flow and heat transfer on a stretching sheet in
a rotating fluid.

All the above mentioned investigations deal with
the stretching flow problems, but studies on the flow
problems due to a shrinking sheet are relatively scarce.
Wang12 was the first to study the unsteady viscous
flow induced by a shrinking liquid film. Moreover,
Miklavcic and Wang13 proved the existence and non-
uniqueness for steady viscous hydrodynamic flow due
to a shrinking sheet for a specific value of the suction
parameter. Sajid et al14 considered the MHD rotating
flow of a viscous fluid over a shrinking sheet, while
Hayat et al15 investigated the analytic solution for
MHD rotating flow of a second grade fluid past a
porous shrinking surface. Later, Faraz and Khan16 in-
vestigated the steady two-dimensional MHD rotating
flow of a second grade fluid due to a porous shrinking
surface.

The present paper extends the idea in Ref. 14 by
including the heat transfer characteristics, and solving
it numerically using the Keller-box method. This
method was introduced by Keller and Cebeci17 and
has been used by many researchers to solve various
boundary layer problems18–20.

MATHEMATICAL FORMULATION

Consider the steady laminar MHD boundary layer
flow of a viscous fluid caused by a 2-d shrinking
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Fig. 1 Physical model and coordinate system.

surface in a rotating fluid. Let u, v, w be the velocity
components along the x, y, z directions, respectively,
and let Ω be the angular velocity of the rotating fluid in
the z-direction (Fig. 1). In addition, a constant mag-
netic field B0 is applied in the z-direction. Under the
assumption of zero electric field and small magnetic
Reynolds number, the boundary layer equations which
govern the MHD flow in the absence of pressure
gradient (Ref. 14) are
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where ν = µ/ρ is the kinematic viscosity, σ the
electrical conductivity, ρ the density, α the thermal
diffusivity, and T the fluid temperature. The boundary
conditions for the equations (1)–(4) are

u = −ax, v = 0, w = −W, T = Tw at z = 0,
u→ 0, v → 0, T → T∞ as z →∞,

(5)

where a > 0 is the shrinking constant and W >
0 is the suction velocity. The following similarity
transformations were introduced by Sajid et al14:

u = −axf ′(η), v = axg(η), w = −
√
aνf(η),

η =
√
a

ν
z, θ(η) =

T − T∞
Tw − T∞

,
(6)

where η is the independent dimensionless similarity
variable, and primes denote the differentiation with
respect to η, f(η) and g(η) are the velocity and
lateral velocity profiles, respectively, while θ(η) is the
temperature profile. Under these similarity transfor-
mations, (1) is identically satisfied, while (2)–(4) are

reduced to the following:

f ′′′ − f ′2 + ff ′′ + 2λg−M2f ′ = 0, (7)

g′′ − f ′g+ fg′ − 2λf ′ −M2g = 0, (8)
1

Pr
θ′′ + fθ′ = 0, (9)

The boundary conditions (5) become

f(0) = s, f ′(0) = −1, g(0) = 0, θ(0) = 1,
f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0,

(10)

where s = W/m
√
aν is the suction parameter, M2 =

σB2
0/ρa is the magnetic parameter, Pr = ν/α is the

Prandtl number and λ = Ω/a is the dimensionless
parameter that shows the relationship between rotation
rate and the rate of shrinkage.

The local skin friction coefficients in the x- and
y-directions and the local Nusselt number are given
by

Cfx =
τwx

ρu2
, Cfy =

τwy

ρu2
,

Nux =
xqw

k(Tw − T∞)
,

(11)

where the shear stresses τwx, τwy and the heat flux qw
are defined by

τwx = µ
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,
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(12)

with ν and k being the dynamic viscosity and thermal
conductivity, respectively.

Using (6) and (12), (11) becomes

CfxRe
1/2
x = f ′′(0), CfyRe

1/2
y = g′(0),

NuxRe
−1/2
x = −θ′(0).

(13)

RESULTS AND DISCUSSION

The equations (7)–(9) subject to the boundary con-
ditions (10) are solved numerically using an implicit
finite difference scheme known as the Keller-box
method described in Ref. 17. In order to verify
the accuracy of the present method, the numerical
results for f ′′(0), g′(0) and −θ′(0) are compared
with the results obtained in Ref. 10 and Ref. 11
by setting s = 0, M = 0, Pr = 7 and f ′(0) = 1
(stretching sheet) in the boundary conditions (10). The
comparisons, presented in Table 1, are found to be in
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Table 1 Comparison of the present values of f ′′(0), g′(0) and -θ′(0) with those of Wang 10 and Abbas et al 11.

Wang 10 Abbas et al 11 Present results
λ f ′′(0) g′(0) −θ′(0) f ′′(0) g′(0) −θ′(0) f ′′(0) g′(0) −θ′(0)

0 −1.0000 0.0000 1.894 −1.0000 0.0000 1.894 −1.0005 0.0000 1.895
0.5 −1.1384 −0.5128 1.850 −1.1384 −0.5128 1.850 −1.1385 −0.5127 1.851
1 −1.3250 −0.8371 1.788 −1.3250 −0.8371 1.788 −1.3250 −0.8371 1.788
2 −1.6523 −1.2873 1.664 −1.6523 −1.2873 1.664 −1.6524 −1.2873 1.669
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Fig. 2 Effects of the rotating parameter λ on the velocity
profiles f ′(η) and g(η) when s = 3, M = 2, Pr = 0.7.

good agreement, and thus we are confident that the
present method is accurate.

Fig. 2 displays the velocity profiles f ′(η) and
g(η) for various values of the rotating parameter λ
when s = 3, M = 2, Pr = 0.7. Both profiles show
reduction in boundary layer thickness with the in-
crease of the rotating parameter λ. It is found that the
velocity increases exponentially for small values of
λ and the oscillatory behaviour only occurs for large
values of λ. The effects of the magnetic parameter M
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Fig. 3 Effects of the magnetic parameter M on the velocity
profiles f ′(η) and g(η) when s = 3, λ = 2, Pr = 0.7.

when s = 3, λ = 2, Pr = 0.7 on the velocity profiles
f ′(η) and g(η) are given in Fig. 3 which shows that the
boundary layer thickness is smaller as M increases.
Meanwhile, graphs of the velocity profiles f ′(η) and
g(η) for various values of suction parameter s are
given in Fig. 4, which also displays the reduction in
boundary layer thickness with the increase of suction
parameter s.

Fig. 5 illustrates the influence of the rotating
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Fig. 4 Effects of the suction parameter s on the velocity
profiles f ′(η) and g(η) when M = 2, λ = 2, Pr = 0.7.
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Fig. 5 Effects of the rotating parameter λ on the temperature
profiles θ(η) when M = 2, s = 3, Pr = 0.7.

parameter λ on the temperature profiles θ(η) when
s = 3, M = 2 and Pr = 0.7, while Fig. 6 shows the
influence of the magnetic parameter M when s = 3,
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Fig. 6 Effects of the magnetic parameter M on the temper-
ature profiles θ(η) when λ = 2, s = 3, Pr = 0.7.
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Fig. 7 Effects of the suction parameter s on the temperature
profiles θ(η) when λ = 2, M = 2, Pr = 0.7.

λ = 2, and Pr = 0.7. Both profiles show the reduction
in boundary layer thickness as λ and M increase.
However, the effects of these parameters are not very
pronounced. Meanwhile, the effects of the suction
parameter s when M = 2, λ = 2, Pr = 0.7 and
Prandtl number Pr when s = 3, M = 2, λ = 2 on the
temperature profiles θ(η) are shown in Figs. 7 and 8.
It can be seen that both profiles display the reduction
in boundary layer thickness as s and Pr increase.

CONCLUSIONS

A numerical study was performed for the problem
of MHD rotating flow and heat transfer due to a
permeable shrinking sheet in a viscous fluid. This
problem was solved numerically by using a Keller-
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Fig. 8 Effects of the Prandtl number Pr on the temperature
profiles θ(η) when λ = 2, M = 2, s = 3.

box method. The effects of the rotating parameter
λ, magnetic parameter M , suction parameter s and
Prandtl number Pr have been analysed and presented
graphically. The results show that the boundary
layer thickness for velocity profiles f ′(η) and g(η)
decrease with the increase of the rotating parameter
λ, magnetic parameter M and suction parameter s.
It is also found that the boundary layer thickness for
temperature profiles θ(η) decrease with the increase
of the rotating parameter λ, magnetic parameter M ,
suction parameter s and Prandtl number Pr.
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