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ABSTRACT: In this paper, we demonstrate the usefulness of the duality property by using it to determine the spectrum
of the Simpson discrete Fourier transform (SDFT) matrix of dimension N × N , where N ≡ 2 (mod 4), in finding an
expression for the minimal polynomial. We determine the eigenvalues and their corresponding multiplicities. The SDFT
matrix is diagonalizable. Thus there exists a basis for the underlying vector space consisting of eigenvectors. In light of this,
we construct an eigenbasis for each subspace associated with each of the eight distinct eigenvalues.
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INTRODUCTION

It is well known that the discrete Fourier transform
(DFT) can be obtained by a trapezoidal approxima-
tion of the integral used to approximate the Fourier
coefficients of periodic functions1. This leads to the
symmetric nature of the DFT transformation matrix.
The DFT plays an important role in audio signal
processing, adaptive filtering of artefacts from the
human electroencephalogram and detection of fetal
heartbeats from the fetal electrocardiogram2. We
have proposed a DFT based on Simpson’s numerical
quadrature rule1 and proved analogous properties to
the classical DFT3. The eigenvalues of a matrix
play an important role in the spectral resolution of
functions of the matrix into their constituent com-
ponents and the multiplicities give the number of
linearly independent eigenvectors corresponding to
each eigenvalue4.

McClellan and Parks5 studied the eigenstructure
of the DFT matrix in detail and provided a means of
numerically generating a linearly independent set of
eigenvectors corresponding to the related eigenspaces.
They made extensive use of the theory of Chebyshev
sets6 to prove the independence of the eigenvectors.
We provide a numerical technique to generate a basis
for the eigenspace corresponding to each of the eight
distinct eigenvalues.

For any vector f = [f(0), f(1), . . . , f(N − 1)]T

of even lengthN , define the even indexed components
by f0 = [f(0), f(2), . . . , f(N−2)]T, the odd indexed
components by f1 = [f(1), f(3), . . . , f(N −1)]T and

the discrete transforms by

F0(k) =
2
3

N/2−1∑
j=0

ωk(2j)f0(j),

F1(k) =
4
3

N/2−1∑
j=0

ωk(2j+1)f1(j),

for k = 0, 1, . . . , N − 1.
Define F0 = [F0(0), F0(1), . . . , F0(N−1)]T and

F1 = [F1(0), F1(1), . . . , F1(N − 1)]T, then F =
F0 + F1 represents the Simpson DFT transform of
f . The transformation can be written in matrix-vector
notation as F = Uf , where

U =
2
3

(
A 2DA
A −2DA

)
P,

the ( 1
2N×

1
2N) matrix A is defined by its components

Aij = ω2ij for i, j = 0, 1, . . . , N2 − 1,

the matrix D = diag(1, ω, . . . , ωN/2−1) and the (N×
N) permutation matrix P is defined by its compo-
nents Pj+1,2j+1 = 1 and PN/2+j+1,2j+2 = 1 for
j = 0, 1, . . . , 1

2N − 1. The effect of the permutation
matrix is to separate the signal into even and odd
indexed components, respectively, in accordance with
the Simpson quadrature rule1.

EIGENVALUES OF U

Using the duality property7, we obtain an insight into
the structure of the matrix U4. Exploiting this form,
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we obtain the spectrum σ(U4). We state the duality
property

U2f(2k) = 2
3Nf(−2k)− 4

9Nf
(
−2k− N

2

)
(1)

U2f(2k+ 1) = 4
3Nf(−2k− 1)

− 2
9Nf

(
−2k− 1− N

2

)
. (2)

In order to apply the duality property to (1) and (2), we
let U2f(2k) = g(2k) and U2f(2k + 1) = g(2k + 1)
to obtain

U2g(2k) = 2
3Ng(−2k)− 4

9Ng
(
−2k− N

2

)
= 2

3N
[
2
3Nf(2k)− 4

9Nf
(
2k− N

2

)]
− 4

9N
[
4
3Nf

(
2k+ N

2

)
− 2

9Nf(2k)
]

= N2
[
44
81f(2k)− 8

27f
(
2k− N

2

)]
−N2 16

27f
(
2k+ N

2

)
and similarly it may be shown that

U2g(2k+ 1)

= N2
[
152
81 f(2k+ 1)− 8

27f
(
2k+ 1− N

2

)]
−N2 4

27f
(
2k+ 1 + N

2

)
,

using the periodicity N of f , we get

U4f(2k) = N2
[
44
81f(2k)− 8

9f
(
2k+ N

2

)]
(3)

and

U4f(2k+ 1) = N2 152
81 f(2k+ 1)

−N2 4
9f
(
2k+ 1 + N

2

)
(4)

for k = 0, 1, . . . , 1
2N − 1.

Writing (3) and (4) in matrix-vector notation,
we deduce that U4 is real and tridiagonal with the
superdiagonal located in the first row in column 1

2N+
1 and the subdiagonal in the first column in row
1
2N + 1. The diagonal of matrix U4 has the form[
a, 38

11a, a,
38
11a, . . . , a,

38
11a
]

of length N , the super-
diagonal has the form [−2b,−b,−2b,−b, . . . ,−2b]
of length 1

2N and a subdiagonal has the form
[−b,−2b,−b,−2b, . . . ,−b] of length 1

2N , where a =
44
81N

2 and b = 4
9N

2.
We now determine the eigenvalues of U4. Let

X = [X(0), X(1), . . . , X(N − 1)] be an eigenvector
of U4 corresponding to the eigenvalue α then

U4X = αX. (5)

Let p be the index such that |X(2k)| 6 |X(2p)| and
m be the index such that |X(2k+ 1)| 6 |X(2m+ 1)|

for k = 0, 1, . . . , 1
2N −1, then it follows from (5) that

(a− α)X(2p)− 2bX
(
N
2 + 2p

)
= 0, (6)

− bX(2p) + ( 38
11a− α)X

(
N
2 + 2p

)
= 0, (7)

and

( 38
11a−α)X(2m+1)− bX

(
2m+ 1 + N

2

)
= 0, (8)

−2bX(2m+1)+(a−α)X
(
2m+ 1 + N

2

)
= 0. (9)

If X(2p) = X(2m+ 1) = 0, then this contradicts the
fact that X is an eigenvector. Suppose that X(2p) 6=
0, then if X( 1

2N + 2p) = 0, this contradicts (7); so
X( 1

2N+2p) 6= 0. Hence the linear system (6) and (7)
has non-trivial solution; so the determinant

(a− α)( 38
11a− α) + 2b2 = 0. (10)

IfX(2p) = 0, thenX(2m+1) 6= 0, and from equation
(9), it follows that X(2m+ 1 + 1

2N) 6= 0, so that the
linear system (8) and (9) has non-trivial solution, so
that the determinant is zero which is the same as (10).
The solution of the quadratic equation (10) provides
the spectrum σ(U4) = { 1

81 (98+18
√

17)N2, 1
81 (98−

18
√

17)N2}, from which it follows that

σ(U) ⊆
{
r1 eilπ/2, r2 eilπ/2 | l = 0, 1, 2, 3

}
, (11)

where

r1 =
1
3

√
N

√
9 +
√

17, r2 =
1
3

√
N

√
9−
√

17.

THE MINIMAL POLYNOMIAL

Successively using the duality property, it can be
shown that

U6f(2k) = N3 136
243f(−2k)−N3 1040

729 f
(
−2k+ N

2

)
,

U6f(2k+ 1) = N3 656
243f(−2k− 1)

−N3 520
729f

(
−2k− 1− N

2

)
,

and

U8f(2k) = N4 4528
6561f(2k)−N4 1568

729 f
(
2k+ N

2

)
,

(12)

U8f(2k+ 1) = N4 25696
6561 f(2k+ 1)

−N4 784
729f

(
2k+ 1 + N

2

)
. (13)

From (3) and (12), it can be shown that the even
components of the vector [U8−(r41+r42)U

4+r41r
4
2I]f
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satisfy the equation [U8−(r41+r
4
2)U

4+r41r
4
2I]f(2k) =

0.
Likewise, it can be shown from (4) and (13) that

the odd components [U8−(r41+r42)U
4+r41r

4
2I]f(2k+

1) = 0 for k = 0, 1, . . . , 1
2N − 1. Hence we get the

minimal polynomial

Q(λ) = (λ4 − r41)(λ4 − r42),

from which the eigenvalues can exactly be obtained;
thus establishing an equality in (11).

MULTIPLICITIES OF THE EIGENVALUES

Let the eigenvalue λpl = rp e(π/2)il and letmpl denote
the algebraic multiplicity of λpl, where p = 1, 2 and
l = 0, 1, 2, 3. To obtain the multiplicities of the
eigenvalues, we solve the linear system

2∑
p=1

3∑
l=0

mpl = N, (14)

2∑
p=1

3∑
l=0

mplλ
n
pl = tr(Un), (15)

where n = 1, 2, . . . , 7. The system (14) and (15) can
be reduced to (2 × 2) subsystems that can be solved
using Cramer’s rule. In order to evaluate the traces we
require the following equations

Uf(2k) =
2
3

N/2−1∑
p=0

ω4kpf(2p)

+
4
3

N/2−1∑
p=0

ω2k(2p+1)f(2p+ 1), (16)

Uf(2k+ 1) =
2
3

N/2−1∑
p=0

ω(2k+1)2pf(2p)

+
4
3

N/2−1∑
p=0

ω(2k+1)(2p+1)f(2p+ 1). (17)

Applying the duality property, it can be shown that

U3f(2k) =
4
27
N

N/2−1∑
p=0

ω−4kpf(2p)

+
40
27
N

N/2−1∑
p=0

ω−2k(2p+1)f(2p+ 1),

Table 1 Traces.
n tr(Un) n tr(Un)

1 − 2
3

q
1
2
N e(N−2)iπ/8 2 2N

3 − 52
27
N

q
1
2
N e−(N−2)i(π/8) 4 98

81
N3

5 − 808
243

N2
q

1
2
N e(N−2)iπ/8 6 88

27
N3

7 − 11216
2187

N3
q

1
2
N e−(N−2)iπ/8

U3f(2k+ 1) =
20
27
N

N/2−1∑
p=0

ω−(2k+1)2pf(2p)

+
56
27
N

N/2−1∑
p=0

ω−(2k+1)(2p+1)f(2p+ 1).

Likewise, we can obtain expressions for the even and
odd indexed components of U5f and U7f . By writing
(16) and (17) in matrix-vector form, we deduce that

tr(U) =
2
3

N/2−1∑
k=0

ω(2k)2 +
4
3

N/2−1∑
k=0

ω(2k+1)2 . (18)

The first sum in (18) can be separated as follows

N/2−1∑
k=0

ω4k2
= 1 +

N/4−1/2∑
k=1

ω4k2
−
N/4−1/2∑
k=1

ω(2k−1)2 .

(19)
In a similar manner, we separate

N/2−1∑
k=0

ω(2k+1)2 = −1−
N/4−1/2∑
k=1

ω4k2

+
N/4−1/2∑
k=1

ω(2k−1)2 . (20)

Comparing (19) and (20), we note that∑N/2−1
k=0 ω4k2

= −
∑N/2−1
k=0 ω(2k+1)2 . Hence,

from (18), tr(U) = 2
3

∑N/2−1
k=0 ω(2k+1)2 . From the

quadratic reciprocity law of Gauss sums8, we have∑N/2−1
k=0 ω(2k+1)2 = −

√
1
2N e(N−2)iπ/8 which is

used to evaluate the traces of odd multiples of U.
the traces of the matrices Un, n = 1, 2, . . . , 7, are
summarized in Table 1. The multiplicities of the
eigenvalues are summarized in Table 2 and Table 3
for N = 4m+ 2 where the integer m > 2.

EIGENVECTORS

An eigenvector vpl corresponding to λpl, where p =
1, 2 and l = 0, 1, 2, 3 can be generated in the following
manner using integral powers of U; namely, vpl =
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Table 2 Multiplicities corresponding to λ1l, l = 0, 1, 2, 3.

Eigenvalue Multiplicity
1
3

√
N

p
9 +
√

17 1
2
[m+ 1− cos( 1

2
mπ)]

− 1
3

√
N

p
9 +
√

17 1
2
[m+ 1 + cos( 1

2
mπ)]

i 1
3

√
N

p
9 +
√

17 1
2
[m− sin( 1

2
mπ)]

−i 1
3

√
N

p
9 +
√

17 1
2
[m+ sin( 1

2
mπ)]

Table 3 Multiplicities corresponding to λ2l, l = 0, 1, 2, 3.

Eigenvalue Multiplicity
1
3

√
N

p
9−
√

17 1
2
[m+ 1 + cos( 1

2
mπ)]

− 1
3

√
N

p
9−
√

17 1
2
[m+ 1− cos( 1

2
mπ)]

i 1
3

√
N

p
9−
√

17 1
2
[m+ sin( 1

2
mπ)]

−i 1
3

√
N

p
9−
√

17 1
2
[m− sin( 1

2
mπ)]

αp
∑7
k=4 λ

−k
pl Ukf −

∑3
k=0 λ

−k
pl Ukf where α1 =

r41/r
4
2 , α2 = α−1

1 and f ∈ CN is any non-zero vector,
where CN is the space of complex N -tuples. Since
the minimal polynomial Q(U) has linear elementary
divisors, the matrix U is diagonalizable4; hence there
exists a linearly independent set of eigenvectors of U
that span CN .

The matrix U is not normal since U∗U =
1
94N diag[1, 4, 1, 4, 1 · · · , 4] and

UU∗ =
2N
9

(
5IN/2 −3IN/2
−3IN/2 5IN/2

)
,

where IN/2 is the ( 1
2N ×

1
2N) identity matrix, hence

there does not exist an orthogonal set of eigenvectors
that span CN . In contrast, the DFT matrix possesses
an orthogonal set of eigenvectors since it is unitary.
Much research has focused on generating such an
orthogonal set by using matrices that commute with
the DFT matrix9 and more recently a method based
on complete generalized Legendre sequence has been
proposed10.

Theorem 1 If f ∈ CN is an eigenvector of U, then f
is either even or odd.

Proof : Assume that f is an eigenvector of U cor-
responding to some eigenvalue λ. From the duality
property7, for the even indexed components U2f(2k)
we get

2
3Nf(−2k)− 4

9Nf
(
−2k− N

2

)
= λ2f(2k) (21)

and U4f(2k) gives

N2
[
44
81f(2k)− 8

9f
(
2k+ N

2

)]
= λ4f(2k), (22)

where k = 0, 1, . . . , 1
2N − 1. Replacing k by −k in

(22) and using the periodicity N of f we obtain

N2
[
44
81f(−2k)− 8

9f
(
−2k− N

2

)]
= λ4f(−2k).

Solving for f(−2k− 1
2N) yields

f

(
−2k− N

2

)
=

9
8

[
− λ

4

N2
+

44
81

]
f(−2k) (23)

and substituting (23) into (21) we get

f(−2k)
[
λ4

2N2
+

32
81

]
=
λ2

N
f(2k). (24)

Similarly it can be shown that the odd indexed com-
ponents satisfy

f(2k+ 1)
[
λ4

2N2
+

32
81

]
f(−2k− 1) =

λ2

N2
. (25)

Substituting λ = λpl = rp ei(π/2)l into (24) and (25),
we get

f(−2k)

[
r4p

2N2
+

32
81

]
=
r2p
N

(−1)lf(2k), (26)

f(−2k− 1)

[
r4p

2N2
+

32
81

]
=

r2p
N2

(−1)lf(2k+ 1).

(27)
Consider the quartic equation x4/2N2 + 32

81 = x2/N
in the variable x, which has only two positive solu-
tions, namely r1 and r2, which leads us to conclude
from (26) and (27) that

f(−2k) = (−1)lf(2k),

f(−2k− 1) = (−1)lf(2k+ 1).

Hence we conclude that the eigenvectors are even for
l = 0, 2 and odd for l = 1, 3. 2

We further conclude from Theorem 1 that eigen-
vectors corresponding to real eigenvalues are even
while those corresponding to purely imaginary eigen-
values are odd.

Theorem 2 If f ∈ CN is an even eigenvector corre-
sponding to r1, then

f = (U + r1I)(U2 − r22I)y

for some non-zero even vector y ∈ CN .

Proof : Choose y = (1/2r1(r21−r22))f , then it is easily
verified that

(U + r1I)(U2 − r22I)
[

1
2r1(r21 − r22)

f
]

= f .

2
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Theorem 3 If f ∈ CN is an odd eigenvector corre-
sponding to r1i, then

f = (U + r1iI)(U2 + r22I)y

for some non-zero odd vector y ∈ CN .

Proof : Choose y = (1/2r1i(r22 − r21))f , then it is
easily verified that

(U + r1iI)(U2 + r22I)
[

1
2r1i(r22 − r21)

f
]

= f .

2
Similar results can be proved for the eigenvectors

corresponding to the remaining eigenvalues.

GENERATING LINEARLY INDEPENDENT
EIGENVECTORS

Theorem 2 and Theorem 3 provide a means for nu-
merically generating both even and odd eigenvectors.
Define a sequence of even vectors

ek+1 =
[
0, . . . , 1

(k)th
, 0, . . . , 1

(N−k)th
, 0, . . .

]T
,

where ek+1 ∈ CN for k = 0, 1, . . . , 1
2N , and a se-

quence of odd vectors

ok+1 =
[
0, . . . , 1

(k+2)th
, 0, . . . , −1

(N−k−1)th
, 0, . . .

]T
,

where ok+1 ∈ CN for k = 0, 1, . . . , 1
2N − 2. The

sequence of vectors{
e1, e2, . . . , eN/2+1,o1,o2, . . . ,oN/2−1

}
forms an orthogonal basis for CN consisting of 1

2N+1
even vectors and 1

2N − 1 odd vectors5.
We claim that the set{

(U + r1I)(U2 − r22I)ek
}m10−1;ν10

k=1
,

where ν10 = 2m10−1, of eigenvectors corresponding
to r1 is linearly independent. We assume without
loss of generality that the dimension m10 of the
corresponding eigenspace is even. Forming the linear
combination

m10−1;ν10∑
k=1

αk(U + r1I)(U2 − r22I)ek = 0,

defining z =
∑m10−1;ν10
k=1 αk(U2 − r22I)ek and sim-

plifying using the duality property we get

z = [aα1, bα2, . . . , aαm10−1, . . . , 0, . . . , aαν10 , . . . ,

0, . . . , aαν10 , . . . , 0, . . . , aαm10−1, . . . , bα2]T

Table 4 An eigenbasis for CN .

Eigenvalue Eigenvectors

r1 {(U + r1I)(U
2 − r22I)ek}m10−1;ν10

k=1

−r1 {(U− r1I)(U2 − r22I)ek}m12−1;ν12
k=1

ir1 {(U + ir1I)(U
2 + r22I)ok}m11−1;ν11

k=1

−ir1 {(U− ir1I)(U2 + r22I)ok}m13−1;ν13
k=1

r2 {(U + r2I)(U
2 − r21I)ek}m20−1;ν20

k=1

−r2 {(U− r2I)(U2 − r21I)ek}m22−1;ν22
k=1

ir2 {(U + ir2I)(U
2 + r21I)ok}m21−1;ν21

k=1

−ir2 {(U− ir2I)(U2 + r21I)ok}m23−1;ν23
k=1

where a = 2
3N − r

2
2 and b = 4

3N − r
2
2 . The matrix-

vector system (U + r1I)z = 0 can be simplified to
yield the (m10 × m10) matrix-vector system Cb =
0, where C = (C1|C2), C1 is given by its el-
ements (C1)ij = cos jti for i = 0, 1, . . . ,m10 −
1, j = 0, 1, . . . ,m10 − 2, where tk = 4kπ/N , k =
0, 1, . . . ,m10 − 1 are distinct points in the interval
[0, π], C2 = [+1,−1,+1, . . . ,+1,−1]T, and b =
[aα1,−4bα2, 2aα3, . . . ,−4bαm10−1, 2aαν10 ]

T. Us-
ing the fact that {1, cos t, cos 2t, . . . , cos(m10 − 2)t}
is a Chebyshev set on [0, π], noting the fact that the
columns of C1 consists of this Chebyshev set and that
the last column of C is non-zero and alternates in
sign, we deduce that the matrix C is non-singular6,
and since a and b are non-zero, it follows that αk = 0
for k = 1, 2, . . . ,m10− 1; ν10, thus proving the linear
independence of the eigenvectors. Hence we have
succeeded in generating a basis for the eigenspace
associated with r1. Similar results hold true for the
other eigenspaces and are summarized in Table 4,
where νpl = 2mpl − 1, p = 1, 2; l = 0, 1, 2, 3 and
N = 4m+ 2.

Theorem 4 Let f = (U + r1I)(U2 − r22I)e, (where
e ∈ RN is even) be an eigenvector corresponding to
r1, then f ∈ RN .

Proof : Let z = (U2 − r22I)e, then z is real and from
the duality property7, it follows that z is even. To
show that (U + r1I)z is real, it suffices to show that
Uz is real. Conjugating Uz results in

Uz(k) =
2
3

N/2−1∑
j=0

ω−k2jz(−2j)

+
4
3

N/2−1∑
j=0

ω−k(2j+1)z(−2j − 1)
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=
2
3

0∑
j=−N/2+1

ωk2jz(2j)

+
4
3

−1∑
j=−N/2

ωk(2j+1)z(2j + 1). (28)

Since the argument of the summations in (28) is
periodic of period 1

2N , it follows from the periodicity
of the arguments of the summations11 that Uz(k)
simplifies to

2
3

N/2−1∑
j=0

ωk2jz(2j) +
4
3

N/2−1∑
j=0

ωk(2j+1)z(2j + 1).

2

Theorem 5 Let f = (U + ir1I)(U2 + r22I)o, (where
o ∈ RN is odd) be an eigenvector corresponding to
ir1, then f ∈ CN is purely imaginary.

Proof : Let z = (U2 + r22I)o, then z is real and from
the duality property7, it follows that z is odd. To show
that (U + ir1I)z is purely imaginary, it suffices to
show that Uz is purely imaginary.

Uz(k) = −2
3

N/2−1∑
j=0

ω−k2jz(−2j)

− 4
3

N/2−1∑
j=0

ω−k(2j+1)z(−2j − 1).

Since z is odd and using the periodicity of the argu-
ments of the summations11, it follows that

Uz(k) = −2
3

0∑
j=−N/2+1

ωk2jz(2j)

− 4
3

−1∑
j=−N/2

ωk(2j+1)z(2j + 1)

= −2
3

N/2−1∑
j=0

ωk2jz(2j)

− 4
3

N/2−1∑
j=0

ωk(2j+1)z(2j + 1)

= −Uz(k).

2
Hence by replacing ok in Table 4 by iok, we obtain a
real eigenbasis for CN .

CONCLUSIONS

We notice from Table 2 and Table 3 that the dis-
crete spectrum consists of four real and four purely
imaginary eigenvalues. The normalized eigenvalues
(normalized with respect to

√
N ) of the DFT matrix

lies on a unit circle in the complex plane. The nor-
malized eigenvalues of the Simpson DFT matrix lie
on the circumference of concentric circles with radii
r̂2 = 1

3

√
9−
√

17 < 1 and r̂1 = 1
3

√
9 +
√

17 > 1.
The sum of the multiplicities of the eigenvalues corre-
sponding to the real eigenvalues is 1

2N +1, while that
corresponding to the purely imaginary eigenvalues is
1
2N − 1. This is also true of the DFT matrix5. The
sum of the multiplicities in Table 2 and Table 3 are the
same, namely 1

2N . The effect of the transformation
on an eigenvector is to leave the direction unchanged,
reverse it or rotate it clockwise or anticlockwise by
1
2π. In addition there is a magnification factor of r̂1
or r̂2 which is absent in the DFT case. Incidentally
Table 2 and Table 3 is also valid for N = 6. The
minimal polynomial has two quartic factors that bear
close resemblance to that of the minimal polynomial
of the DFT matrix.

The space CN is decomposed into the direct sum
of eight subspaces, namely CN = N10⊕N11⊕ · · · ⊕
N22, whereNpl is the nullspace of (U−λplI), p= 1, 2
and l = 0, 1, 2, 3. Each subspace may be orthog-
onalized by the Gram-Schmidt process; however it
must be stressed that these subspaces are not mutually
orthogonal.
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