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ABSTRACT: A piecewise rational cubic function in the form of a cubic/quadratic has been extended to a rational bi-
cubic blended function to visualize 3D convex data. It involves twelve shape parameters in each rectangular mesh for its
representation. Simple data-dependent constraints are imposed on four shape parameters to conserve convexity of convex
data. The remaining shape parameters are left up to the user for modification of convex surfaces. Several numerical examples
are presented to show the visually pleasing convexity preserving surfaces as compared to existing interpolants.
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INTRODUCTION

Data visualization is the study of visual display of
data. The goal of visualization is to leverage ex-
isting scientific methods by providing new scientific
insight through visual methods. Large amount of
data is transformed into graphs and figures either
to complete underlying information from geography,
metrology, mining, basic sciences, medicine or to
communicate human imagination like aerospace in-
dustries, architecture, fine arts, advertising, education
by visualization tools. For visualization of data, there
are three shape features of data named as positivity,
monotonicity and convexity. These shape features are
necessary to be conserved to understand the meaning
of underlying physical phenomenon and to transform
the idea of designer to reality. The objective of the
present study is to visualize the 3D convex data and
conserve its inherited shape features. The significance
of the convexity preserving interpolation problems in
industry cannot be denied. A crumpled surface is an
unwanted characteristic. Human aesthetic sense de-
mands convexity preserving nice and smooth surfaces
without wiggles. A number of examples can be listed
in this area.
(i) Designing well shaped smooth surfaces arise in

manufacturing the TV-screens. In order to accom-
plish with the demands of the customer, as flat
as possible TV-screens are most appreciated. In
the surface designing sense we can say that the
screens must preserve the convexity1.

(ii) Convexity plays significant role in the modelling
of cars in automobile industry, aero-plane and
ship design because human aesthetic sense always
demands curves and surfaces without undulations.
A great deal of research on data visualization

and shape preserving has been done. Some rational
cubic2 and rational quadratic functions have been
extended to rational bi-cubic blended3 and rational
bi-quadratic blended4 interpolants to visualize the 3D
convex data in rectangular mesh case. The rational
bi-cubic blended function is simpler, easy to com-
pute and implement and computational economical
because it conserves the shape of 3D convex data with
fewer constraints imposed on shape parameters as
compared to rational bi-cubic or bi-quartic functions.
These rational schemes have common characteristics
in a way that local and no extra knots are inserted
in the interval where interpolants lost the inherited
shape properties. In contrast, firstly, a piecewise cu-
bic Bernstein-Bézier polynomial function5, quadratic
spline interpolation6, a piecewise quadratic polyno-
mial7, and cubic Hermite interpolation8 have been
used to solve the problem of interpolating mono-
tone and convex data in the sense of monotonicity
and convexity preserving schemes which were very
economical but the methods generally inserted extra
knots in the interval to visualize and conserve the
shape of data. Secondly, Costantini9 developed a
global scheme for preservation of convex surfaces on
rectangular grid. The scheme10 has some research
gaps like the degree of interpolant in some rectangular
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patches which was too large, and the resulting surfaces
were not visually pleasing and smooth. Casciola and
Romani11 have extended NURBS to rational interpo-
lating spline with tension parameters for rectangular
grid case. Carnicer, Garcia-Esnaola and Peña12 anal-
ysed the convexity preserving properties of rational
Bézier and NURBS curves from a geometric point of
view, and also characterized totally positive systems of
functions in terms of geometric convexity preserving
properties of the rational curves.

Dodd, McAllister and Roulier13 have developed
quadratic splines to conserve the convexity of surface
in rectangular case. The scheme guaranteed the shape
along the boundary of each rectangular grid but it does
not conserve the shape in the interior of the grids.
The scheme produced undesirable flat spots due to
vanishing of second order mixed partial derivatives on
the boundary of the rectangles.

In this work, a C1 piecewise rational cubic func-
tion with three shape parameters2 is extended to
rational bi-cubic blended function. It addresses the
problem of constructing convexity preserving surfaces
through 3D convex data in rectangular case. It im-
proves on existing interpolants in following way:
(i) In Ref. 4, the degree of smoothness of convex

surface interpolant is C0 while in this study the
degree of smoothness is C1.

(ii) The present scheme is uniformly valid for the
data with derivatives or without derivatives. In
contrast, the schemes developed in Ref. 14 did
not maintain the shape of data when data are given
with derivatives at knots.

(iii) There is no need of extra knots in the interval
for conservation of convex surfaces. In contrast,
the schemes5, 6 achieve the required shape of data
by inserting extra knots in the interval where the
functions lose convexity.

(iv) The present scheme is tested through several
numerical examples and it is found to be local
in comparison with global schemes9, time saving
and computational economical due to second de-
gree of denominator in rational function in com-
parison the function3 has cubic denominator and
produces smooth and visually pleasing surfaces
than existing schemes4.

REVIEW OF RATIONAL CUBIC FUNCTION

In this section, a piecewise rational cubic function2 in
(cubic/quadratic) form is proposed which is different
from rational cubic functions3. We choose this func-
tion due to low computational cost because the second
order derivative of the functions3 for the calculation
of convexity, become a rational function of degree 7

while the second order derivative of proposed function
provides a rational function of degree 5.

Let
{

(ti, fi), i = 0, 1, 2, . . ., n
}

be the given
set of data points such as t0 < t1 < t2 < . . . <
tn. The piecewise rational cubic function with
three shape parameters2, in each subinterval [ti, ti+1],
i = 0, 1, 2, . . ., n− 1 can be defined as

Ri(t) =
Pi(t)
Qi(t)

(1)

where

Pi(t) = aifi(1− ω)3

+
[
fi(2ai + bi + ci) + aihidi

]
ω(1− ω)2

+
[
fi+1(ai + bi + 2ci)− cihidi+1

]
ω2(1− ω)

+ cifi+1ω
3,

Qi(t) = ai(1− ω)2 + (ai + bi + ci)ω(1− ω) + ciω
2,

when ω = (t−ti)
hi

, hi = ti+1 − ti and ai, bi and ci are
positive shape parameters. A piecewise rational cubic
function (1) has attained C1 continuity by using the
following conditions:

Ri(ti) = fi, Ri(ti+1) = fi+1,

R′i(ti) = di, R′i(ti+1) = di+1,
(2)

where di denote the derivative values that are used
for smoothness of required curve and calculated by
arithmetic mean method and R′i(t) denotes the first
order derivative with respect to t. A piecewise rational
cubic function (1) becomes a standard cubic Hermite
spline when we set the values of shape parameters
as ai = 1, bi = 0 and ci = 1. The following result
developed in Ref. 2 as

Theorem 1 (Ref. 2) A piecewise rational cubic func-
tion (1) conserves the convexity of convex data, if in
each subinterval [ti, ti+1] , i = 0, 1, 2, . . ., n − 1, the
shape parameters satisfy the following conditions

ai > 0, ci > 0

bi > max
{

0,
ci(di+1 −∆i)

(∆i − di)
,
ai(∆i − di)
(di+1 −∆i)

}
,

where ∆i = fi+1−fi

hi
. The above result can be rear-

ranged as

ai > 0, ci > 0

bi = ri + max
{

0,
ci(di+1 −∆i)

(∆i − di)
,
ai(∆i − di)
(di+1 −∆i)

}
for some ri > 0.
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Table 1 2D convex data set.
i 1 2 3 4 5 6

ti −8 −7 2.2 7 10 12
fi 4.5 4 3.55 4 4.5 5
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Fig. 1 Cubic Hermite spline curve.

Example 1 A convex data set is taken in Table 1.
Fig. 1 is generated by cubic Hermite spline scheme
Ref. 15 that does not conserve the convexity. Fig. 2
is generated by using Piecewise Cubic Hermite Inter-
polating Polynomial (PCHIP, Built-in MATLAB pro-
gram) to conserve the convexity of same data but the
visual model is not smooth at some data points. On the
other hand, Fig. 3 and Fig. 4 are generated by rational
cubic function (1) using Theorem 1 to conserve the
convexity. The effect of shape parameters can be
seen by noting the difference in C1 smoothness of
these convexity preserving curves in Fig. 2, Fig. 3, and
Fig. 4.

RATIONAL BI-CUBIC BLENDED SPLINE
FUNCTION

This section introduces a C1 rational bi-cubic blended
function with shape parameters for 3D convex data
modelling and preserves the convexity of surfaces
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Fig. 2 PCHIP curve.
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Fig. 3 Convexity-preserving C1 curve using rational cubic
function with ai = ci = 0.6 and ri = 0.01.
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Fig. 4 Convexity-preserving C1 curve using rational cubic
function with ai = ci = 1.0 and ri = 0.1.

of 3D convex data. The rational bi-cubic blended
function is suitable to arrange the data over rectan-
gular mesh [ξ, ξ1] × [σ, σ1] such that ξ = t0 < t1 <
. . . < tn = ξ1 and σ = u0 < u1 < . . . < um = σ1.
The rational bi-cubic blended function over each
patch [ti, ti+1] × [uj , uj+1], i = 0, 1, 2, . . ., n − 1,
j = 0, 1, 2, . . .,m− 1 is defined as

R(t, u) = [m0(ω) m1(ω)]
[
R(ti, u)
R(ti+1, u)

]
+ [n0(ψ) n1(ψ)]

[
R(t, uj)
R(t, uj+1)

]
− [m0(ω) m1(ω)]

[
Fi,j Fi,j+1

Fi+1,j Fi+1,j+1

] [
n0(ψ)
n1(ψ)

]
(3)

with

m0(ω) = (1− ω)2(1 + 2ω), m1(ω) = ω2(3− 2ω),

n0(φ) = (1−ψ)2(1 + 2ψ), n1(ψ) = ψ2(3− 2ψ)

are called Hermite blending functions with ω = t−ti

hi
,

ψ = u−uj

ĥj
where hi = ti+1 − ti, ĥj = uj+1 − uj .
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TheR(t, uj),R(t, uj+1),R(ti, u) andR(ti+1, u)
are four boundary rational cubic curves of rectangular
patch which can be defined as

R(t, uj) =
∑3

i=0(1− ω)3−iωiβi

s1(ω)
(4)

with

β0 = ai,jFi,j ,

β1 = (2ai,j + bi,j + ci,j)Fi,j + ai,jhiF
t
i,j ,

β2 = (ai,j + bi,j + 2ci,j)Fi+1,j − ci,jhiF
t
i+1,j ,

β3 = ci,jFi+1,j ,

s1(ω) = ai,j(1− ω)2 + ci,jω
2

+ (ai,j + bi,j + ci,j)ω(1− ω);

R(t, uj+1) =
∑3

i=0(1− ω)3−iωiγi

s2(ω)
(5)

with

γ0 = ai,j+1Fi,j+1,

γ1 = (2ai,j+1 + bi,j+1 + ci,j+1)Fi,j+1

+ ai,j+1hiF
t
i,j+1,

γ2 = (ai,j+1 + bi,j+1 + 2ci,j+1)Fi+1,j+1

− ci,j+1hiF
t
i+1,j+1,

γ3 = ci,j+1Fi+1,j+1,

s2(ω) = ai,j+1(1− ω)2 + ci,j+1ω
2

+ (ai,j+1 + bi,j+1 + ci,j+1)ω(1− ω);

R(ti, u) =
∑3

i=0(1−ψ)3−iψiδi
s3(ψ)

(6)

with

δ0 = âi,jFi,j ,

δ1 = (2âi,j + b̂i,j + ĉi,j)Fi,j + âi,j ĥjF
u
i,j ,

δ2 = (âi,j + b̂i,j + 2ĉi,j)Fi,j+1 − ĉi,j ĥjF
u
i,j+1,

δ3 = ĉi,jFi,j+1,

s3(ψ) = âi,j(1−ψ)2 + +ĉi,jψ2

+ (âi,j + b̂i,j + ĉi,j)ψ(1−ψ);

R(ti+1, u) =
∑3

i=0(1−ψ)3−iψiχi

s4(ψ)
(7)

with

χ0 = âi,j+1Fi+1,j ,

χ1 = (2âi,j+1 + b̂i,j+1

+ ĉi,j+1)Fi+1,j + âi,j+1ĥjF
u
i+1,j ,

χ2 = (âi,j+1 + b̂i,j+1 + 2ĉi,j+1)Fi+1,j+1

− ĉi,j+1ĥjF
u
i+1,j+1,

χ3 = ĉi+1,jFi+1,j+1,

s4(ψ) = âi,j+1(1−ψ)2 + ĉi,j+1ψ
2

+ (âi,j+1 + b̂i,j+1 + ĉi,j+1)ψ(1−ψ).

Here F t
i,j and Fu

i,j are the approximations of the
partial derivatives at given data points F (i, j),
i = 0, 1, 2, . . ., n, j = 0, 1, 2, . . .,m

3D CONVEX SURFACE INTERPOLATION

In this section, we discuss the 3D convex modelling
in the view of convexity preserving surface using ra-
tional bi-cubic blended function (3) with twelve shape
parameters. Let

{
(ti, uj , Fi,j), i = 0, 1, 2, . . ., n; j =

0, 1, 2, . . .,m
}

be given 3D convex data. It is ar-
ranged on rectangular grid [ti, ti+1]× [uj , uj+1], i =
0, 1, 2, . . ., n− 1, j = 0, 1, 2, . . .,m− 1 such that

F t
i,j < F t

i+1,j , Fu
i,j < Fu

i,j+1,

∆i,j < ∆i+1,j , ∆̂i,j < ∆̂i,j+1,

∆i,j < F t
i,j < ∆i+1,j , ∆̂i,j < Fu

i,j < ∆̂i,j+1,

where

∆i,j =
Fi+1,j − Fi,j

hi
, ∆̂i,j =

Fi,j+1 − Fi,j

ĥj

.

The free parameters are

ai,j , ai,j+1, âi,j , âi+1,j > 0 (8)
ci,j , ci,j+1, ĉi,j , ĉi+1,j > 0. (9)

According to the result developed in Ref. 11, the
rational bi-cubic blended surface patch inherits all the
properties of network of boundary curves. Hence the
rational bi-cubic blended function (3) to visualize the
3D convex data and conserves the convexity of convex
data if the four boundary curves R(t, uj), R(t, uj+1),
R(ti, u), and R(ti+1, u) are defined in equations (4)–
(7) are convex. The boundary curveR(t, uj) is convex
if R′′(t, uj) > 0, i.e.,

R′′(t, uj) =
∑5

k=0(1− ω)5−kωkξk
hi(s1(ω))3

> 0 (10)

with

ξ0 = 2a2
i,j

[
(ai,j + ci,j)(∆i,j − F t

i,j)

+ bi,j(∆i,j − F t
i,j)− ci,j(F t

i+1,j −∆i,j)
]
,

ξ1 = ξ0 + 2a2
i,j

[
5ci,j(∆i,j − F t

i,j) + ci,jF
t
i,j

]
,

ξ2 = ξ0 + 6ai,j

[
c2

i,j
(F t

i+1,j −∆i,j)

+ 2ai,jci,j(∆i,j − F t
i,j)
]
,
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ξ3 = ξ5 + 6ci,j
[
a2

i,j
(∆i,j − F t

i,j)

+ 2ai,jci,j(F t
i+1,j −∆i,j)

]
,

ξ4 = ξ5 + 2c2i,j
[
5ai,j(F t

i+1,j −∆i,j) + ai,jF
t
i+1,j

]
,

ξ5 = 2c2i,j
[
(ai,j + ci,j)(F t

i+1,j −∆i,j)

+ bi,j(F t
i+1,j −∆i,j)− ai,j(∆i,j − F t

i,j)
]
,

and
∑5

k=0(1 − ω)5−kωkξk > 0 if ξk > 0 for
k = 0, . . ., 5. Thus ξk > 0 if

bi,j>max
{

0,
ci,j(F t

i+1,j −∆i,j)
(∆i,j − F t

i,j)
,
ai,j(∆i,j − F t

i,j)
(F t

i+1,j −∆i,j)

}
or equivalently, for some ri,j > 0,

bi,j = ri,j + max
{

0,
ci,j(F t

i+1,j −∆i,j)
(∆i,j − F t

i,j)
,

ai,j(∆i,j − F t
i,j)

(F t
i+1,j −∆i,j)

}
. (11)

Similarly, the boundary curve R(t, uj+1) is convex, if
R′′(t, uj+1) > 0, i.e.,

R′′(t, uj+1) =
∑5

k=0(1− ω)5−kωkζk
hi(s2(ω))3

> 0 (12)

with

ζ0 = 2a2
i,j+1

[
(ai,j+1 + ci,j+1)(∆i,j+1 − F t

i,j+1)

+ bi,j+1(∆i,j+1 − F t
i,j+1)

− ci,j+1(F t
i+1,j+1 −∆i,j+1)

]
,

ζ1 = ζ0 + 2a2
i,j+1

[
5ci,j+1(∆i,j+1 − F t

i,j+1)

+ ci,j+1F
t
i,j+1

]
,

ζ2 = ζ0 + 6ai,j+1

[
c2

i,j+1
(F t

i+1,j+1 −∆i,j+1)

+ 2ai,j+1ci,j+1(∆i,j+1 − F t
i,j+1)

]
,

ζ3 = ζ5 + 6ci,j+1

[
a2

i,j+1
(∆i,j+1 − F t

i,j+1)

+ 2ai,j+1ci,j+1(F t
i+1,j+1 −∆i,j+1)

]
,

ζ4 = ζ5 + 2c2i,j+1

[
5ai,j+1(F t

i+1,j+1 −∆i,j+1)

+ ai,j+1F
t
i+1,j+1

]
,

ζ5 = 2c2i,j+1

[
(ai,j+1 + ci,j+1)(F t

i+1,j+1 −∆i,j+1)

+ bi,j+1(F t
i+1,j+1 −∆i,j+1)

− ai,j+1(∆i,j+1 − F t
i,j+1)

]
,

and
∑5

k=0(1 − ω)5−kωkζk > 0, if ζk > 0 for
k = 0, . . ., 5. Thus ζk > 0 if

bi,j+1 > max
{

0,
ci,j+1(F t

i+1,j+1 −∆i,j+1)
(∆i,j+1 − F t

i,j+1)
,

ai,j+1(∆i,j+1 − F t
i,j+1)

(F t
i+1,j+1 −∆i,j+1)

}
,

or equivalently, for some si,j > 0,

bi,j+1 = si,j + max
{

0,
ci,j+1(F t

i+1,j+1 −∆i,j+1)
(∆i,j+1 − F t

i,j+1)
,

ai,j+1(∆i,j+1 − F t
i,j+1)

(F t
i+1,j+1 −∆i,j+1)

}
(13)

Similarly, the boundary curve R(ti, u) is convex, if
R′′(ti, u) > 0, i.e.,

R′′(ti, u) =
∑5

k=0(1−ψ)5−kψkλk

ĥj(s3(ψ))3
> 0 (14)

with

λ0 = 2â2
i,j

[
(âi,j + ĉi,j)(∆̂i,j − Fu

i,j)

+ b̂i,j(∆̂i,j − Fu
i,j)− ĉi,j(Fu

i,j+1 − ∆̂i,j)
]
,

λ1 = λ0 + 2â2
i,j

[
5ĉi,j(∆̂i,j − Fu

i,j) + ĉi,jF
u
i,j

]
,

λ2 = λ0 + 6âi,j

[
ĉ2

i,j
(Fu

i,j+1 − ∆̂i,j)

+ 2âi,j ĉi,j(∆̂i,j − Fu
i,j)
]
,

λ3 = λ5 + 6ĉi,j
[
â2

i,j
(∆̂i,j − Fu

i,j)

+ 2âi,j ĉi,j(Fu
i,j+1 − ∆̂i,j)

]
,

λ4 = λ5 + 2ĉ2i,j
[
5âi,j(Fu

i,j+1 − ∆̂i,j) + âi,jF
u
i,j+1

]
,

λ5 = 2ĉ2i,j
[
(âi,j + ĉi,j)(Fu

i,j+1 − ∆̂i,j)

+ b̂i,j(Fu
i,j+1 − ∆̂i,j)− âi,j(∆̂i,j − Fu

i,j)
]
,

and
∑5

k=0(1 − ψ)5−kψkλk > 0, if λk > 0 for
k = 0, . . ., 5. Thus λk > 0 if

b̂i,j > max
{

0,
ĉi,j(Fu

i,j+1 − ∆̂i,j)

(∆̂i,j − Fu
i,j)

,

âi,j(∆̂i,j − Fu
i,j)

(Fu
i,j+1 − ∆̂i,j)

}
,
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or equivalently, for some r̂i,j > 0,

b̂i,j = r̂i,j + max
{

0,
ĉi,j(Fu

i,j+1 − ∆̂i,j)

(∆̂i,j − Fu
i,j)

,

âi,j(∆̂i,j − Fu
i,j)

(Fu
i,j+1 − ∆̂i,j)

}
. (15)

Finally, the boundary curve R(ti+1, u) is convex, if
R′′(ti+1, u) > 0, i.e.,

R′′(ti+1, u) =
∑5

k=0(1−ψ)5−kψkµk

ĥj(s4(ψ))3
> 0 (16)

with

µ0 = 2â2
i+1,j

[
(âi+1,j + ĉi+1,j)(∆̂i+1,j − Fu

i+1,j)

+ b̂i+1,j(∆̂i+1,j − Fu
i+1,j)

− ĉi+1,j(Fu
i+1,j+1 − ∆̂i+1,j)

]
,

µ1 = µ0 + 2â2
i+1,j

[
(5ĉi+1,j(∆̂i+1,j − Fu

i+1,j)

+ ĉi+1,jF
u
i+1,j)

]
,

µ2 = µ0 + 6âi+1,j

[
ĉ2

i+1,j
(Fu

i+1,j+1 − ∆̂i+1,j)

+ 2âi+1,j ĉi+1,j(∆̂i+1,j − Fu
i+1,j)

]
,

µ3 = µ5 + 6ĉi+1,j

[
â2

i+1,j
(∆̂i+1,j − Fu

i+1,j)

+ 2âi+1,j ĉi+1,j(Fu
i+1,j+1 − ∆̂i+1,j)

]
,

µ4 = µ5 + 2ĉ2i+1,j

[
5âi+1,j(Fu

i+1,j+1 − ∆̂i+1,j)

+ âi+1,jF
u
i+1,j+1

]
,

µ5 = 2ĉ2i+1,j

[
(âi+1,j + ĉi+1,j)(Fu

i+1,j+1 − ∆̂i+1,j)

+ b̂i+1,j(Fu
i+1,j+1 − ∆̂i+1,j)

− âi+1,j(∆̂i+1,j − Fu
i+1,j)

]
,

and
∑5

k=0(1 − ψ)5−kψkµk > 0, if µk > 0 for
k = 0, . . ., 5. Thus µk > 0 if, for some ŝi,j > 0,

b̂i+1,j = ŝi,j+max
{

0,
ĉi+1,j(Fu

i+1,j+1 − ∆̂i+1,j)

(∆̂i+1,j − Fu
i+1,j)

,

âi+1,j(∆̂i+1,j − Fu
i+1,j)

(Fu
i+1,j+1 − ∆̂i+1,j)

}
. (17)

Theorem 2 The rational bi-cubic blended function
(3) conserves the convexity of surfaces through 3D
convex data, if in each rectangular patch [ti, ti+1] ×

Table 2 A 3D convex data generated from function (18).

t/u −4 −1.5 0 1.5 4

−4 −7.98 −5.47 −3.96 −2.39 1.01
−1.5 −5.27 −2.72 −1.05 1.22 14.90
0 −2.98 −0.27 2 6.98 59.59
1.5 2.06 5.48 10.46 27.56 254.67
4 55.59 69.28 113.2 304.79 3043.6

[uj , uj+1], i = 0, 1, 2, . . ., n−1, j = 0, 1, 2, . . .,m−1,
the shape parameters are satisfying (11), (13), (15),
and (17).

Proof : The result follows immediately from the above
discussion. 2

Algorithm 1
(i) Given a 3D convex data set

{
(ti, uj , Fi,j), i =

0, 1, 2, . . ., n; j = 0, 1, 2, . . .,m
}

.
(ii) Approximate the partial derivatives F t

i,j , Fu
i,j ,

i = 0, 1, 2, . . ., n, j = 0, 1, 2, . . .,m at given data
points using arithmetic mean method for 3D data
proposed in Ref. 3.

(iii) Choose any positive value for free shape pa-
rameters ai,j , ai,j+1, âi,j , âi+1,j , ci,j , ci,j+1,
ĉi,j , ĉi+1,j and calculate the values of constrained
shape parameters bi,j , bi,j+1, b̂i,j , b̂i+1,j using
Theorem 2.

(iv) Calculate the rational boundaries R(t, uj),
R(t, uj+1), R(ti, u) and R(ti+1, u) defined in
equation (4)–(7) for the rectangular patches.

(v) Put all calculated values from (i), (ii), (iii), and
(iv) in the rational bi-cubic blended function (3)
to conserve the inherited shape characteristic of
3D convex data.

DEMONSTRATION

This section deals to examples for demonstration of
the developed convex surface scheme for 3D convex
data.

Example 2 The 3D convex data set taken in Table 2
is produced from the following function

F (t, u) = t+ u+ et + et+u (18)

Fig. 5 is produced using bi-cubic Hermite spline
Ref. 15 that does not conserve the convex surface. To
remove this flaw, Fig. 6 depicts the convex surface
everywhere in the domain using developed rational
bi-cubic blended interpolant with shape parameters
ai,j = âi,j = ci,j = ĉi,j = 0.25.
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Fig. 5 Bi-cubic Hermite spline surface, and xz-view.
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Fig. 6 Convex surface generated by developed rational bi-
cubic blended spline function with ri,j = r̂i,j = si,j =

ŝi,j = 0.01, and xz-view.

Table 3 A 3D convex data generated from function (19).

t/u 2 4 6 10 12

2 101.47 100.78 100.38 99.86 99.68
4 1443.1 1442.4 1442.0 1441.5 1441.3
6 7689.6 7688.9 7688.5 7688.0 7687.8
10 1.16e5 1.16e5 1.16e5 1.16e5 1.16e5
12 5.91e5 5.91e5 5.91e5 5.91e5 5.91e5
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Fig. 7 Non convex surface generated by bi-cubic Hermite
spline, and xz-view.

Example 3 A 3D convex data set in Table 3 is taken
from following mathematical function

F (t, u) = 3 et + 5t4 − log u (19)

Fig. 7 can be drawn using bi-cubic Hermite spline
Ref. 15. It depicts non-convex surface at some knots.
On other hand, Fig. 8 can be produced using devel-
oped convex rational bi-cubic blended scheme. It
conserves the convexity everywhere in the domain
with values of shape parameters ai,j = âi,j = ci,j =
ĉi,j = 0.6.

Example 4 A 3D convex data set in Table 4 is taken
from following mathematical function Ref. 3

F (t, u) = t4 + u4 (20)

Fig. 9 can be drawn using bi-cubic Hermite spline
Ref. 15. It depicts non-convexity preserving surface at
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Fig. 8 Convex surface produced by proposed rational bi-
cubic blended spline function with ri,j = r̂i,j = si,j =

ŝi,j = 0.1, and xz-view.

Table 4 A 3D convex data set.
t/u −4 −2 0 2 4

−4 512 272 256 272 512
−2 272 32 16 32 272
0 256 16 0 16 256
2 272 32 16 32 272
4 512 272 256 272 512

some knots. On other hand, Fig. 10 can be produced
using developed convex rational bi-cubic blended
scheme. It preserves the convexity everywhere in the
domain with values of shape parameters ai,j = âi,j =
ci,j = ĉi,j = 0.5.

CONCLUSIONS

In this paper, we have extended a C1 piecewise
rational cubic function2 to rational bi-cubic blended
function to conserve the convexity preserving of sur-
faces through 3D convex data. The proposed scheme
is suitable for such problems in which only data points
are given, in contrast the schemes13, 14 imposed a set
of constraints on derivatives and data points, to obtain
the convexity preserving surfaces. The developed sur-
face scheme has been demonstrated through several
numerical examples and observed that the scheme
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Fig. 9 Non convexity-preserving surface using bi-cubic
Hermite spline, and xz-view.
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Fig. 10 Convexity-preserving surface using rational bi-
cubic blended spline function with ri,j = r̂i,j = si,j =

ŝi,j = 0.001, and xz-view.
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is not only local and computationally economical
but also visually pleasant as compared to existing
schemes3, 4. The proposed surface scheme is unique
in its representation and it works well for both uniform
and non-uniform space data.

Acknowledgements: We received valuable comments
and suggestions from anonymous reviewers to improve
this manuscript. The authors are grateful to the financial
support from the School of Mathematical Sciences, Uni-
versiti Sains Malaysia under the FRGS Grant No. 203/P-
MATHS/6711324.

REFERENCES

1. Kuijt F (1998) Convexity preserving interpolation-
stationary nonlinear subdivision and splines. PhD the-
sis, Univ of Twente, Enschede, The Netherlands.

2. Abbas M, Majid AA, Ali JM (2014) Local convexity-
preserving C2 rational cubic spline for convex data. Sci
World J 2014, 391568.

3. Abbas M, Majid AA, Awang MNH, Ali JM (2012)
Local convexity shape-preserving surface data visual-
ization by spline function. Br J Math Comput Sci 2,
72–93.

4. Hussain MZ, Sarfraz M, Shakeel A (2011) Shape-
preserving surfaces for the visualization of positive and
convex data using rational bi-quadratic splines. Int J
Comput Appl 27, 12–20.

5. Roulier JA (1987) A convexity preserving grid refine-
ment algorithm for interpolation of bivariate functions.
IEEE Comput Graph Appl 7, 57–62.

6. McAllister DF, Roulier JA (1981) An algorithm for
computing a shape-preserving oscillatory quadratic
spline. ACM Trans Math Software 7, 331–47.

7. Schumaker LL (1983) On shape-preserving quadratic
spline interpolation. SIAM J Numer Anal 20, 854–64.

8. Brodlie KW, Butt S (1991) Preserving convexity us-
ing piecewise cubic interpolation. Comput Graph 15,
15–23.

9. Costantini P (1986) On monotone and convex spline
interpolation. Math Comput 46, 203–14.

10. Costantini P, Fontanella F (1990) Shape-preserving bi-
variate interpolation. SIAM J Numer Anal 27, 488–506.

11. Casciola G, Romani L (2002) Rational interpolants
with tension parameters. In: Lyche T, Mazure M,
Schumaker LL (eds) Proceedings of Curve and Surface
Design, Saint-Malo, Nashboro Press, Brentwood, TN,
pp 41–50.

12. Carnicer JM, Garcı́a-Esnaola M, Peña JM (1996) Con-
vexity of rational curves and total positivity. J Comput
Appl Math 71, 365–82.

13. Dodd SL, McAllister DF, Roulier JA (1983) Shape-
preserving spline interpolation for specifying bivariate
functions on grids. IEEE Comput Graph Appl 3, 70–9.

14. Floater MS (1994) A weak condition for the convexity
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