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ABSTRACT: In this paper, we will apply cubic B-splines on a uniform mesh to explore the numerical solutions and
numerical derivatives of a class of nonlinear second-order boundary value problems with two dependent variables. Our
new method is based on the cubic spline interpolation. The analytical solutions and any-order derivatives can be well
approximated with 4th order accuracy. Furthermore, our new method is also able to solve general nonlinear 4th-order
two-point boundary value problems. Numerical results show that our method is very practical and effective.
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INTRODUCTION

Nonlinear systems of second-order two-point bound-
ary value problems (2pBVPs) often arise in many
fields, such as physics, engineering, and biology. The
existence of solutions to these problems has been
studied1, 2. However, it is not easy to obtain their
analytical solutions. In fact, there are very few
effective numerical methods with high order accuracy
for these problems. There are only a few numerical
methods for solving the special nonlinear system of
second-order 2pBVPs

a0(x)u′′ + a1(x)u′ + a2(x)u+ a3(x)v′′

+ a4(x)v′ + a5(x)v+G1(x, u, v) = f1(x),

b0(x)v′′ + b1(x)v′ + b2(x)v+ b3(x)u′′

+ b4(x)u′ + b5(x)u+G2(x, u, v) = f2(x),

u(0) = u(1) = 0, v(0) = v(1) = 0, x ∈ [0, 1],


(1)

where ai(x) and bi(x)(i = 0, 1, . . . , 5) are contin-
uous, G1 and G2 are nonlinear functions of x, u,
and v. For example, the iterative reproducing ker-
nel method3, the variational iteration method4, the
Chebyshev finite difference method5, the sinc-collo-
cation method6, the homotopy perturbation method7,
and the non-polynomial spline method8 have been
studied for (1). In addition, a combined homotopy
perturbation and reproducing kernel method was also
given in Ref. 9 for a simpler nonlinear system, where
a0(x) = b0(x) = 1, a3(x) = a4(x) = a5(x) = 0, and
b3(x) = b4(x) = b5(x) = 0. Some others proposed

cubic B-spline methods. The method in Ref. 10 was
applicable to (1); the method in Ref. 11 was only
applicable to the linear case of (1), i.e., G1(x, u, v) =
G2(x, u, v) = 0; and the method in Ref. 12 was
applicable to a small generalized case of (1), i.e.,
only including a6(x)u′v′ and b6(x)u′v′ as additional
terms in the above system (1). We conclude that the
applications of these methods are all limited. On the
one hand, these methods are only applicable to a class
of simple nonlinear system of second-order 2pBVPs
(1); on the other hand, these methods do not provide
the approximation to the derivatives of u(x) and v(x).

In this paper, we will study an effective numerical
method for solving the general nonlinear system

u′′ = F (x, u, u′, v, v′), x ∈ [a, b]

v′′ = G(x, u, u′, v, v′), x ∈ [a, b]

u(a) = u0, u(b) = u1,

v(a) = v0, v(b) = v1,

 (2)

where F and G are two nonlinear functions of x, u,
u′, v, and v′. We use cubic B-splines on uniform parti-
tions over [a, b] to explore the numerical solutions and
their derivatives for (2). Our new cubic spline method
is an improvement over the above-mentioned methods
not only because it is valid for the general case (2)
but also because it is able to approximate the analytic
solutions and their any-order derivatives u(k)(x) and
v(k)(x)(k = 0, 1, 2, . . .) with O(h4) errors.

Our method is also able to solve general nonlinear
4th-order 2pBVPs numerically since these problems
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Table 1 The values of Bi(x), B′i(x), and B′′i (x) at the
knots.

xi−1 xi xi+1 else

Bi(x)
1
6

4
6

1
6

0
B′i(x) 1/2h 0 −1/2h 0
B′′i (x) 1/h2 −2/h2 1/h2 0

can be transformed into a nonlinear system of second-
order 2pBVPs. It is another important application of
our method because numerical analysis literature con-
tains little on the numerical methods for the general
nonlinear 4th-order 2pBVPs. 4th-order 2pBVPs often
arise in the mathematical modelling of viscoelastic
and inelastic flows, deformation of beams and plate
deflection theory (see Refs. 13, 14 and references
cited therein).

The method has the following main advantages.
(a) The method is applicable to general nonlinear
systems of second-order boundary value problems. It
is also powerful in solving general nonlinear 4th-order
boundary value problems. (b) The method is able to
provide any-order numerical derivatives in addition to
the numerical solution with 4th order accuracy.

The remainder of this paper is organized as fol-
lows. In the 2nd section, we give some preliminary
results of cubic B-spline interpolation; in the 3rd
section, we construct the O(h4) approximation M̃j

for y′′(xj) by using the proper linear combinations
of Mj . The new numerical method is described in
the 4th section, where a nonlinear system with the
coefficients of the B-splines as unknowns is studied.
The 5th section is devoted to numerical comparisons
and tests. Numerical results show that our method
is very powerful and effective in approximating the
numerical solutions and numerical derivatives of (2).
Finally, we conclude our paper in the last section.

PRELIMINARIES OF CUBIC SPLINE
INTERPOLATION

Divide I = [a, b] into n subintervals Ii =
[xi, xi+1](i = 0, 1, . . . , n−1) by the equidistant knots
xi = a+ ih(i = 0, 1, . . . , n), where h = (b− a)/n.
The cubic spline space over the uniform partition is
defined as follows:

S3(I) = {s(x) ∈ C2(I) |s(x)Ii| ∈ P3, i= 0, . . . , n−1},

where s(x)|Ii denotes the restriction of s(x) over Ii,
and P3 denotes the set of univariate cubic polynomi-
als. S3(I) is a linear space and its dimension is n+ 3.
Extend I = [a, b] to Ĩ = [a − 3h, b + 3h] with the
equidistant knots xi = a+ih(i = −3,−2, . . . , n+3).

The typical cubic B-spline Bi(x)(i = −1, 0, . . . , n+
1) is defined as follows15:

Bi(x) =
1

6h3



(x− xi−2)3, x ∈ [xi−2, xi−1]
h3 + 3h2(x− xi−1)
+3h(x− xi−1)2

−3(x− xi−1)3, x ∈ [xi−1, xi]
h3 + 3h2(xi+1 − x)
+3h(xi+1 − x)2

−3(xi+1 − x)3, x ∈ [xi, xi+1]
(xi+2 − x)3, x ∈ [xi+1, xi+2]
0, otherwise.

Bi(x)(i = −1, 0, 1, . . . , n + 1) are linearly indepen-
dent. They form the basis splines of S3(I). The values
of B(k)

i (x)(i = −1, 0, 1, . . . , n+ 1; k = 0, 1, 2) at the
knots are given in Table 1.

For a given function y(x) (assuming it is suffi-
ciently smooth), there exists a unique cubic spline
s(x) =

∑n+1
i=−1 ciBi(x) ∈ S3(I) satisfying the inter-

polation conditions

s(xi) = y(xi), (i = 0, 1, . . . , n)

s′(a) = y′(a), s′(b) = y′(b).

For j = 0, 1, . . . , n, let sj = s(xj), mj = s′(xj),
and Mj = s′′(xj). Since s(x) =

∑n+1
i=−1 ciBi(x), by

Table 1, we have

yj = s(xj) =

n+1∑
i=−1

ciBi(xj) =
cj−1 + 4cj + cj+1

6
,

(3)

mj = s′(xj) =
n+1∑
i=−1

ciB
′
i(xj) =

cj+1 − cj−1

2h
, (4)

Mj = s′′(xj) =

n+1∑
i=−1

ciB
′′
i (xj) =

cj−1 − 2cj + cj+1

h2
.

(5)
Moreover, in Ref. 16, we have

mj = s′(xj) = y′(xj)− 1
180h

4y(5)(xj)+O(h6), (6)

Mj = s′′(xj)

= y′′(xj)− 1
12h

2y(4)(xj) + 1
360h

4y(6)(xj)

+O(h6). (7)

Hence, from (6) and (7), we have

‖mj − y′(xj)‖∞ = max
06j6n

|mj − y′(xj)| = O(h4),

(8)
while ‖Mj − y′′(xj)‖∞ = O(h2).
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THE O(h4) APPROXIMATION TO y′′(x) AT
THE KNOTS

For j = 1, 2, . . . , n − 1, we will use Mj(j =
0, 1, . . . , n) to get a new O(h4) approximation to
y′′(xj). By (7), expanding Mj−1 at xj , we have

Mj−1 = y′′(xj−1)− 1
12h

2y(4)(xj−1)

+ 1
360h

4y(6)(xj−1) +O(h6)

= y′′(xj)− hy′′′(xj) + 5
12h

2y(4)(xj)

− 1
12h

3y(5)(xj) +O(h4).

Similarly, expanding Mj+1 at xj , we have

Mj+1 = y′′(xj) + hy′′′(xj) + 5
12h

2y(4)(xj)

+ 1
12h

3y(5)(xj) +O(h4).

Choosing three parameters A, B and C so that the
error order of M̃j = AMj +BMj−1 +CMj+1 is as
high as possible, we have

A+B +C = 1,

−B +C = 0,

−A+ 5B + 5C = 0.

Hence A = 10
12 , B = C = 1

12 . So M̃j = y′′(xj) +
O(h4). By (5), we have

M̃j =
Mj−1 + 10Mj +Mj+1

12

=
cj−2 + 8cj−1 − 18cj + 8cj+1 + cj+2

12h2
. (9)

Next we will give the O(h4) approximation to
y′′(x0) and y′′(xn). Unlike the inner knots case, we
must use four neighbouring values, i.e., M0, M1, M2

and M3, to approximate y′′(x0). If not, the error will
be lower than O(h4). Similarly, expanding M1, M2

and M3 at x0, we have

M1 = y′′(x0) + hy′′′(x0) + 5
12h

2y(4)(x0)

+ 1
12h

3y(5)(x0) +O(h4),

M2 = y′′(x0) + 2hy′′′(x0) + 23
12h

2y(4)(x0)

+ 7
6h

3y(5)(x0) +O(h4),

M3 = y′′(x0) + 3hy′′′(x0) + 53
12h

2y(4)(x0)

+ 17
4 h

3y(5)(x0) +O(h4).

Choosing four parameters A, B, C, and D so that the
error order of M̃0 = AM0 +BM1 +CM2 +DM3 is

as high as possible, we have

A+B +C +D = 1,

B + 2C + 3D = 0

−A+ 5B + 23C + 53D = 0,

B + 14C + 51D = 0,

and we get A = 7
6 , B = − 5

12 , C = 1
3 , and D = − 1

12 .
By (5), we get

M̃0 =
14M0 − 5M1 + 4M2 −M3

12

=
14c−1 − 33c0 + 28c1 − 14c2 + 6c3 − c4

12h2

is an O(h4) approximation to y′′(x0). By symmetry,
we have

M̃n =
14Mn − 5Mn−1 + 4Mn−2 −Mn−3

12

=
1

12h2
(−cn−4 + 6cn−3 − 14cn−2

+ 28cn−1 − 33cn + 14cn+1)

is an O(h4) approximation to y′′(xn).

THE NUMERICAL METHOD

In this section, we give the cubic B-spline method
for (2). Let u(x) =

∑n+1
i=−1 ciBi(x) and v(x) =∑n+1

i=−1 diBi(x) be the cubic spline solution of (2).
Discretizing (2) at the inner knots (j = 1, 2, . . . , n−
1), we get

u′′(xj) = F (xj , u(xj), u
′(xj), v(xj), v

′(xj)),

v′′(xj) = G(xj , u(xj), u
′(xj), v(xj), v

′(xj)).

By (3), (4) and (9), we have

cj−2 + 8cj−1 − 18cj + 8cj+1 + cj+2

12h2

= F

(
xj ,

cj−1 + 4cj + cj+1

6
,
cj+1 − cj−1

2h
,

dj−1 + 4dj + dj+1

6
,
dj+1 − dj−1

2h

)
, (10)

dj−2 + 8dj−1 − 18dj + 8dj+1 + dj+2

12h2

= G

(
xj ,

cj−1 + 4cj + cj+1

6
,
cj+1 − cj−1

2h
,

dj−1 + 4dj + dj+1

6
,
dj+1 − dj−1

2h

)
, (11)
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where O(h4) terms are all dropped. We still need
8 equations, which are obtained from the boundary
conditions

u(a) = u0, v(a) = v0,

u′′(a) = F (a, u0, u
′(a), v0, v

′(a)),

v′′(a) = G(a, u0, u
′(a), v0, v

′(a)),

u′′(b) = F (b, u1, u
′(b), v1, v

′(b)),

v′′(b) = G(b, u1, u
′(b), v1, v

′(b)),

u(b) = u1, v(b) = v1.

We have
c−1 + 4c0 + c1

6
= u0, (12)

d−1 + 4d0 + d1

6
= v0,

cn−1 + 4cn + cn+1

6
= u1,

dn−1 + 4dn + dn+1

6
= v1,

and

14c−1 − 33c0 + 28c1 − 14c2 + 6c3 − c4
12h2

= F

(
a, u0,

−c−1 + c1
2h

, v0,
−d−1 + d1

2h

)
, (13)

14d−1 − 33d0 + 28d1 − 14d2 + 6d3 − d4

12h2

= G

(
a, u0,

−c−1 + c1
2h

, v0,
−d−1 + d1

2h

)
, (14)

1

12h2
(−cn−4 + 6cn−3 − 14cn−2

+ 28cn−1 − 33cn + 14cn+1)

= F

(
b, u1,

−cn−1 + cn+1

2h
,

v1,
−dn−1 + dn+1

2h

)
, (15)

1

12h2
(−dn−4 + 6dn−3 − 14dn−2

+ 28dn−1 − 33dn + 14dn+1)

= G

(
b, u1,

−cn−1 + cn+1

2h
,

v1,
−dn−1 + dn+1

2h

)
. (16)

(10), (11) and (12)–(16) give us 2n + 6 nonlinear
equations with cj and dj (j = −1, 0, . . . , n + 1) as
unknowns. After solving the nonlinear system, we
get the coefficients of u(x) =

∑n+1
i=−1 ciBi(x) and

v(x) =
∑n+1
i=−1 diBi(x).

These techniques are also valid for

u′′ = F (x, u, u′, v, v′), x ∈ [a, b]

v′′ = G(x, u, u′, v, v′), x ∈ [a, b]

α1u(a) + β1u
′(a) + γ1v(a) + δ1v

′(a) = θ1

α2u(a) + β2u
′(a) + γ2v(a) + δ2v

′(a) = θ2

α3u(b) + β3u
′(b) + γ3v(b) + δ3v

′(b) = θ3

α4u(b) + β4u
′(b) + γ4v(b) + δ4v

′(b) = θ4.

The process is similar. Only the last eight boundary-
condition equations are different.

In the following, we give some remarks on the
numerical treatments of (2). By (3), we use uj =
1
6 (cj−1+4cj+cj+1) and vj = 1

6 (dj−1+4dj+dj+1) to
approximate u(xj) and v(xj), where j = 0, 1, . . . , n.
The errors are O(h4).

By (4), (6) and (8), we use u′j = (cj+1−cj−1)/2h
and v′j = (dj+1 − dj−1)/2h to approximate u′(xj)
and v′(xj), and the errors are O(h4), where j =
0, 1, . . . , n.

For j = 1, 2, . . . , n − 1, by (2), (10) and (11),
we use u′′j = (cj−2 + 8cj−1 − 18cj + 8cj+1 +

cj+2)/12h2 or u′′j = F (xj , uj , u
′
j , vj , v

′
j) and v′′j =

(dj−2 + 8dj−1 − 18dj + 8dj+1 + dj+2)/12h2 or
v′′j = G(xj , uj , u

′
j , vj , v

′
j) to approximate u′′(xj) and

v′′(xj). Similarly, we use the representations in the
left side or the right side of (13)–(16) to approximate
u′′(a), v′′(a) and u′′(b), v′′(b). Based on the previous
analysis, all the errors are O(h4).

From (2), differentiating u′′ = F , we have

u′′′ = F ′1 + F ′2u
′ + F ′3u

′′ + F ′4v
′ + F ′5v

′′

= F ′1 + F ′2u
′ + F ′3F + F ′4v

′ + F ′5G

:= Φ(x, u, u′, v, v′),

which shows that u′′′ is a multivariate func-
tion of x, u, u′, v, and v′. We can use
u′′′j = Φ(xj , uj , u

′
j , vj , v

′
j) to approximate u′′′(xj) =

Φ(xj , u(xj), u
′(xj), v(xj), v

′(xj)). Since uj , u′j , vj
and v′j possess O(h4) errors to u(xj), u′(xj), v(xj)
and v′(xj), we see that u′′′j = Φ(xj , uj , u

′
j , vj , v

′
j)

also possesses O(h4) errors to u′′′(xj) by the mul-
tivariate Taylor’s formula. The approximation to
v′′′(xj) is similar.

In fact, for any integer k > 4, by repeatedly
differentiating u′′′(x), v′′′(x) and using (2), it is easy
to observe that u(k)(x) and v(k)(x) are two nonlinear
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functions of x, u, u′ and v, v′. In a similar manner, we
can get the approximation to u(k)(xj) and v(k)(xj)
with O(h4) errors.

The above items are all related to numerical ap-
proximation at the knots. Finally, we point out how
to approximate u(k)(x̄), where x̄ ∈ (xj , xj+1) is not a
knot. By Taylor’s formula, we have

u(k)(x̄) = u(k)(xj) + u(k+1)(xj)(x̄− xj)
+ 1

2u
(k+2)(xj)(x̄− xj)2

+ 1
6u

(k+3)(xj)(x̄− xj)3

+ 1
24u

(k+2)(ξj)(x̄− xj)4.

To get an O(h4) error, we use

u
(k)
x̄ = u

(k)
j + u

(k+1)
j (x̄− xj)

+ 1
2u

(k+2)
j (x̄− xj)2 + 1

6u
(k+3)
j (x̄− xj)3

to approximate u(k)(x̄). v(k)(x̄) can be approximated
similarly. These techniques can also be applied simi-
larly to the nonlinear system of second-order 2pBVPs
which involve three or more unknown functions.

There are many methods for the solving the sim-
ple linear 4th-order 2pBVP

y(4)(x) = p(x)y(x) + q(x)

y(a) = ya, y(b) = yb,

y′′(a) = y′′a , y′′(b) = y′′b .

However, there are very few effective methods for the
following nonlinear 4th-order 2pBVP:

y(4)(x) = G(x, y(x), y′(x), y′′(x), y′′′(x))

y(a) = ya, y(b) = yb,

y′′(a) = y′′a , y′′(b) = y′′b .

 (17)

In order to solve (17) by using the above method, we
first transform it into a nonlinear system of second-
order 2pBVPs,

u′′ = v, v′′ = G(x, u, u′, v, v′)

u(a) = u0 = ya, u(b) = u1 = yb

v(a) = v0 = y′′a , v(b) = v1 = y′′b ,

by u = y(x) and v = y′′(x). Let u(x) =

y(x) =
∑n+1
i=−1 ciBi(x) and v(x) = y′′(x) =∑n+1

i=−1 diBi(x). Then we get 2n + 6 equations by
(10), (11), and (12)–(16). Fortunately, (10), (13) and
(15) can be simplified to

cj−2 + 8cj−1 − 18cj + 8cj+1 + cj+2

12h2

=
dj−1 + 4dj + dj+1

6
,

14c−1 − 33c0 + 28c1 − 14c2 + 6c3 − c4
12h2

=
d−1 + 4d0 + d1

6
,

and

1

12h2
(−cn−4 + 6cn−3 − 14cn−2

+ 28cn−1 − 33cn + 14cn+1)

=
dn−1 + 4dn + dn+1

6
,

respectively.
Similarly, our method can also work well for

nonlinear sixth-order 2pBVPs, which are often arise
in hydromagnetics, hydrodynamics, stellar convection
dynamics17. We point out that many published meth-
ods are only valid for simple and linear sixth-order
2pBVPs.

NUMERICAL TESTS

First, we compare our method with other methods
with two examples in the form of (1). Numerical
comparisons are performed by MATLAB.

Example 1 Consider the nonlinear system of second-
order 2pBVPs

u′′ + xu′ + 2xv+ xu2 = −2 + x2 + x5 − 2x4

+ 2x sinπx,

v′ + v+ x2u+ sinxv2 = x3 − x4 + π cosπx

+ sinπx+ sinx(sinπx)2,

u(0) = u(1) = 0, v(0) = v(1) = 0,

where the exact solutions are u(x) = x − x2 and
v(x) = sinπx, x ∈ [0, 1]. This example has been
studied by the iterative reproducing kernel method3,
the sinc-collocation method6, and the combined ho-
motopy perturbation and reproducing kernel method9.

See Table 2 and Table 3 for the respective abso-
lute errors at the same selected points. Our errors are
obtained by the new cubic spline method with n = 25.
Our results are clearly better than the others.

Example 2 Consider the nonlinear system of second-
order 2pBVPs

u′′ + (2x− 1)u′ + cosπxv′ = f(x),

v′′ + xu = 2 + x sinπx,

u(0) = u(1) = 0, v(0) = v(1) = 0,

where f(x) = (2x−1)(π+1) cosπx−π2 sinπx and
the exact solutions are u(x) = sinπx and v(x) = x2−
x, x ∈ [0, 1].
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Table 2 The absolute errors of u(x) for Example 1.

xi E(u) E(u) Ref. 3 E(u) Ref. 6 E(u) Ref. 9

0.08 2.2× 10−8 5.0× 10−4 1.4× 10−4 2.0× 10−5

0.24 6.2× 10−8 1.4× 10−3 4.4× 10−5 5.7× 10−5

0.40 8.9× 10−8 2.1× 10−3 6.7× 10−5 8.6× 10−5

0.56 9.1× 10−8 2.2× 10−3 9.3× 10−5 9.8× 10−5

0.72 6.5× 10−8 1.8× 10−3 4.9× 10−5 9.4× 10−5

0.88 2.5× 10−8 9.0× 10−4 8.6× 10−5 6.5× 10−5

0.96 6.4× 10−9 3.0× 10−4 7.1× 10−5 1.4× 10−5

Table 3 The absolute errors of v(x) for Example 1.

xi E(v) E(v) Ref. 3 E(v) Ref. 6 E(v) Ref. 9

0.08 2.9× 10−7 2.0× 10−3 2.4× 10−4 1.1× 10−4

0.24 7.0× 10−7 5.6× 10−3 2.3× 10−3 3.3× 10−4

0.40 7.4× 10−7 7.9× 10−3 8.9× 10−4 4.6× 10−4

0.56 4.0× 10−7 8.2× 10−3 1.4× 10−3 4.8× 10−4

0.72 1.7× 10−7 6.5× 10−3 3.1× 10−3 3.8× 10−4

0.88 8.3× 10−7 3.1× 10−3 1.6× 10−3 2.9× 10−4

0.96 1.1× 10−6 1.0× 10−3 9.8× 10−4 6.2× 10−5

We compare our results with the cubic spline method
in Ref. 11 by this example. See Table 4 for the
respective maximum absolute errors of u(x) and v(x),
where

E[u, n] = max
06i6n

|u(xi)− ui| ,

and E[v, n] is similarly defined. With the same step
h, our errors are less than 0.1% of the errors in
Ref. 11. Clearly, the new cubic spline method is more
powerful.

Next, we study two examples to show our new
cubic spline method is also very effective for the
general nonlinear system of 2nd-order 2pBVPs and
nonlinear 4th-order 2pBVPs, not only in approximat-
ing the analytic solutions but also in approximating
their any-order derivatives. All the errors are O(h4)
theoretically. To the best of our knowledge, currently,
it is rare to find another method to produce the same
numerical data with O(h4) errors.

Example 3 Consider the nonlinear system of second-

Table 4 The maximum absolute errors of u(x) and v(x) for
Example 2.

n E[u, n] E[u, n] 11 E[v, n] E[v, n] 11

20 1.3× 10−7 1.9× 10−3 6.2× 10−8 9.6× 10−5

40 8.0× 10−8 4.7× 10−4 3.9× 10−9 2.4× 10−5

60 1.6× 10−8 2.1× 10−4 7.8× 10−10 1.1× 10−5

Table 5 The maximum absolute errors and the error orders
of u(x) and v(x) for Example 3.

n 5 10 20 40

E[u, n] 1.3× 10−5 6.1× 10−7 3.2× 10−8 1.9× 10−9

O0(u) 4.51 4.42 4.25 4.10
E[v, n] 6.1× 10−6 3.7× 10−7 2.2× 10−8 1.1× 10−9

O0(v) 4.03 4.06 4.06 4.35
E[u′, n] 8.2× 10−6 3.3× 10−7 3.0× 10−8 4.1× 10−9

O1(u) 4.88 4.63 3.46 2.89
E[v′, n] 4.0× 10−6 1.6× 10−7 1.0× 10−8 9.6× 10−10

O1(v) 5.25 4.67 3.90 3.44
E[u′′, n] 1.5× 10−5 5.4× 10−7 3.3× 10−8 7.6× 10−9

O2(u) 4.77 4.82 4.00 2.13
E[v′′, n] 5.3× 10−6 3.6× 10−7 2.5× 10−8 2.2× 10−9

O2(v) 3.99 3.89 3.87 3.53
E[u′′′, n] 5.9× 10−5 2.0× 10−6 1.3× 10−7 1.9× 10−8

O3(u) 5.11 4.88 3.90 2.83
E[v′′′, n] 4.7× 10−5 2.6× 10−6 1.4× 10−7 7.0× 10−9

O3(v) 3.97 4.17 4.25 4.28

order 2pBVPs

u′′ = u′v+ 2 ln v+ (sinx)v+ u− 2 cosx+ 2x− 1,

v′′ = u′(v′)2 + (sinx)v2 + uv− e−x cosx− 1,

u(0)− 2u′(0) + v(0) + v′(0) = 0,

− u(0) + u′(0)− v(0) + 3v′(0) = −5,

u(1)− u′(1) + 2v(1) + 2v′(1) = cos 1 + sin 1,

u(1)− 3u′(1) + 2 e2v(1) = cos 1 + 3 sin 1,

where the exact solutions are u(x) = ex + cosx and
v(x) = e−x.

See Table 5 for the maximum absolute errors
E[u(µ), n], E[v(µ), n] and error orders Oµ(u), Oµ(v),
where

E[u(µ), n] = max
06i6n

∣∣∣u(µ)(xi)− u(µ)
i

∣∣∣ ,
Oµ(u) := Oµ(u, n1 → n2)

=
ln(E[u(µ), n1]/E[u(µ), n2])

ln(n2/n1)
.

E[v(µ), n] and Oµ(v) are similarly defined. It is easy
to show that all the maximum absolute errors decrease
by about 1

16 when the partition is refined by 1
2 step by

step. Theoretically, Oµ should be 4. Here, they are
influenced more or less by the unavoidable computer
round-off errors.

Example 4 Consider the nonlinear 4th-order 2pBVP

y(4)(x) = e−x(y′(x))2 − x2y(x)

+ ex(12 + 8x− 3x2 − 4x3),

y(0) = 0, y(1) = e,

y′′(0) = 2, y′′(1) = 7 e
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Table 6 The maximum absolute errors and the error orders
of y(µ)(x) for Example 4.

n 20 40 80 160

E[y, n] 4.6× 10−8 3.2× 10−9 2.0× 10−10 9.9× 10−12

O0(y) 3.37 3.87 3.96 4.36
E[y′, n] 3.1× 10−6 2.0× 10−7 1.3× 10−8 7.9× 10−10

O1(y) 3.93 3.96 3.98 4.01
E[y′′, n] 8.3× 10−7 5.3× 10−8 3.3× 10−9 2.4× 10−10

O2(y) 3.95 3.99 4.00 3.79
E[y′′′, n] 9.6× 10−6 6.3× 10−7 4.1× 10−8 2.6× 10−9

O3(y) 3.84 3.92 3.96 3.96

E[y(4), n] 1.8× 10−5 1.2× 10−6 7.5× 10−8 4.7× 10−9

O4(y) 3.83 3.91 3.95 4.00

E[y(5), n] 2.0× 10−5 1.4× 10−6 8.7× 10−8 5.5× 10−9

O5(y) 3.85 3.91 3.95 4.00

where the exact solution is y(x) = x2 ex.

See Table 6 for the maximum absolute errors and the
error orders of y(µ)(x). The numerical results are
very good. Hence our method is also effective for a
nonlinear 4th-order 2pBVP (17).
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