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ABSTRACT: Based on the Davidson-Fletcher-Powell (DFP) method which is a quasi-Newton method, an effective three-
term conjugate gradient method is constructed to solve large-scale unconstrained optimization problems. The method
possesses two attractive properties: (i) the famous Dai-Liao conjugate condition is satisfied and is independent of any
line search; (ii) the sufficient descent property always holds without any line search. The convergence analysis is established
under the general Wolfe line search. Numerical results show that the new method is effective and robust by comparing with
the SPRP, PRP, and CG-DESCENT methods for the given test problems.
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INTRODUCTION

In this paper, we consider the unconstrained optimiza-
tion problem

min f(x), (1)

x ∈ Rn, where f : Rn → R is a real-valued, con-
tinuously differentiable function. Due to low memory
requirements and strong local or global convergence
properties, the conjugate gradient method is usually
used to solve the problem (1). From an initial guess
x1 ∈ Rn, it generates a sequence {xk} using the
recurrence

xk+1 = xk + αkdk, (2)

where the step-size αk is obtained by a line search,
and the direction dk is generated by

d1 = −g1, dk+1 = −gk+1 + βkdk, (3)

for k > 1. Here gk = ∇f(xk), and βk is known as the
conjugate gradient parameter. Well-known instances
of βk are from Polak-Ribière-Polyak (PRP), Hestenes-
Stiefel (HS), and Hager-Zhang (HZ). They are defined
as follows:

βPRP
k =

gTk+1yk

‖gk‖2
, βHS

k =
gTk+1yk

dTk yk
,

βHZ
k =

(
yk − 2dk

‖yk‖2

dTk yk

)T
gk+1

dTk yk
.

The symbol ‖·‖ denotes the Euclidean norm and yk =
gk+1 − gk. The corresponding methods are called the
PRP1, 2, HS3, and HZ4 methods. If f is a strictly con-
vex quadratic function, these methods are equivalent
in the case that an exact line search is used. If f is
non-convex, their types of behaviour may be distinctly
different. In the past two decades, the convergence
properties of the PRP and HS methods have been
intensively studied by many researchers. Recently,
Hager and Zhang4 proved the global convergence of
the HZ method for strong convex functions with the
Wolfe line search and Goldstein line search. In order
to prove global convergence of the HZ method for
a general function, Hager and Zhang proposed the
following modified parameter:

βMHZ
k = max{βHZ

k , ηk},

where ηk = −1/(‖dk−1‖min{η, ‖gk−1‖}) and η >
0. The corresponding method is usually called the
CG-DESCENT method, which is one of the most
effective methods.

The three-term conjugate gradient method is an-
other important computational innovation to solve the
problem (1) which was first introduced by Beale. The
iterative scheme5 satisfies

dk+1 = −gk+1 + βkdk + γkdt,

γk =

{
0, t = k + 1,
gT
k+1yt

dT
t yt

, k > t+ 1,
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where dt is a restart direction. Subsequently, McGuire
and Wolfe6 and Powell7 did further research into the
Beale three-term conjugate gradient method and built
an efficient restart strategy and obtained good numer-
ical results. Nazareth8 proposed another new three-
term conjugate gradient method using the recurrence

dk+1 = −yk +
yTk yk
yTk dk

dk +
yTk−1yk

yTk−1dk−1
dk−1,

where d−1 = 0, d0 = 0. When f is a convex quadratic
function, the restart directions are conjugate subject to
the Hessian of f without any line search. In the same
content, Zhang, Zhou, and Li9 proposed a modified
PRP method with three-term structure:

dk = −gk +
gTk yk−1

‖gk−1‖2
dk−1 −

gTk dk−1

‖gk−1‖2
yk−1.

For simplicity, we call it the SPRP method. A
remarkable property is that its search direction dk
satisfies gTk dk = −‖gk‖2 for any k. Most recently,
Andrei10, 11 analysed three-term conjugate gradient
methods and proposed some new three-term conjugate
gradient methods which have some good properties.

In this paper, we still focus on the three-term con-
jugate gradient method. Based on the DFP method12,
we further propose a new three-term conjugate gradi-
ent method to solve unconstrained optimization prob-
lems. Under some suitable conditions, the global
convergence of the proposed method is established.

This paper is organized as follows. In the next
section, we propose our algorithm and prove its suf-
ficient descent property. Then global convergence
analysis is provided with the general Wolfe line
search. Finally, we perform numerical experiments by
using a set of large problems, and do some numerical
comparisons with the SPRP, PRP, and CG-DESCENT
methods.

THE NEW METHOD AND ITS SUFFICIENT
DESCENT PROPERTY

Firstly, we recall the DFP method12. The direction
dk+1 of the DFP method is defined as dk+1 =
−Hk+1gk+1 where Hk+1 is a positive definite matrix
and is obtained by the DFP formula

Hk+1 = Hk +
sks

T
k

yTk sk
− Hkyky

T
kHk

yTkHkyk
,

where sk = xk+1 − xk. If Hk ≡ I , the matrix Hk+1

is symmetric and satisfies the quasi-Newton equation,
i.e., Hk+1yk = sk. Then dk+1 can also be written as

dk+1 = −gk+1 − βksk + δkyk, (4)

where βk = sTk gk+1/s
T
k yk, δk = yTk gk+1/y

T
k yk.

From (4), we have dTk+1yk = −gTk+1sk without
any line search which satisfies the D-L conjugate
condition13, i.e., dTk+1yk 6 −cgTk+1sk(c > 0). If the
line search is exact, i.e., gTk+1sk = 0, then we have
the well-known conjugate condition dTk+1yk = 0.
This superior property motivates us to construct the
following new three-term conjugate gradient method.

Algorithm 1
Step 1: Data: x1 ∈ Rn, ε > 0. Set d1 = −g1. If
‖g1‖ 6 ε, stop.

Step 2: Compute αk by the general Wolfe line search
(0 < δ < σ1 < 1, σ2 > 0):

f(xk + αkdk) 6 f(xk) + δαkg
T
k dk, (5)

σ1g
T
k dk 6 g(xk + αkdk)Tdk 6 −σ2gTk dk. (6)

Step 3: Update xk+1 by (2). If ‖gk+1‖ 6 ε, stop.
Step 4: dk+1 is computed by (4).
Step 5: Set k = k + 1. Go to Step 2.

Lemma 1 Let the sequences {dk} and {gk} be gen-
erated by Algorithm 1. Then there exists a constant
u ∈ (0, 1) such that

gTk dk 6 −u ‖gk‖
2 ∀k > 1. (7)

Proof : This conclusion can be proved by induction.
Obviously, (7) holds for k = 1. Now we assume that
(7) is true for k > 1. Then gTk dk < 0. By (6), we have

dTk yk > d
T
k (gk+1 − gk) > (σ1 − 1)gTk dk〉0.

Multiplying (4) by gTk+1, we obtain

gTk+1dk+1 = −‖gk+1‖2−αk
(dTk gk+1)2

dTk yk
+

(yTk gk+1)2

yTk yk

6 −‖gk+1‖2 +
(yTk gk+1)2

yTk yk
. (8)

Using the inner product,

yTk gk+1 = ‖yk‖ ‖gk+1‖ cos(yk, gk+1)

where cos(a, b) is the cosine of the angle between a
and b. Obviously, if cos(yk, gk+1) = 0, we have

gTk+1dk+1 6 −‖gk+1‖2 .

If cos(yk, gk+1) 6= 0, then there always exists a
constant u ∈ (0, 1) such that

cos2(yk, gk+1) 6 1− u. (9)

Hence from (8) and (9), we show that

gTk+1dk+1 6 −‖gk+1‖2 + ‖gk+1‖2 cos2(yk, gk+1).

Clearly, (7) holds. �
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GLOBAL CONVERGENCE

In this section, we establish the global convergence
of Algorithm 1. In what follows, we assume that f
satisfies the following assumptions:
(i) the level set Ω = {x ∈ Rn | f(x) 6 f(x1)}

is bounded, i.e., there exists a positive constant
B > 0 such that ‖x‖ 6 B, for ∀x ∈ Ω.

(ii) in a neighbourhood V of Ω, f is continuously
differentiable, and its gradient g is Lipchitz con-
tinuous, i.e., there exists a constant L > 0 such
that

‖g(x)− g(y)‖ 6 L ‖x− y‖ ∀x, y ∈ V. (10)

These assumptions imply that there is a positive con-
stant γ > 0 such that

‖g(x)‖ 6 γ, ∀x ∈ Ω. (11)

The conclusion of the following lemma, often called
the Zoutendijk condition, is used to prove the global
convergence of conjugate gradient method. It was
originally given by Zoutendijk14 with the Wolfe line
search. When σ2 = +∞, the general Wolfe line
search reduces to the Wolfe line search. Since the
general Wolfe line search is a special case of the Wolfe
line search, we also obtain the Zoutendijk condition
with the general Wolfe line search.

Lemma 2 Suppose assumptions (i) and (ii) hold.
Consider any iteration (2) and (4), where dk satisfies
gTk dk < 0 for k ∈ N+ and αk satisfies the general
Wolfe line search. Then we obtain∑

k>1

(gTk dk)2/ ‖dk‖2 <∞. (12)

Lemma 3 Suppose assumptions (i) and (ii) hold. Let
the sequences {dk} and {gk} be generated by Algo-
rithm 1. Then there exists a positive constant M > 0
such that

‖dk‖ 6M ∀k > 1. (13)

Proof : From (6), we get

dTk yk > −cdTk gk,
∣∣dTk gk+1

∣∣ 6 σ ∣∣dTk gk∣∣ ,
where c = 1− σ1, and σ = min{σ1, σ2}.

Using (4), the Cauchy inequality, assumptions (i)
and (ii), and the above inequalities, we have

‖dk+1‖ 6 ‖gk+1‖+
∣∣∣∣sTk gk+1

dTk yk

∣∣∣∣ ‖dk‖+∣∣∣∣yTk gk+1

yTk yk

∣∣∣∣ ‖yk‖
6 ‖gk+1‖+

αkσ
∣∣dTk gk∣∣

c
∣∣dTk gk∣∣ · ‖dk‖+

‖yk‖2 · ‖gk+1‖
‖yk‖2

= 2 ‖gk+1‖+
σ ‖xk+1 − xk‖

c
6 2γ +

2σB

c
.

Since ‖d1‖ 6 ‖g1‖ 6 γ, and letting M = 2γ +
2σB/(1 − σ1), it is not difficult to show that (13)
holds. �

Theorem 1 Suppose that the assumptions (i) and (ii)
hold. Let the sequences {dk} and {gk} be generated
by Algorithm 1. Then we obtain

lim inf
k→+∞

‖gk‖ = 0. (14)

Proof : Suppose that (14) does not hold, i.e., there
exists a constant r > 0 such that

‖gk‖ > r, ∀k > 1. (15)

From (12), (7), and (15), we show that

u2r4
∑
k>1

1/ ‖dk‖2 6 u2
∑
k>1

‖gk‖4 / ‖dk‖2 < +∞,

which contradicts (13). Hence (14) holds. �

NUMERICAL EXPERIMENTS

In this section, we compare the performance of
the new method with those of the PRP, SPRP, and
CG-DESCENT methods with the general Wolfe line
search. The test problems are from the uncon-
strained optimization problems in the CUTE library15

along with other large-scale unconstrained optimiza-
tion problems16. We selected 31 large-scale problems
in extended or generalized forms. The parameters
values are: η = 0.01, σ1 = 0.1, and σ2 = 0.01.
The iterations were terminated when ‖gk‖2 6 10−6.
If this condition was not satisfied after 5000 iterations,
we declare failure.

All numerical results are listed in Tables 1 and 2.
All codes were written in FORTRAN 90 and run on
a PC with 2.0 GHz CPU and 512 MB memory and
Windows XP operating system.

We adopt the performance profiles of Dolan and
Moré17 to compare the new method with the PRP,
SPRP, and CG-DESCENT methods in the perfor-
mances of CPU time, respectively. However, some
CPU times are zero. Hence we take the average value
of the CPU time for methods 1 and 2 and denote these
by C̄1 and C̄2, respectively. The final CPU time for
problem i using method j is given by

FCPUi,j = Ci,j + 1
2 (C̄1 + C̄2)

where Ci,j denotes the CPU time of the ith test
problem using method j. Then we apply the Dolan
and Moré17 technique to compare these methods.
The performance profiles with respect to CPU time
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Table 1 Numerical results of the new, SPRP, PRP, and CG-DESCENT methods.

Problem Dim New SPRP PRP CG-DESCENT

Extended Freudenstein and Roth 5000 7/0.02 1424/3.75 14/0.00 1245/8.11
10 000 7/0.01 238/1.22 29/0.21 13/0.01

Extended Rosenbrock 5000 27/0.03 29/0.02 31/0.01 27/0.02
10 000 27/0.03 28/0.04 26/0.05 23/0.05

Extended White and Holst 5000 32/0.03 27/0.02 36/0.03 25/0.01
10 000 31/0.05 26/0.03 27/0.05 27/0.05

Extended Beale 5000 10/0.02 13/0.03 15/0.01 15/0.01
10 000 10/0.01 11/0.02 16/0.03 15/0.03

Extended Penalty 5000 259/1.56 10/0.01 189/1.19 75/0.41
10 000 10/0.02 36/0.13 21/0.08 16/0.03

Raydan 2 5000 4/0.02 4/0.02 4/0.02 4/0.02
10 000 4/0.03 4/0.03 4/0.03 4/0.01

Extended Tridiagonal 1 5000 16/0.02 11/0.02 16/0.03 21/0.02
10 000 12/0.01 7/0.01 13/0.05 24/0.03

Extended Three Expo Terms 5000 10/0.07 7/0.02 8/0.11 8/0.05
10 000 10/0.11 7/0.10 8/0.23 9/0.15

Diagonal 4 5000 4/0.00 4/0.00 4/0.00 4/0.00
10 000 4/0.00 7/0.02 4/0.02 4/0.02

Diagonal 5 5000 4/0.05 4/0.06 4/0.08 4/0.03
10 000 4/0.06 4/0.08 4/0.15 4/0.06

Dim: dimension of the test problem. The detailed numerical results are listed in the form NI/CPU, whee NI and CPU
denote the number of iterations and CPU time in seconds, respectively. New: the proposed method in this paper;
PRP: the famous PRP method 1, 2; SPRP: the three-term conjugate gradient method proposed by Zhang, Zhou, and Li 9;
CG-DESCENT: the most popular conjugate gradient method proposed by Hager and Zhang 4.
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Fig. 1 CPU time of methods. Dashed line: new method;
line with dots: PRP method.

means that for each method, we plot the fraction P of
problems for which the method is within a factor τ of
the best time. The top curve is the method that solved
the most problems in a time that was within a factor τ
of the best time.
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Fig. 2 CPU time of methods. Dashed line: new method;
line with dots: SPRP method.

For CPU time, Fig. 1 shows that the new method
performs much better than the PRP method. Fig. 2
and Fig. 3 indicate that the new method is comparable
with the SPRP and CG-DESCENT methods. Further-
more, from the tables, the new method also has some
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Table 2 Numerical results of the new, SPRP, PRP, and CG-DESCENT methods.

Problem Dim New SPRP PRP CG-DESCENT

Extended Himmelblau 5000 9/0.00 7/0.00 24/0.05 9/0.02
10 000 9/0.02 7/0.02 25/0.08 9/0.01

Extended PSC1 5000 9/0.04 7/0.02 11/0.07 9/0.03
10 000 9/0.06 7/0.05 27/1.99 134/12.19

Extended Block-Diagonal BD1 5000 25/0.05 36/0.07 25/0.09 23/0.05
10 000 27/0.11 34/0.45 36/0.41 30/0.11

Extended Maratos 5000 47/0.03 49/0.05 59/0.09 49/0.03
10 000 49/0.08 56/0.10 115/0.39 47/0.08

Extended Cliff 5000 19/0.04 54/1.76 58/3.08 56/1.65
10 000 20/0.11 25/0.78 29/0.42 37/1.52

Extended Hiebert 5000 50/0.04 60/0.04 57/0.09 58/0.04
10 000 54/0.08 59/0.11 61/0.22 57/0.08

Extended quadratic penalty QP2 5000 10/0.03 33/0.04 33/0.28 34/0.12
10 000 11/0.10 35/0.14 38/0.61 34/0.29

Extended EP1 5000 3/0.00 3/0.00 3/0.02 3/0.00
10 000 34/1.09 90/4.25 83/5.95 104/3.62

Extended Tridiagonal 2 5000 251/1.64 305/2.93 306/5.15 82/0.45
10 000 362/5.60 215/4.27 480/17.06 334/5.41

ARWHEAD 5000 8/0.04 28/0.05 33/0.35 6/0.02
10 000 5/0.03 6/0.04 15/0.23 5/0.01

NONDIA 5000 21/0.02 10/0.01 11/0.03 9/0.00
10 000 20/0.05 8/0.01 10/0.03 9/0.02

DIXMAANA 5000 8/0.05 8/0.04 9/0.04 8/0.09
10 000 7/0.03 8/0.04 9/0.08 8/0.03

DIXMAANB 5000 17/0.03 12/0.02 13/0.05 13/0.04
10 000 17/0.05 12/0.05 13/0.11 13/0.04

DIXMAANC 5000 19/0.05 15/0.03 16/0.06 16/0.03
10 000 19/0.06 15/0.03 15/0.11 16/0.07

EDENSCH 5000 115/0.79 54/0.13 109/2.00 95/0.76
10 000 113/1.25 36/1.11 62/1.80 76/1.14

LIARWHD 5000 14/0.01 22/0.01 16/0.03 17/0.01
10 000 12/0.02 14/0.02 17/0.08 18/0.05

Diagonal 6 5000 4/0.00 4/0.00 4/0.03 4/0.01
10 000 4/0.03 4/0.03 4/0.06 4/0.02

ENGVAL1 5000 272/1.91 195/1.55 175/2.75 219/1.67
10 000 257/3.75 149/2.81 290/9.97 674/11.15

COSINE 5000 11/0.05 11/0.04 11/0.10 12/0.04
10 000 19/0.11 12/0.10 13/0.21 11/0.08

ENSCHNB 5000 7/0.01 6/0.01 8/0.01 6/0.00
10 000 7/0.02 5/0.02 8/0.03 6/0.01

ENSCHNF 5000 30/0.03 24/0.02 24/0.05 25/0.03
10 000 50/0.37 28/0.23 25/0.18 21/0.05

advantages in the number of iterations for some test
problems. Thus the numerical results show that the
proposed method is encouraging.
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Fig. 3 CPU time of methods. Dashed line: new method;
line with dots: CG-DESCENT method.
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