
R ESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2014.40.248
ScienceAsia 40 (2014): 248–256

Max-out-in pivot rule with cycling prevention for the
simplex method
Monsicha Tipawanna, Krung Sinapiromsaran∗

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,
Bangkok 10330 Thailand

∗Corresponding author, e-mail: Krung.s@chula.ac.th
Received 5 Mar 2013

Accepted 27 Dec 2013

ABSTRACT: A max-out-in pivot rule is designed to solve a linear programming (LP) problem with a non-zero right-
hand side vector. It identifies the maximum of the leaving basic variable before selecting the associated entering nonbasic
variable. Our method guarantees convergence after a finite number of iterations. The improvement of our pivot rule over
Bland’s rule is illustrated by some cycling LP examples. In addition, we report computational results obtained from two
sets of LP problems. Among 100 simulated LP problems, the max-out-in pivot rule is significantly better than Bland’s rule
and Dantzig’s rule according to the Wilcoxon signed rank test. Based on these results, we conclude that our method is best
suited for degenerate LP problems.

KEYWORDS: linear programming, Bland’s rule

INTRODUCTION

Linear programming (LP) is a method to find the op-
timal points of an objective function subject to linear
equality or linear inequality constraints. The system
of constraints will form a feasible region. The simplex
method was first proposed by George B. Dantzig in
1949 as a solution method for LP problems1. This
method will start at a corner point corresponding to the
initial basis of the feasible region and will then move
to an adjacent corner point by increasing the value
of a nonbasic variable, called the entering variable,
and decreasing the value of a basic variable, called the
leaving variable. The above process will be iterated
until an optimal solution is obtained. Performance
of the method depends on the number of iterations
required to find an optimal solution of a given LP
problem.

The rule to select the entering variable and leaving
variable is called the pivot rule. It directly affects
the number of iterations, and will in turn affect the
efficiency of the simplex method. The well-known
Dantzig’s pivot rule selects the entering variable from
among all nonbasic variables with the most positively
reduced cost for maximization. Although the simplex
method is practical for small size LP problems, there
are examples of the worst case running time proposed
by Klee and Minty2. These examples have an expo-
nential growth of the running time based on the num-
ber of LP dimensions. In addition, the simplex method

with Dantzig’s rule cannot prevent cycling in LP3. If
cycling occurs, the simplex method keeps repeating
a degenerate basic feasible solution. Consequently, it
may not converge to an optimal solution.

Several researchers have attempted to improve
the simplex performance by reducing the number of
iterations or the computational time, see Refs. 4–8.
Since the pivot rule affects the simplex performance,
a lot of research has been carried out by presenting
new pivot rules such as Devex rule9, Steepest-edge
rule10, and a largest-distance pivot rule11. However,
these rules did not prevent cycling. In order to prevent
cycling, Bland suggested a new finite pivot rule, called
Bland’s rule, in 1977. This rule will choose the
entering variable with the smallest index from among
all candidates, and the leaving variable will then be
determined by the minimum ratio test. Should there
be many leaving variables, the one with the smallest
index will be chosen. This rule can be proved to
prevent the cycling of the simplex method; however,
it does not guarantee an improvement of the objective
value.

Pivot rules can be categorized into two types: in-
out and out-in. An in-out pivot rule first selects the
entering variable from the non-basic variable set based
on some criteria in order to improve the objective
value, and then chooses the leaving variable from the
basic variable set by the minimum ratio test3. On the
other hand, an out-in pivot rule first selects the leaving
variable, and then determines the entering variable

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.248
http://www.scienceasia.org/2014.html
mailto:Krung.s@chula.ac.th
www.scienceasia.org

ScienceAsia 40 (2014) 249

that maintains the property of the basis.
In this paper, we propose a new out-in pivot rule

called max-out-in pivot rule safeguarding with Bland’s
rule for the simplex method. The distinctive feature
of this rule is that it first selects the leaving variable
that has the largest right-hand-side value from the
current basic variable set. Then it chooses the best
corresponding entering variable that gives the smallest
positive contribution to the binding constraint of the
leaving variable. If the selected basic variable and
nonbasic variable cannot be exchanged or there is no
corresponding nonbasic candidate, then Bland’s rule
(safeguarding rule) will be used. We can show that
our proposed rule can prevent cycling for LP problems
having a non-zero right-hand-side vector. In addition,
it improves Bland’s rule for some cycling examples,
and performs relatively well on the Klee and Minty’s
problem2

PRELIMINARIES

The simplex method

Consider an LP problem in the standard form:

Maximize cTx subject to Ax = b, x > 0, (1)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n (m < n), and
rank(A) = m. After some possible rearrangment of
the columns of A, we may let

A =
[
B N

]
where B is an m × m invertible matrix and N is an
m×(n−m) matrix. Here B is called the basic matrix
and N the associated nonbasic matrix. The set of basic
indices and the set of nonbasic indices will be denoted
by IB and IN , respectively. In this paper, we will
assume that b 6= 0. Moreover, the equality constraints
can be transformed to have all bi > 0 where bi is the
ith component of the vector b.

Suppose that a basic feasible solution to the sys-
tem (1) is [

(B−1b)T 0T
]T
,

and its associate objective value is z0. Then

z0 = cT
BB−1b. (2)

Let
x =

[
xT
B xT

N

]T
be a basic feasible solution to (1), where xB =
B−1b > 0 and xN > 0 denote the basic and nonbasic
variables for the current basis, respectively. Then we
can rewrite the system Ax = b as

b = BxB + NxN . (3)

Then
xB = b̄−

∑
j∈IN

(yjxj), (4)

where b̄ = B−1b, yj = B−1Aj , and Aj denotes the
jth column vector of A. Let z denote the objective
value and

cT =
[
cT
B cT

N

]
.

From (1), (2), and (3), we have

z = z0 −
∑
j∈IN

(zj − cj)xj (5)

where zj = cT
BB−1Aj for each nonbasic variable.

The nonbasic reduced cost is obtained by zj − cj . The
key result exhibits that the optimal solution is achieved
if the index set

J = {j | zj − cj < 0, j ∈ IN} (6)

is empty.
We now give a summary of the simplex method

using Dantzig’s rule to solve the LP problem (1).

The simplex algorithm:
Initial Step:

Choose a starting basic feasible solution with the
basis B and the associated nonbasic matrix N.

Main Step:
Step 1: Determine the entering variable from the

nonbasic variables: By Dantzig’s rule choose
xk such that

zk − ck = min{zk − ck | j ∈ IN}.

Step 2: If zk − ck > 0 then

x =
[
xT
B xT

N

]T
is an optimal solution. Stop.

Step 3: Determine the leaving variable xr from
the basic variables by the minimum ratio test:

r = arg min

{
b̄j
ājk

∣∣∣∣ j ∈ {1, . . . ,m}} .
Step 4: Update B by swapping between the leav-

ing and the entering variable, and go to
Step 1.

Bland’s rule

A basic feasible solution is called degenerate if one
of its basic variables is equal to zero. In this case
the entering nonbasic variable and its corresponding
leaving basic variable does not increase in value and

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

250 ScienceAsia 40 (2014)

the objective value does not change. If a sequence
of pivot steps starts from some basic feasible solution
and ends at the same basic feasible solution, then
we call this situation cycling. If cycling occurs, the
simplex method with Dantzig’s rule may not converge
to an optimal solution.

In order to prevent cycling, Robert G. Bland pro-
posed Bland’s rule12. This rule is defined as follows:

Bland’s rule:
Step 1: Select an entering variable xk such that

k = min{k | k ∈ J}.

Step 2: Select a leaving variable xr by the minimum
ratio test:

r = arg min

{
b̄j
ājk

∣∣∣∣ j ∈ {1, . . . ,m}} .
Among all indices r for which the minimum ratio
test results in a tie, select the smallest index.

Note that the difference between the simplex method
with Bland’s rule and the simplex method with
Dantzig’s rule is the way to select the entering vari-
able. Although Bland’s rule is simple and converges
in a finite iteration, this rule does not improve the
objective value for each iteration. In the next section,
we will present the new pivot rule, which uses Bland’s
rule as a safeguarding rule.

MAX-OUT-IN PIVOT RULE

Main idea

From (1), we separate the index set of the decision
variables into two groups. The first group contains
variables that have positive objective costs denoted by
Γ+ = {i | ci > 0}. The remaining group is Γ̄+,
denoted by Γ̄+ = {i | ci 6 0}. Consider an LP
problem in the following form:

Maximize
∑
i∈Γ+

xi −
∑
j∈Γ̄+

δjxj

subject to Ax = b, x > 0, (7)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n (m < n),
rank(A) = m, and

δi =

{
1, ci < 0,

0, ci = 0.

Note that any LP problem can be converted into the
system (7) by substituting xi with ci 6= 0 by |ci|xi.
We will next show that rank(A) remains unchanged
under this transformation.

Proposition 1 (Ref. 13) Let C be an m × m matrix
over R and D be an n × n matrix over R. If C and
D are nonsingular and A is an m× n matrix over R,
then

rank(CA) = rank(A) = rank(AD).

That is, rank is unchanged upon left or right multipli-
cation by a nonsingular matrix.

Lemma 1 Let A be an m × n matrix over R where
m 6 n and let A1,A2, . . . ,An be the column vectors
of A. Let Ã be an m × n matrix over R, denoted by
Ã = [k1A1, k2A2, . . . , knAn], where ki ∈ R\{0}
for i = 1, . . . , n. Then rank(A) = m if and only if
rank(Ã) = m.

Proof : Assume that rank(A) = m. To show that
rank(Ã) = m, let D be a diagonal matrix over R and
denoted by

D =

k1 0 · · · 0
0 k2 0
...

. . .
...

0 · · · 0 kn

 ,
where ki ∈ R\{0} for i = 1, . . . , n. Then

Ã =
[
k1A1 · · · knAn

]
=
[
A1 · · · An

]

k1 0 · · · 0
0 k2 0
...

. . .
...

0 · · · 0 kn

= AD.

Since D is a diagonal matrix and ki 6= 0 for each
i, then det(D) 6= 0. Thus D is nonsingular. By
Proposition 1, rank(A) = rank(AD). Since Ã =
AD, rank(Ã) = rank(AD). Thus rank(Ã) =
rank(A) = m.

Conversely, assume that rank(Ã) = m. To show
that rank(A) = m, let D̄ be a diagonal matrix over R
and denoted by

D̄ =

1
k1

0 · · · 0

0 1
k2

0
...

. . .
...

0 · · · 0 1
kn

 ,
where ki ∈ R\{0} for i = 1, . . . , n.

As with how we have shown that Ã = AD, it
can also be shown that A = ÃD̄. Since D̄ is a

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

ScienceAsia 40 (2014) 251

diagonal matrix and ki 6= 0 for each i, then det(D̄) 6=
0. Thus D̄ is nonsingular. By Proposition 1,
rank(Ã) = rank(ÃD̄). Since A = ÃD̄, rank(A) =
rank(ÃD̄). Thus rank(A) = rank(Ã) = m. �

We can convert the system (1) to the system (7)
by right multiplying A by

D =

k1 0 · · · 0
0 k2 0
...

. . .
...

0 · · · 0 kn

 ,
where

ki =

{
1/ |ci| , ci 6= 0,

1, ci = 0.

Then D is nonsingular. By Lemma 1, rank(A) is
unchanged under the transformation to the system (7).

Rewrite the system (7) into tableau:

xB xN RHS
0T cTBB−1N− cTN cTBB−1b̄

xB Im Ā = B−1N b̄

where Im is an identity matrix of sizem, Ā = (āij) ∈
Rm×(n−m), b̄ = B−1b ∈ Rm, b̄ > 0, and 0 ∈ Rm.

From the fact that the leaving variable decreases
to zero when it changes to the nonbasic variable, the
increment in the value of the entering variable depends
on the decrement in the value of the leaving variable.
If the value of the leaving variable is large, the increase
of the entering variable may be large. Then we should
select the leaving variable that has the maximum value
from among all basic variables. From the current basic
variables of the system (7), we select xr as

xr = max{xi | i ∈ IB}.

It is equivalent to selecting

r = arg max{b̄i | i ∈ IB}.

Consider the binding constraint of xr:

xr +
∑

i∈IN\J

ārixi +
∑
j∈J

ārjxj = b̄r. (8)

In order to improve the objective value, we select the
entering variable from the set J , and then set the other
nonbasic variables to zero.

Let j ∈ J . From (8), if we decrease xr to zero
and fix xk = 0 for k ∈ IN\{j}, if ārj > 0, we have
xj = (b̄r/ārj) > 0. We need to select the nonbasic

variable that allows the maximum increase. We select
xj̃ such that

j̃ = arg min{ārj | ārj > 0, j ∈ J}.

In summary, we select the leaving variable that
has the maximum value from among all basic vari-
ables. Then we select the corresponding entering
variable which its index is in the set J and has the
smallest positive contribution to the binding constraint
of the selected basic variable.

Max-out-in pivot rule (with Bland’s rule
safeguarding)

From our main idea, we state our proposed pivot rule,
called the max-out-in pivot rule, as following.

Max-out-in pivot rule: If J 6= φ.
Step 1: Select xr to leave the basic such that

r = arg max{b̄i | i ∈ IB}.

Step 2: Select xj̃ to enter the basic such that

j̃ = arg min{ārj | ārj > 0, j ∈ J}.

From the binding constraint of the selected basic
variable xr, if the algorithm hold all nonbasic vari-
ables except xj̃ to zero, then

xr + ārj̃xj̃ = b̄r.

If it sets xr = 0, we have xj̃ = (b̄r/ārj̃) > 0.
The other basic variables are affected by increas-

ing xj̃ as

xk = b̄k − ākj̃

(
b̄r
ārj̃

)
, k ∈ IB\{r}.

The necessary condition for the minimum ratio test is

b̄r
ārj̃

= min

{
b̄k
ākj̃

∣∣∣∣∣ ākj̃ > 0, k = 1, . . . ,m

}
. (9)

When it performs the max-out-in pivot rule, there
are two possible cases.

Case 1. One basic variable xr and one nonbasic vari-
able xj̃ can be swapped if {j ∈ J | ārj > 0} 6= φ

and b̄r/ārj̃ = min{b̄k/ākj̃ | ākj̃ > 0, k =
1, . . . ,m} > 0.

Case 2. The max-out-in pivot rule cannot be used.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

252 ScienceAsia 40 (2014)

2.1 If the selected basic variable violates the mini-
mum ratio test, ∃k, ākj̃ > 0, b̄k/ākj̃ < b̄r/ārj̃ .
Therefore some x̃k where k ∈ IB may be
negative, we apply safe-guarding rule.

2.2 If no corresponding nonbasic variable exists,
{j ∈ J | ārj > 0} = φ, then the max-out-in
pivot rule cannot be used; instead it uses the
safeguarding rule.

In Case 1, we can use the max-out-in pivot rule to
perform the pivot step. However, we cannot perform
the pivot step if Case 2 occurs. In order to prevent
cycling we apply Bland’s rule as the safeguarding rule
instead. Note that the other in-out pivot rule can be
applied as a safeguarding rule. The detail of this rule
is given as follows.

Initial step: Convert the LP problem of system (1)
into the system (7) by substituting xi/ |ci| for xi if
ci 6= 0.

Let J = {j | zj − cj < 0, j ∈ IN}.
If J 6= φ, perform the max-out-in pivot rule.

Otherwise, the current solution is optimal. Stop.

Max-out-in pivot rule (with Bland’s rule safeguard-
ing):
Step 1: Select index r such that

r = arg max{b̄i | i ∈ IB}.

Step 2: If {j ∈ J | ārj > 0} 6= φ. Select ārj̃ such
that

j̃ = arg min{ārj | ārj > 0, j ∈ J}.

Step 3: If (b̄r/ārj̃) =

min

{
b̄k
ākj̃

∣∣∣∣∣ ākj̃ > 0, k = 1, . . . ,m

}
,

select xr to leave the basic and xj̃ to enter the
basic and go to Step 5. Otherwise, go to Step 4.

Step 4: Perform Bland’s Rule to obtain an entering
and leaving variable.

Step 5: Update B.
Next we give an example to illustrate the imple-

mentation of the proposed method. Let the objective
row in the simplex tableau be the first row.

Example 1 Consider the following LP model:

Maximize x1 + x2 + x3 − x6 subject to

11x1 − 2x2 + 5x3 + 12x4 + 9x5

+ 14x6 − x7 6 200

10x1 + 5x2 + 15x3 + 15x4 + 10x5

+ 5x6 + 5x7 6 250

x1, x2, x3, x4, x5, x6, x7 > 0.

Let x8 and x9 be the slack variables associated
with the first and the second constraint, respectively.
Then the initial simplex tableau for the above model
is

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS
z −1 −1 −1 0 0 1 0 0 0 0
x8 11 −2 5 12 9 14 −1 1 0 200
x9 10 5 15 15 10 5 5 0 1 250

Since the maximum value among all basic vari-
ables is at x9 = 250 corresponding to r = 2. Then
{ā2j | j ∈ J and ā2j > 0} = {ā21, ā22, ā23} =
{10, 5, 15}. j̃ = 2 = arg min{ā21, ā22, ā23} since
{bk/āk2 | āk2 > 0, for k = 1, 2} = {b2/ā22} =
{50}. From case 1, we select x9 to be the leaving
variable and select x2 to be the entering variable.
After pivoting, the simplex tableau is

x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS
z 1 0 2 3 2 2 1 0 1/5 50
x8 15 0 11 18 13 16 1 1 2/5 300
x2 2 1 3 3 2 1 1 0 1/5 50

This is the optimal tableau. The optimal solution
is x2 = 50, xj = 0 for j = 1, . . . , 7 where j 6= 2 with
the optimal value 50 and the number of iteration is 1.
By the simplex method with Bland’s rule, the number
of iterations is 3.

Next, we show that our rule can prevent cycling
for LP problems having non-zero right-hand-side vec-
tor, bi > 0 for some i.

Theorem 1 If an LP problem has bi > 0 for some
i, then the max-out-in pivot rule safeguarding with
Bland’s rule converges in finite iterations.

Proof : Without loss of generality, we assume that the
LP problem is in the form of the system (7) and an
initial basic feasible solution is given.

At the current iterate, if the max-out-in pivot rule
can be applied as in case 1, then the max-out-in pivot
rule selects xr to be the leaving variable and select
xj̃ to be the entering variable. Since b̄ = B−1b

and bi > 0 for some i, then b̄i > 0 for some
i. Then xr = max{b̄i | i ∈ IB} > 0. Since
j̃ = arg max{b̄r/ārj | zj − cj < 0 and ārj > 0},

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

ScienceAsia 40 (2014) 253

then xj̃ = b̄r/ārj̃ > 0. Let z0 be the objective. After
pivoting, we have z = z0 − (zj − cj)(b̄r/ārj̃) > z0.
Thus the objective value improves. Then the cycling
cannot occur.

Otherwise, Bland’s rule as a safe-guarding rule is
applied repeatedly until the cycling is broken or Case 1
is met which guarantees no cycle. �

The following example is given to illustrate our
rule preventing cycling. We note the number of
iterations by using Bland’s rule to compare with our
rule.

Example 2 Klee and Minty example2

Maximize 3
4x1 − 20x2 + 1

2x3 − 6x4 + 3 subject to
1
4x1 − 8x2 − x3 + 9x4 6 0

1
2x1 − 12x2 − 1

2x3 + 3x4 6 0

x3 6 1

x1, x2, x3, x4 > 0.

Replacing xj by |cj | x̃j for j = 1, 2, 3, 4, we have:

Maximize x̃1 − x̃2 + x̃3 − x̃4 + 3 subject to
1
3 x̃1 − 2

5 x̃2 − 2x̃3 + 3
2 x̃4 6 0

2
3 x̃1 − 3

5 x̃2 − x̃3 + 1
2 x̃4 6 0

2x̃3 6 1

x̃1, x̃2, x̃3, x̃4 > 0.

Let x̃5, x̃6 and x̃7 be slack variables associated with
the first through the third constraints, respectively.
Then the initial tableau for the above problem is

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 RHS
z −1 1 −1 1 0 0 0 3
x̃5 1/3 −2/5 −2 3/2 1 0 0 0
x̃6 2/3 −3/5 −1 1/2 0 1 0 0
x̃7 0 0 2 0 0 0 1 1

First pivot (Case 1): x̃7 leaves, and x̃3 enters the
basis.

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 RHS
z −1 1 0 1 0 0 1/2 7/2
x̃5 1/3 −2/5 0 3/2 1 0 1 1
x̃6 2/3 −3/5 0 1/2 0 1 1/2 1/2
x̃3 0 0 1 0 0 0 1/2 1/2

Since the maximum value among all basic variables
is at x5 = 1 corresponding to r = 1. Then
{ā1j | j ∈ J and ā1j > 0} = {ā11} = { 1

3}
and j̃ = 1. Since {bk/āk1 | āk1 > 0, k =
1, 2, 3} = {b1/ā11, b2/ā21} = {3, 3

4} and b1/ā11 =
3 6= min{3, 3

4}. From Case 2, we apply Bland’s

rule. Then we select x1 to be the entering variable
and select x6 to be the leaving variable.

Second pivot (Case 2): x̃1 enters, and x̃6 leaves
the basis.

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 RHS
z 0 1/10 0 7/4 0 3/2 5/4 17/4
x̃5 0 −1/10 0 5/4 1 −1/2 3/4 3/4
x̃1 1 −9/10 0 3/4 0 3/2 3/4 3/4
x̃3 0 0 1 0 0 0 1/2 1/2

This is the optimal tableau. The optimal solution
is x̃1 = 3

4 , x̃3 = 1
2 and x̃j = 0 for j = 2, 4. Then

we get x1 = 1,x3 = 1 and xj = 0 for j = 2, 4 and
with the optimal value 17

4 and the number of iteration
is 2. By the simplex method with Bland’s rule the
number of iterations is 6. For this problem, by the
simplex method with Dantzig’s pivot rule cycles in 6
iterations2.

To show the improvement of our pivot rule over
Bland’s rule, we collect and solve five LP problems
(Examples 3–7) that have cycling when they are
solved by the simplex method with Dantzig’s rule14.
Then we compare the results with Bland’s rule. For
each problem, we note the number of iterations that
forms a cycle when the problem is solved by the
simplex method with Dantzig’s rule. Note that each
problem has been converted into a maximization prob-
lem.

Example 3 Yudin and Gol’shtein15

Maximize x3 − x4 + x5 − x6 subject to

x1 + 2x2 − 3x4 − 5x5 + 6x6 = 0

x2 + 6x3 − 5x4 − 3x5 + 2x6 = 0

3x3 + x4 + 2x5 + 4x6 + x7 = 1

x1, x2, x3, x4, x5, x6, x7 > 0.

Solution: x1 = 5
2 , x2 = 3

2 , x5 = 1
2 ; Maximum = 1

2 ;
Cycle = 6. Max-out-in pivot rule converges in 1 iter-
ation. Bland’s rule converges in 5 iterations.

Example 4 Kuhn example (Balinski and Tucker16)

Maximize 2x4 + 3x5 − x6 − 12x7 subject to

x1 − 2x4 − 9x5 + x6 + 9x7 = 0

x2 + 1
3x4 + x5 − 1

3x6 − 2x7 = 0

x3 + 2x4 + 3x5 − x6 − 12x7 = 2

x1, x2, x3, x4, x5, x6, x7 > 0.

Solution: x1 = 2, x4 = 2, x6 = 2; Maximum = 2;
Cycle = 6. Max-out-in pivot rule converges in 2 iter-
ations. Bland’s rule converges in 2 iterations.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

254 ScienceAsia 40 (2014)

Example 5 Marshall and Suurballe17

Maximize 2
5x5 + 2

5x6 − 9
5x7 subject to

x1 + 3
5x5 − 32

5 x6 + 24
5 x7 = 0

x2 + 1
5x5 − 9

5x6 + 3
5x7 = 0

x3 + 2
5x5 − 8

5x6 + 1
5x7 = 0

x4 + x6 = 1

x1, x2, x3, x4, x5, x6, x7 > 0.

Solution: x1 = 4, x2 = 1, x5 = 4, x6 = 1;
Maximum = 2; Cycle = 6. Max-out-in pivot rule
converges in 2 iterations. Bland’s rule converges in
4 iterations.

Example 6 Beale example18

Maximize 3
4x1 − 150x2 + 1

50x3 − 6x4 subject to
1
4x1 − 60x2 − 1

25x3 + 9x4 + x5 = 0
1
2x1 − 90x2 − 1

50x3 + 3x4 + x6 = 0

x3 + x7 = 1

x1, x2, x3, x4, x5, x6, x7 > 0.

Solution: x1 = 1
25 , x3 = 1, x5 = 3

100 ; Maximum =
1
20 ; Cycle = 6. Max-out-in pivot rule converges in
2 iterations. Bland’s rule converges in 7 iterations.

The next example shows that our rule may prevent
cycling for the case bi = 0 for all i.

Example 7 Sierksma19

Maximize 3x1 − 80x2 + 2x3 − 24x4 subject to

x1 − 32x2 − 4x3 + 36x4 + x5 = 0

x1 − 24x2 − x3 + 6x4 + x6 = 0

x1, x2, x3, x4, x5, x6 > 0.

Solution: Unbounded above; Cycle = 6. Max-out-
in pivot rule converges in 4 iterations. Bland’s rule
converges in 4 iterations.

Table 1 shows the number of iterations of the
max-out-in pivot rule safeguarding with Bland’s rule
and Bland’s rule for Examples 2–7.

For Examples 2–7, max-out-in pivot rule im-
proves Bland’s rule. In addition, Example 7 shows
that our rule prevent cycling for an LP problem having
a zero right-hand-side vector.

Application to Klee and Minty’s problem

In 1972, Klee and Minty showed a collection of
LP problems that the simplex method performs the
exponential worst-case running time2. This collection
is called the Klee and Minty’s problem, which is stated
as the following.

Table 1 Comparison between max-out-in pivot rule and
Bland’s rule over 6 cycling problems.

Problem Name Iteration number

Max-out-in Bland’s rule

Klee-Minty 2 6
Yudin and Gol’shtein 1 5
Kuhn example 2 24
Marshall and Suurballe 2 4
Beale example 2 7
Sierksma 4 4

Total 13 28

Klee and Minty’s problem:

Maximize
n∑

j=1

10n−jxi subject to

2

i−1∑
j=1

10i−jxj + xi 6 100i−1, i = 1, . . . , n

xi > 0, i = 1, . . . , n.

The simplex method with Dantzig’s pivot rule requires
2n − 1 iterations to solve Klee and Minty’s problem2.
However, the max-out-in pivot rule requires only one
iteration for any n. This is a significantly improve-
ment. We show the case for n = 4 by the next
example.

Example 8 Consider the following problem:

Maximize 1000x1 + 100x2 + 10x3 + x4 subject to

x1 6 1

20x1 + x2 6 102

200x1 + 20x2 + x3 6 104

2000x1 + 200x2 + 20x3 + x4 6 106

x1, x2, x3, x4 > 0.

Replacing xj by |cj | x̃j for j = 1, 2, 3, 4, we have:

Maximize x̃1 + x̃2 + x̃3 + x̃4 subject to
1

1000 x̃1 6 1
2

100 x̃1 + 1
100 x̃2 6 102

2
10 x̃1 + 2

10 x̃2 + 1
10 x̃3 6 104

2x̃1 + 2x̃2 + 2x̃3 + x̃4 6 106

x̃1, x̃2, x̃3, x̃4 > 0.

Let x̃5, x̃6, x̃7 and x̃9 be the slack variables
associated with the first to the forth constraint, respec-
tively. Then the initial tableau for the above problem
is

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

ScienceAsia 40 (2014) 255

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃4 RHS
z −1 −1 −1 −1 0 0 0 0 0
x̃5 0.001 0 0 0 1 0 0 0 1
x̃6 0.02 0.01 0 0 0 1 0 0 102

x̃7 0.2 0.1 0.1 0 0 0 1 0 104

x̃8 2 2 2 1 0 0 1 0 106

First pivot: x̃8 leaves, x̃4 enters the basis.

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃4 RHS
z 1 1 1 0 0 0 0 0 106

x̃5 0.001 0 0 0 1 0 0 0 1
x̃6 0.02 0.01 0 0 0 1 0 0 102

x̃7 0.2 0.1 0.1 0 0 0 1 0 104

x̃4 2 2 2 1 0 0 1 0 106

This is the optimal tableau. The optimal solution is
x̃4 = 106, x̃j = 0 for j = 1, 2, 3. Then we get
x4 = 106, xj = 0 for j = 1, 2, 3 and j 6= 4 with the
optimal value 106 and the number of iteration is 1.

For this problem, our rule takes only 1 iteration.
By the simplex method with Dantzig’s pivot rule, the
number of iterations is 15 2.

COMPUTATIONAL EXPERIMENTS

In this section, we show the numerical runs and
the computational results that show the efficiency of
our rule in randomly generated LP problems. We
randomly generated two sets, Set1 and Set2, of LP
problems. Set1 contains only maximization problems.
All coefficients of the vector c are 1. aij is between
−19 and 19. The vector b is calculated by b =
Ax∗ where x∗ is the vector with its component lying
between −19 and 19. All of the constraints are of
the type less than or equal to. Set2 is generated
similarly, except that each coefficients of the vector c
is either 0 or 1. The following three codes were tested:
Dantzig: uses the simplex method with Dantzig pivot
rule; Bland: uses the simplex method with Bland pivot
rule; Max-out-in: uses the simplex method with max-
out-in pivot rule safeguarding with Bland rule.

The simplex code is implemented using Python20.
Dantzig, Bland, max-out-in pivot rules are imple-
mented as functions in Python. We generate 50 LP
problems with A ∈ R5×10 for Set1 and Set2. They
are executed by the same simplex code with three
different pivot rules. The results from our experiments
are shown in Fig. 1. The number of iterations from
the simplex method with Bland rule subtracting with
the number of iterations from the simplex method
with max-out-in pivot rule are plotted in Fig. 1. The
positive value of a bar indicates the larger iterations
of the simplex method with Bland rule comparing
to our method. Most LP problems show that our

0 20 40−5

0

5

10

15

20

25

Problem Number

(a)

0 20 400

5

10

15

20

Problem Number

(b)

Fig. 1 The subtraction of the number of iterations between
using Bland’s rule by max-out-in pivot rule; (a) Set1,
(b) Set2.

Table 2 Summary of the comparison between max-out-in
pivot rule and Bland’s rule.

Problem set Number of iterations* Average

Bland’s rule Max-out-in improvement

Set1 12.3± 4.8 3.6± 4.4 70%
Set2 10.0± 4.2 3.4± 3.6 66%

* Mean ± SD.

method needs less number of iterations than that of the
simplex method with Bland rule. Table 2 summarizes
the results from Fig. 1.

Next, the number of iterations from the simplex
method with Dantzig’s rule subtracting with the num-
ber of iterations from the simplex method with max-
out-in pivot rule are plotted in Fig. 2. More negative
bars appearing in the graph indicates that the Bland
rule is inferior than Dantzig’s rule. However, our
method still maintains a larger number of positive
differences as shown in Fig. 2 and Table 3.

To verify that the max-out-in pivot rule improved
Bland’s rule and Dantzig’s rule over Set1 and Set2
problems, we used the Wilcoxon signed-rank test21

with α = 0.05.
As the Wilcoxon signed-rank test showed, our

pivot rule is statistically faster than both Bland’s rule
and Dantzig’s rule (Table 4).

0 20 40−20

−10

0

10

20

Problem Number

(a)

0 20 40−10

−5

0

5

10

15

Problem Number

(b)

Fig. 2 The subtraction of the number of iterations between
using Dantzig’s rule by max-out-in pivot rule; (a) Set1,
(b) Set2.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

256 ScienceAsia 40 (2014)

Table 3 Summary of the comparison between max-out-in
pivot rule and Dantzig’s rule.

Problem set Number of iterations* Average

Dantzig’s rule Max-out-in improvement

Set1 7.3± 2.7 3.6± 4.4 51%
Set2 6.7± 2.4 3.4± 3.6 50%

* Mean ± SD.

Table 4 The Wilcoxon signed-rank test compared max-out-
in pivot rule with Bland’s rule and Dantzig’s rule.

Problem set Median of difference p-value

Set1 Bland’s rule 8.5 4.1× 10−9

Dantzig’s rule 5 2.1× 10−5

Set2 Bland’s rule 6.5 1.2× 10−8

Dantzig’s rule 4 1.8× 10−5

CONCLUSIONS

The objective of this paper is to propose a new pivot
rule called the max-out-in pivot rule safeguarding with
Bland’s rule for the simplex method. The key features
of this rule are that the maximum basic variable is
selected to leave the basis, and the corresponding non-
basic variable which allowed the maximum increase
in the objective value is selected to enter the basis.
This new rule can prevent cycling for an LP problem
having a non-zero right-hand-side vector. According
to our test problems, our rule is statistically better than
Bland’s rule. In addition, our rule performs relatively
well on Klee and Minty problems2.

For future work, we will test our algorithm in
large-scale problems. Moreover, we plan to experi-
ment our rule with other safeguarding rules.

Acknowledgements: The research was partially sup-
ported by the 90th Anniversary of Chulalongkorn University
Fund (Ratchadaphiseksomphot Endowment Fund).

REFERENCES
1. Dantzig G (1963) Linear Programming and Exten-

sions, Princeton Univ Press, Princeton, NJ.
2. Klee V, Minty G (1972) How good is the simplex al-

gorithm? In: Shisha O (ed) Inequalities III, Academic
Press, New York, pp 158–72.

3. Bazara M, Jarvis J, Sherali H (1990) Linear Pro-
gramming and Network Flows, 3rd edn, John Whiley,
NewYork.

4. Pan PQ (1990) Practical finite pivoting rules for the
simplex method. OR Spektrum 12, 219–25.

5. Vieira H Jr, Lins MPE (2005) An improved initial
basis for the simplex algorithm. Comput Oper Res 32,
1983–93.

6. Corley HW, Rosenberger J, Yeh WC, Sung TK (2006)
The cosine simplex algorithm. Int J Adv Manuf Tech
27, 1047–50.

7. Hu JF (2007) A note on “an improved initial basis for
simplex algorithm”. Comput Oper Res 34, 3397–401.

8. Arsham H (2007) A computationally stable solution
algorithm for linear programs. Appl Math Comput 188,
1549–61.

9. Harris PMJ (1973) Pivot selection methods of the
Devex LP code. Math Program 5, 1–28.

10. Forrest JJ, Goldfarb D (1992) Steepest-edge simplex
algorithms for linear programming. Math Program 57,
341–74.

11. Pan PQ (2008) A largest-distance pivot rule for the
simplex algorithm. Eur J Oper Res 187, 393–402.

12. Bland RG (1977) New finite pivoting rules for the
simplex method. Math Oper Res 2, 103–7.

13. Horn R, Johnson C (1985) Matrix Analysis, Cambridge
Univ Press.

14. Gass SI, Vinjamuri S (2004) Cycling in linear program-
ming problems. Comput Oper Res 31, 303–11.

15. Yudin D, Gol’shtein E (1965) Linear Programming.
Israel Program of Scientific Traslations, Jerusalem.

16. Balinski ML, Tucker AW (1997) Duality theory of
linear programs: a constructive approach with appli-
cations. SIAM Rev 11, 347–77.

17. Marshall K, Suurballe J (1969) A note on cycling in the
simplex method. Nav Res Logist Q 12, 121–37.

18. Gass S (1985) Linear Programming: Methods and
Applications, 5th edn, McGraw-Hill Book Company,
New York.

19. Sierksma G (1969) Linear and Integer Programming,
2nd edn, Marcel Dekker, Inc., New York.

20. Lutz M (2010) Programming Python, 24th edn,
O’Reilly Media.

21. Wilcoxon F (1945) Individual comparisons by ranking
methods. Biometrics Bull 1, 80–3.

www.scienceasia.org

http://www.scienceasia.org/2014.html
http://dx.doi.org/10.1007/BF01721801
http://dx.doi.org/10.1007/BF01721801
http://dx.doi.org/10.1016/j.cor.2004.01.002
http://dx.doi.org/10.1016/j.cor.2004.01.002
http://dx.doi.org/10.1016/j.cor.2004.01.002
http://dx.doi.org/10.1007/s00170-004-2278-1
http://dx.doi.org/10.1007/s00170-004-2278-1
http://dx.doi.org/10.1007/s00170-004-2278-1
http://dx.doi.org/10.1016/j.cor.2006.02.004
http://dx.doi.org/10.1016/j.cor.2006.02.004
http://dx.doi.org/10.1016/j.amc.2006.11.031
http://dx.doi.org/10.1016/j.amc.2006.11.031
http://dx.doi.org/10.1016/j.amc.2006.11.031
http://dx.doi.org/10.1007/BF01580108
http://dx.doi.org/10.1007/BF01580108
http://dx.doi.org/10.1007/BF01581089
http://dx.doi.org/10.1007/BF01581089
http://dx.doi.org/10.1007/BF01581089
http://dx.doi.org/10.1016/j.ejor.2007.03.026
http://dx.doi.org/10.1016/j.ejor.2007.03.026
http://dx.doi.org/10.1287/moor.2.2.103
http://dx.doi.org/10.1287/moor.2.2.103
http://dx.doi.org/10.1016/S0305-0548(02)00226-5
http://dx.doi.org/10.1016/S0305-0548(02)00226-5
http://dx.doi.org/10.1137/1011060
http://dx.doi.org/10.1137/1011060
http://dx.doi.org/10.1137/1011060
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.2307/3001968
www.scienceasia.org

