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ABSTRACT: In this paper we consider the algebra (A, f, g), where f and g are m-ary and n-ary operations on the set A.
We define the concept of regular algebra and we prove that for a regular medial algebra (A, f, g) there exists a commutative
semigroup (A,+) such that the operations f and g have linear representations on (A,+). As a corollary, we show that for
a regular medial algebra (A,F ) there exists a commutative semigroup (A,+) such that any operation f ∈ F has a linear
representation on (A,+).
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INTRODUCTION

An algebra A = (A,F ) (without nullary operations)
is called medial if it satisfies the identity of mediality,

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm))

= f(g(x11, . . . , x1m), . . . , g(xn1, . . . , xnm)), (1)

for every n-ary f ∈ F and m-ary g ∈ F 1. The n-ary
operation f is called idempotent if f(x, . . . , x) = x
for every x ∈ A. The algebra A = (A,F ) is called
idempotent if every operation f ∈ F is idempotent.
An idempotent medial algebra is a mode2. In other
words, the algebra A is medial if it satisfies the
hyperidentity of mediality3. The medial property was
studied initially in Refs. 4, 5. Note that a groupoid
is medial iff it satisfies the identity of mediality6,
xy.uv ≈ xu.yv. Medial groupoids were studied
by many authors. Important results on some regular
medial groupoids can be found in Refs. 7–9.

Let g and f be m-ary and n-ary operations on
the set A. We say that the pair of operations (f, g)
is medial (entropic), if identity (1) holds in the algebra
A = (A, f, g) 10. Characterization of a medial pair of
binary quasigroup operations is done in Ref. 11 (also
see Ref. 12).

Let A = (A,F ) be an algebra and let f ∈ F .
We say that the element e is the unit for the operation
f ∈ F if

f(x, e, . . . , e)

= f(e, x, e, . . . , e) = . . . = f(e, . . . , e, x)

= x

for every x ∈ A. The element e is a unit for the algebra
(A,F ) if it is a unit for every operation f ∈ F .

The element e is idempotent for the operation f
if f(e, . . . , e) = e. We say that the element e is
idempotent for the algebra (A,F ) if it is idempotent
for the every operation f ∈ F .

The sequence xi, . . . , xj will be denoted by xji ,
where i and j are natural numbers. For j < i, xji is
the empty symbol. If xi+1 = . . . = xi+k = x then
instead of xi+ki+1 we will write (x̄)k. For k 6 0, (x̄)k is
the empty symbol.

Definition 1 Let (f, g) be a pair of m-ary and n-ary
operations of the algebra (A,F ). For any element e
of A, let α1, . . . , αm be mappings of A into A defined
by

αi : x 7→ f((ē)i−1, x, (ē)m−i). (2)

We call αi the ith translation by e with respect to f .
An element e is called i-regular with respect to f if
αi is a bijection. An element e is called i-regular for
the pair operation (f, g) if it is i-regular with respect
to both the operations f and g. The element e is called
i-regular for the algebra (A,F ) if it is an i-regular
element for every operation f ∈ F .

There exist various algebraic characterizations of
different classes of n-ary operations (see for example
Refs. 13, 14). In this paper we consider the medial
algebra (A, f, g) with m-ary operation f and n-ary
operation g where f 6= g. If f = g then the algebra
(A, f, g) is an n-ary medial groupoid. Characteriza-
tion of an n-ary medial groupoid is done by Evans in
Ref. 15. As a generalization of Evans’s results, we
have the following representation of a medial algebra,
which was obtained by Cho in Ref. 16.
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Theorem 1 Let (A, f, g) be a medial algebra with the
idempotent element e which is an i- and j-regular
element of (A, f, g) for fixed i and j (i 6= j). Then
there exists a commutative semigroup (A,+) with the
unit element e such that operations f , g ∈ F have the
following linear representation

f(xm1 ) = α1x1 + · · ·+ αmxm,

g(xn1 ) = β1x1 + · · ·+ βnxn,

where αm1 , β
n
1 are pairwise commuting endomor-

phisms of (A,+), n > m > 2. Furthermore,
αi, αj , βi, βj are automorphisms of (A,+).

Corollary 1 Let (A,F ) be a medial algebra with the
idempotent element e which is an i- and j-regular
element of (A,F ) for fixed i and j (i 6= j). Then
there exists a commutative semigroup (A,+) with the
unit element e such that every operation f ∈ F has
the linear representation

f(xm1 ) = γ1x1 + · · ·+ γmxm,

where γm1 are pairwise commuting endomorphisms of
(A,+), m > 2. Furthermore, γi, γj are automor-
phisms.

Proof : Let f0 ∈ F be an m-ary fixed operation. Then
(A, f0) is a medial algebra. Hence by Theorem 3.2 in
Ref. 15, there exists a commutative semigroup (A,+)
with the unit element e such that

f0(xm1 ) = α1x1 + · · ·+ αmxm

where αm1 are translations defined in (2), and

x+ y = f0((ē)i−1, α−1
i x, (ē)j−1−i, α−1

j y, (ē)m−j).

Now, for any f ∈ F the algebra (A, f0, f) is a medial
algebra with the idempotent element e which is an
i- and j-regular element of the algebra (A, f0, f) for
fixed i and j (i 6= j). Hence by the previous theorem
and mediality of the pair operation (f0, f) we have

f((ē)i−1, γ−1
i x, (ē)j−1−i, γ−1

j y, (ē)m−j)

= f0((ē)i−1, α−1
i x, (ē)j−1−i, α−1

j y, (ē)n−j).

Hence there exists a commutative semigroup (A,+)
with the unit element e such that every operation f ∈
F has the linear representation on the commutative
semigroup (A,+). �

PRELIMINARY RESULTS

In Corollary 1 we have described the structure of
the medial algebra (A,F ) containing an idempotent
element. The purpose of this section is to obtain
sufficient properties of finite medial algebras to enable
us to weaken considerably, in this finite case, the
assumptions we need for characterizing regular medial
algebras which do not contain an idempotent element.

Definition 2 Let f be an m-ary operation and J be
a non-empty subset of {1, 2, . . . ,m}. We will say
that the element e is J-regular with respect to the
operation f if e is a j-regular element with respect to
f for all j ∈ J . The element e is a J-regular element
for the algebra (A,F ) if e is a j-regular element with
respect to every f ∈ F for all j ∈ J .

Lemma 1 Let (A, f, g) be a finite medial algebra
with the m-ary operation f and the n-ary operation
g and a J-regular element e (J ⊆ {1, 2, . . . ,m} and
m 6 n). If

f(am1 ) = g(an1 ) = e,

then for each i ∈ J , ai is a J-regular element of
(A, f, g).

Proof : Suppose i, j ∈ J and x, y ∈ A such that

f((āj)
i−1, x, (āj)

m−i) = f((āj)
i−1, y, (āj)

m−i).

Then we have

g(f((ā1)i−1, e, (ā1)m−i), . . . , f((āj)
i−1, x, (āj)

m−i),

. . . , f((ān)i−1, e, (ān)m−i)) =

g(f((ā1)i−1, e, (ā1)m−i), . . . , f((āj)
i−1, y, (āj)

m−i),

. . . , f((ān)i−1, e, (ān)m−i)),

with f((āj)
i−1, x, (āj)

m−i), f((āj)
i−1, y, (āj)

m−i)
at the jth places. Hence by mediality we have

f(g(an1 ), . . . , g((ē)j−1, x, (ē)n−j), . . . , g(an1 ))

= f(g(an1 ), . . . , g((ē)j−1, y, (ē)n−j), . . . , g(an1 )).

Hence

f((ē)i−1, g((ē)j−1, x, (ē)n−j), (ē)m−i)

= f((ē)i−1, g((ē)j−1, y, (ē)n−j), (ē)m−i).

Thus by considering the regularity of the element ewe
have x = y. Similarly, if

g((āj)
i−1, x, (āj)

n−i) = g((āj)
i−1, y, (āj)

n−i),

then x = y. Since A is finite, this concludes the
proof. �
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Lemma 2 Let (A, f, g) be a finite medial algebra
with the m-ary operation f and the n-ary operation
g (m 6 n). If e is an i-regular (1 6 i 6 m)
element of the algebra (A, f, g), then so are f((ē)m)
and g((ē)n).

Proof : Suppose x, y ∈ A such that

g((f((ē)m))i−1, x, (f((ē)m))n−i)

= g((f((ē)m))i−1, y, (f((ē)m))n−i),

and t1, t2 are elements of A satisfying

f((ē)i−1, t1, (ē)
m−i) = g((ē)i−1, t2, (ē)

n−i) = e.

By Lemma 1 t1, t2 are i-regular elements for the
algebra (A, f, g). Hence if

f((t̄2)i−1, x1, (t̄2)m−i) = x,

f((t̄2)i−1, y1, (t̄2)m−i) = y,

then we have

g((f((ē)m))i−1, f((t̄2)i−1, x1, (t̄2)m−i),

(f((ē)m))n−i)

= g((f((ē)m))i−1, f((t̄2)i−1, y1, (t̄2)m−i),

(f((ē)m))n−i).

Hence by mediality we have

f((g((ē)i−1, t2, (ē)n−i))
i−1, g((ē)i−1, x1, (ē)

n−i),

(g((ē)i−1, t2, (ē)n−i))
m−i) =

f((g((ē)i−1, t2, (ē)n−i))
i−1, g((ē)i−1, y1, (ē)

n−i),

(g((ē)i−1, t2, (ē)n−i))
m−i).

Since e is an i-regular element of (A, f, g), x1 = y1.
Hence x = y. Since A is finite, this implies f((ē)m)
is an i-regular element with respect to the operation g.
Similarly, f((ē)m) is an i-regular element with respect
to the operation f , and g((ē)n) is an i-regular element
with respect to operations f and g. �

Lemma 3 Let (A, f, g) be a finite medial algebra
with the m-ary operation f and the n-ary operation
g (m 6 n) and let

a1, . . . , ai−1, ai+1, . . . , am, . . . , an

be J-regular (J ⊆ {1, 2, . . . ,m}) elements of the
algebra (A, f, g) where J contains at least two el-
ements. Then, for every b ∈ A, there are unique
x1, x2 ∈ A such that

f(ai−1
1 , x1, a

m
i+1) = b, g(ai−1

1 , x2, a
n
i+1) = b.

Proof : Suppose x1, y1 ∈ A such that

f(ai−1
1 , x1, a

m
i+1) = f(ai−1

1 , y1, a
m
i+1).

We will prove that x1 = y1. Let

g((āk)j−1, tk, (āk)n−j) = a1,

for k = 1, . . . , i− 1, i+ 1, . . . ,m. Then we have

g(f(ai−1
1 , a1, a

m
i+1), . . . , f(ai−1

1 , x1, a
m
i+1),

. . . , f(ti−1
1 , a1, t

m
i+1), . . . , f(ai−1

1 , a1, a
m
i+1))

= g(f(ai−1
1 , a1, a

m
i+1), . . . , f(ai−1

1 , y1, a
m
i+1),

. . . , f(ti−1
1 , a1, t

m
i+1), . . . , f(ai−1

1 , a1, a
m
i+1)).

Hence by mediality, we have

f(g((ā1)j−1, t1, (ā1)n−j), . . . , g((ā1)j−1, x1, (ā1)n−j),

. . . , g((ām)j−1, tm, (ām)n−j)) =

f(g((ā1)j−1, t1, (ā1)n−j), . . . , g((ā1)j−1, y1, (ā1)n−j),

. . . , g((ām)j−1, tm, (ām)n−j)).

Hence

f((ā1)i−1, g((ā1)i−1, x1, (ā1)n−i), (ā1)m−i)

= f((ā1)i−1, g((ā1)i−1, y1, (ā1)n−i), (ā1)m−i).

Two applications of the i-regularity of a1 yield x1 =
y1. Similarly, if

g(ai−1
1 , x2, a

n
i+1) = g(ai−1

1 , y2, a
n
i+1)

then x2 = y2. �
From the above lemmas we know that if the finite

medial algebra (A, f, g) (f is m-ary and g are n-ary
operations) contains an element e which is an i- and
j-regular element of (A, f, g), then:
(i) f((ē)m) and g((ē)n) are also i- and j-regular

elements for (A, f, g);
(ii) there are unique elements t1, t2 ∈ A which are i-

and j-regular for (A, f, g) such that (for i < j)

f((ē)i−1, f((ē)m), (ē)j−1−i, t1, (ē)
m−j) = e,

g((ē)i−1, g((ē)n), (ē)j−1−i, t2, (ē)
n−j) = e;

(iii) for every b ∈ A, there are unique elements
x1, x2 ∈ A such that

f((ē)i−1, x1, (ē)
j−1−i, t1, (ē)

m−j) = b,

g((ē)i−1, x2, (ē)
j−1−i, t2, (ē)

n−j) = b,

where t1, t2 are the elements described in (ii).
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It is easy to prove that in the finite medial algebra
(A, f, g) the set of J-regular elements (where J ⊆
{1, 2, . . . ,m} contains at least two elements) is closed
under the operations f, g. If the finite medial algebra
(A, f, g) contains at least one J-regular element, then
the algebra (A, f, g) contains a J-regular subset of
J-regular elements of the algebra (A, f, g) which is
closed under the operations f, g.

CHARACTERIZATION OF REGULAR
MEDIAL ALGEBRAS

We now discuss the structure of a medial algebra
(A, f, g) which does not contain an idempotent ele-
ment. We construct new operations f∗, g∗ on A in
terms of f, g, such that (f∗, g∗) is a medial pair op-
eration and the medial algebra (A, f∗, g∗) contains an
idempotent element. If certain regularity conditions
are assumed for (A, f, g) then this idempotent element
is also a J-regular element in (A, f∗, g∗) and hence
we are able to use Theorem 1 to describe the structure
of the pair operation (f∗, g∗).

Definition 3 Let f, g ∈ F be m-ary and n-ary opera-
tions (m 6 n), J ⊆ {1, 2, . . . ,m} (where J contains
at least two elements) and

a1, . . . , ai−1, ai+1, . . . , am, . . . , an

are fixed J-regular elements of the algebra (A, f, g).
The pair operation (f, g) is an (i, J)-regular pair
operation (where i ∈ J) if for every x ∈ A we have

f(ai−1
1 , x, ami+1) = g(ai−1

1 , x, ani+1). (3)

The pair operation (f, g) is a J-regular pair operation
if (f, g) is (i, J)-regular for every i ∈ J . The pair op-
eration (f, g) is a regular pair operation if a (f, g) is
J-regular pair operation for some J ⊆ {1, 2, . . . ,m}
(where J contains at least two elements).

An algebra (A,F ) is called a regular algebra
if every pair operation of (A,F ) is a regular pair
operation. The equality (3) is a co-identity in the sense
of Ref. 17.

Lemma 4 Let (A, f, g) be a medial algebra with m-
ary operation f and n-ary operation g, let π be a
permutation of {1, . . . ,m}, and let ρ be permutations
of {1, 2, . . . , n}. Then the algebra (A, f∗, g∗) defined
by the operations

f∗(xm1 ) = f(xπmπ1 ),

g∗(xn1 ) = g(xρnρ1 )

is a medial algebra.

Proof : For xij ∈ A, since (A, f, g) is a medial
algebra, we have

g∗(f∗(xm1
11 ), . . . , f∗(xmn1n ))

= g(f(xπmρ1π1ρ1 ), . . . , f(xπmρnπ1ρn ))

= g(f(xπ1ρnπ1ρ1 ), . . . , f(xπmρnπmρ1 ))

= g∗(f∗(x1n11 ), . . . , f(xmnm1 )).

Similarly, f∗ and g∗ commute with themselves. �

Lemma 5 Let (A, f, g) be a regular medial algebra
with m-ary operation f and n-ary operation g and
let e, t ∈ A be i- and j-regular elements of (A, f, g)
(i, j ∈ J ⊆ {1, 2, . . . ,m} and i < j) such that

f((ē)i−1, f((ē)m), (ē)j−1−i, t, (ē)m−j) = e,

g((ē)i−1, g((ē)n), (ē)j−1−i, t, (ē)n−j) = e.

Then the algebra (A, f∗, g∗) with operations on A,
defined by

f∗(xm1 ) = f((ē)i−1, f(xm1 ), (ē)j−1−i, t, (ē)m−j),

g∗(xn1 ) = g((ē)i−1, g(xn1 ), (ē)j−1−i, t, (ē)n−j)

is a medial algebra with e as an idempotent element.

Proof : In view of Lemma 4, it is sufficient to prove
this for i = 1 and j = 2.

g∗(f∗(x1m11 ), . . . , f∗(xnmn1 ))

= g(g(f∗(x1m11 ), . . . , f∗(xnmn1 )), t, (ē)n−2).

But

g(f∗(x1m11 ), . . . , f∗(xnmn1 ))

= g(f(f(x1m11 ), t, (ē)m−2), . . . , f(f(xnmn1 ), t, (ē)m−2))

= f(g(f(x1m11 ), . . . , f(xnmn1 )), g((t̄)n), (g((ē)n))m−2)

= f(f(g(xn111 ), . . . , g(xnm1m )), g((ē)n), (g((ē)n))m−2).

Since (A, f, g) is a regular algebra, we have

g((t̄)n) = f((t̄)m),

g((ē)n) = f((ē)m).

Hence by mediality we have

g(f∗(x1m11 ), . . . , f∗(xnmn1 ))

= f(f(g(xn111 ), . . . , g(xnm1m )), f((t̄)m), (f((ē)m))m−2)

= f(f(g(xn111 ), t, (ē)m−2), . . . , f(g(xnm1m ), t, (ē)m−2)).
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Since (A, f, g) is a regular algebra, we have

f(g(xn111 ), t, (ē)m−2) = g(g(xn111 ), t, (ē)n−2),

f(g(xnm1m ), t, (ē)m−2) = g(g(xnm1m ), t, (ē)n−2).

Hence by mediality we have

g(f∗(x1m11 ), . . . , f∗(xnmn1 ))

= f(g(g(xn111 ), t, (ē)n−2), . . . , g(g(xnm1m ), t, (ē)n−2))

= f(g∗(xn111 ), . . . , g∗(xnm1m )).

Hence

g∗(f∗(x1m11 ), . . . , f∗(xnmn1 ))

= g(g(f∗(x1m11 ), . . . , f∗(xnmn1 )), t, (ē)n−2)

= g(f(g∗(xn111 ), . . . , g∗(xnm1m )), t, (ē)n−2)

= f(f(g∗(xn111 ), . . . , g∗(xnm1m )), t, (ē)m−2)

= f∗(g∗(xn111 ), . . . , g∗(xnm1m ))

since (A, f, g) is a regular algebra. Hence (f∗, g∗) is a
medial pair operation. Similarly, f∗ and g∗ commute
with themselves. Hence (A, f∗, g∗) is a medial alge-
bra. It is clear that f∗((ē)m) = g∗((ē)n) = e. �

Lemma 6 Let (A, f, g) be a regular medial algebra
with m-ary operation f and n-ary operation g. Then
there is a commutative semigroup (A,+) such that

f(xm1 ) = ϕ(α1x1 + . . .+ αmxm),

g(xn1 ) =

ψ(α1x1+. . .+αmxm+βm+1xm+1+ . . .+βnxn),

where αm1 , β
n
1 are pairwise commuting endomor-

phisms of (A,+) and ϕ, ψ are bijections on the set
A for 2 6 m 6 n.

Proof : Let J ⊆ {1, 2, . . . ,m}, i, j ∈ J and e be
an i- and j-regular element in (A, f, g). Then by
the results of the preceding section, there is an i-, j-
regular element t such that

f((ē)i−1, f((ē)m), (ē)j−1−i, t, (ē)m−j) = e,

g((ē)i−1, g((ē)n), (ē)j−1−i, t, (ē)n−j) = e,

since (A, f, g) is a regular algebra. Furthermore, for k
either i or j, and any b ∈ A, the equations

f((ē)i−1, f((ē)k−1, x, (ē)m−k), (ē)j−1−i, t, (ē)m−j)

= b,

g((ē)i−1, g((ē)k−1, x, (ē)n−k), (ē)j−1−i, t, (ē)n−j)

= b,

have unique solutions. Hence e is an i-, j-regular
element with respect to the pair operation (f∗, g∗) on
A defined by

f∗(xm1 ) = f((ē)i−1, f(xm1 ), (ē)j−1−i, t, (ē)m−j),

g∗(xn1 ) = g((ē)i−1, g(xn1 ), (ē)j−1−i, t, (ē)n−j).

Hence by Lemma 5 the pair operation (f∗, g∗) is
medial with e as an idempotent i-, j-regular element.
Thus by Theorem 1 there is a commutative semigroup
(A,+) with the unit element e such that

f∗(xm1 ) = α1x1 + · · ·+ αmxm,

g∗(xn1 ) = β1x1 + · · ·+ βnxn,

where αm1 , β
n
1 are commuting endomorphisms of

(A,+). But (A, f, g) is a regular algebra αi = βi
for i = 1, 2, . . .m. Hence

g∗(xn1 )

= α1x1+· · ·+αmxm + βm+1xm+1+· · ·+βnxn.

Again, by the results of the previous section, the
mappings

ϕ−1 : x→ f((ē)i−1, x, (ē)j−1−i, t, (ē)m−j),

ψ−1 : x→ g((ē)i−1, x, (ē)j−1−i, t, (ē)n−j),

are bijections on the set A. Thus f(xm1 ) = ϕf∗(xm1 )
and g(xn1 ) = ψg∗(xn1 ). �

Lemma 7 Let (A,+) be a commutative semigroup
with a unit element and let ϕ1, . . . , ϕm be bijections
on the set A such that

ϕ1(x11+· · ·+x1m)+· · ·+ϕm(xm1+· · ·+xmm)

= ϕ1(x11+· · ·+xm1)+· · ·+ ϕm(x1m+· · ·+xmm).
(4)

Then there is an automorphism η of (A,+) and fixed
elements cn1 such that for each i, we have

ϕix = ηx+ ci,

for all x ∈ A.

Proof : Let (A,+) be a commutative semigroup with
a unit element e. In (4), for fixed i and all j except
j = 1, put xij = ϕ−1

i e and let all other xpq be unit
elements except x1i and xi1. Then we have

ϕ1x1i + ϕixi1 = ϕ1xi1 + ϕix1i.

Hence if x1i = ϕ−1
1 e then

ϕixi1 = ϕ1xi1 + ϕiϕ
−1
1 e
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for all xi1 ∈ A. Since ϕ1, ϕi are permutations on
(A,+) for all x ∈ A we have

ϕix = ϕ1x+ ki,

where ki is a fixed regular element of (A,+). Substi-
tuting for the ϕi in the equation (4) and cancelling the
ki, which we may do since they are regular elements,
we get

ϕ1(x11+· · ·+x1m)+· · ·+ϕ1(xm1+· · ·+xmm)

= ϕ1(x11+· · ·+xm1)+· · ·+ϕ1(x1m+· · ·+xmm).
(5)

In (5) let xii = ϕ−1
1 e where i 6= 1, 2 and let all other

xij be the unit element e except x11, x12. Then, we
have

ϕ1(x11 + x12) + ϕ1e = ϕ1x11 + ϕ1x12,

for all x11, x12. Hence if x11 = x12 = ϕ−1
1 e, then

ϕ1(ϕ−1
1 e+ ϕ−1

1 e) + ϕ1e = e.

It means that ϕ1e has an additive inverse and hence is
a regular element. Now we define a bijection η on A
by

ϕ1x = ηx+ ϕ1e,

for all x ∈ A. It follows immediately that η is an
automorphism of (A,+). Hence

ϕix = ϕ1x+ ki = ηx+ ϕ1e+ ki = ηx+ ci,

where ci = ϕ1e + ki as the sum of two regular
elements is a regular element. �

Theorem 2 Let (A, f, g) be a regular medial algebra
with m-ary operation f and n-ary operation g (m 6
n). Then there is a commutative semigroup (A,+)
with a unit element such that

f(xm1 ) = γ1x1 + · · ·+ γmxm + d1,

g(xn1 ) = λ1x1 + · · ·+ λnxn + d2

where d1, d2 are fixed regular elements in (A,+)
and γm1 , λ

n
1 are commuting automorphisms of the

semigroup (A,+) (J ⊆ {1, 2, . . . ,m}).

Proof : Let (A, f, g) be a regular medial algebra.
By Lemma 6 we know that there is a commutative
semigroup with a unit element e such that

f(xm1 ) = ϕ(α1x1 + · · ·+ αmxm),

g(xn1 ) = ψ(β1x1 + · · ·+ βnxn)

where αm1 , β
n
1 are pairwise commuting endomor-

phisms of (A,+), and ϕ,ψ are bijections on the setA,
and αi = βi for i = 1, 2, . . . ,m. Since the operation
f is medial we have

ϕ(α1ϕ(α1x11 + · · ·+ αmx1m)

+ · · ·+ αmϕ(α1xm1 + · · ·+ αmxmm))

= ϕ(α1ϕ(α1x11 + · · ·+ αmxm1)

+ · · ·+ αmϕ(α1x1m + · · ·+ αmxmm)).

Hence

α1ϕα
−1
1 (α1α1x11 + · · ·+ α1αmx1n)

+ · · ·+ αmϕα
−1
n (αmα1xm1 + · · ·+ αmαmxmm)

= α1ϕα
−1
1 (α1α1x11 + · · ·+ α1αmxn1)

+ · · ·+ αmϕα
−1
n (αmα1x1m + · · ·+ αmαmxmm),

since ϕ is a bijection. Let χi = αiϕα
−1
i and

αiαjxij = yij . Then by substitution and since
α1, . . . , αm are commuting endomorphisms of the
commutative semigroup (A,+), we have

χ1(y11 + · · ·+ y1m) + · · ·+ χm(ym1 + · · ·+ ymm)

= χ1(y11+ · · ·+ym1)+ · · ·+χm(y1m+ · · ·+ymm).

Hence by the preceding lemma, there is an automor-
phism η of the semigroup (A,+) and regular elements
c1, . . . , cm such that

χix = αiϕα
−1
i x = ηx+ ci,

ϕx = α−1
i ηαix+ α−1

i αici,

ϕx = σx+ d1,

where σ = α−1
i ηαi is an automorphism of the

semigroup (A,+) and d1 = α−1
i αici is a fixed regular

element in (A,+). Hence

f(xm1 ) = γ1x1 + · · ·+ γmxm + d1

where γi = σαi is an automorphism of the semigroup
(A,+). Similarly,

g(xn1 ) = λ1x1 + · · ·+ λnxn + d2.

It is easy to check that γm1 , λ
n
1 are commuting auto-

morphisms of the semigroup (A,+). �

Corollary 2 Let (A,F ) be a regular medial algebra.
Then there exists a commutative semigroup (A,+)
such that every operation f ∈ F has the represen-
tation

f(xm1 ) = γ1x1 + · · ·+ γmxm + d,
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where d is a fixed regular element in (A,+) and
γ1, . . . , γm are commuting automorphisms of the
semigroup (A,+).

Corollary 3 If (Q, f) is a medial n-ary quasigroup,
then there exists an abelian group (Q,+) such that

f(xm1 ) = α1x1 + · · ·+ αmxm + d,

where the αi’s are pairwise commuting automor-
phisms of the group (Q,+) and d ∈ Q 15.
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