
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2014.40.089
ScienceAsia 40 (2014): 89–93

Two new Levenberg-Marquardt methods for nonsmooth
nonlinear complementarity problems
Yuan-yuan Chena,b,∗, Yan Gaoa

a School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China
b College of Mathematics, Qingdao University, Qingdao, 266071, China

∗Corresponding author, e-mail: usstchenyuanyuan@163.com
Received 13 Jan 2013
Accepted 7 Nov 2013

ABSTRACT: The Levenberg-Marquardt method and its variants are of particular importance for solving nonsmooth
systems of equations. In this paper, we present two kinds of new Levenberg-Marquardt method for nonsmooth nonlinear
complementarity problems. Under some assumptions, the present methods are shown to be convergent. Results of numerical
experiments are also given.
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INTRODUCTION

Nonlinear complementarity problem have been pro-
posed in the study of the nonlinear programming prob-
lems, the variational inequality, equilibrium problems,
and engineering mechanics1–3. There has been intense
research on nonlinear complementarity problems and
related nonlinear equations4, 5. In the past few years,
there has been a growing interest in the study of
nonsmooth nonlinear complementarity problems6, 7.
In this paper, we focus on the nonsmooth nonlinear
complementarity problem

F (x) > 0, Z(x) > 0, Z(x)TF (x) = 0, (1)

where F : Rn → Rn is locally Lipschitzian and
Z : Rn → Rn is continuously differentiable. When
Z(x) = x, (1) is the problem, which has been
considered in Refs. 2, 3.

In the next section, we recall some results of
generalized Jacobian and semismoothness. We then
give the new Levenberg-Marquardt methods for the
nonsmooth nonlinear complementarity problem. The
convergence results of the new Levenberg-Marquardt
algorithms are also given. Finally, numerical experi-
ments are described.

PRELIMINARIES

A quantity with a subscript k denotes that quantity
evaluated at xk. The vector norm is the l2 norm.
We write F (x) = (f1(x), . . . , fn(x))T, Z(x) =
(z1(x), . . . , zn(x))T.

Let H be locally Lipschitzian. Then H is almost
everywhere F-differentiable. Let the set of points

where H is F-differentiable be denoted by DH . Then
for x ∈ Rn,

∂BH(x) = {V ∈ Rn×n | ∃{xk} ∈ DH , {xk} → x,

{H ′(xk)} → V }.

The general Jacobian of H(x) : Rn → Rn at x in the
sense of Clark is

∂H(x) = conv ∂BH(x).

Proposition 1 (Ref. 3) If ∂BH(x) is a nonempty
and compact set for any x, the point to set B-
subdifferential map is upper semicontinuous.

Definition 1 H(x) is semismooth at x if H(x) is
locally Lipschitz at x and

lim
V ∈∂H(x+th′)

h′→h, t↓0

V h′

exists for any h ∈ Rn. IfH(x) is semismooth at x, we
know V h − H ′(x;h) = o(‖h‖), ∀V ∈ ∂H(x + h),
h → 0. If for any V ∈ ∂H(x + h), h → 0, V h −
H ′(x;h) = o(‖h‖2), we say that the function H(x)
strongly semismooth at x.

Proposition 2 (Ref. 3) IfH(x) : Rn → Rn is locally
Lipschitz continuous and semismooth at x, then

lim
V ∈∂H(x+th)

h→0

‖H(x+ h)−H(x)− V h‖
‖h‖

= 0.

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.089
http://www.scienceasia.org/2014.html
mailto:usstchenyuanyuan@163.com
www.scienceasia.org


90 ScienceAsia 40 (2014)

If H(x) : Rn → Rn is locally Lipschitz continuous,
strongly semismooth at x, and directionally differen-
tiable in a neighbourhood of x, then

lim sup
V ∈∂H(x+th)

h→0

‖H(x+ h)−H(x)− V h‖
‖h‖2

<∞.

NEW LEVENBERG-MARQUARDT METHODS
AND THEIR CONVERGENCE

Evidently, the above nonsmooth nonlinear comple-
mentarity problem can be reformulated as the nons-
mooth equation

min{zi(x), fi(x)} = 0, i = 1, . . . , n. (2)

Let
G(x) = (g1(x), . . . , gn(x))T,

where

gi(x) = min{zi(x), fi(x)}, i = 1, . . . , n.

Hence (2) can be rewritten as

G(x) = 0. (3)

In Ref. 7 they define the set-valued mapping x →
V (x) as

V (x) = V1(x)× · · · × Vn(x), (4)

where

Vi(x) =

{
{∇zi(x)}, zi(x) 6 fi(x);

∂Bfi(x), zi(x) > fi(x).

Newton’s method for solving the nonsmooth nonlinear
complementarity problem is given by

xk+1 = xk − ξ−1k G(xk), ξk ∈ V (xk).

Because V (x) is not a subdifferential of G(x) and not
even upper-semicontinuous, a kind of subdifferential
of G(x) was also given in Ref. 7 by the set-valued
mapping

V̄ (x) = V̄1(x)× · · · × V̄n(x),

where

V̄i(x) =


{∇zi(x)}, zi(x) < fi(x);

{∇zi(x)}
⋃
∂Bfi(x), zi(x) = fi(x);

∂Bfi(x), zi(x) > fi(x).

It is easy to see that V (x) ⊂ V̄ (x) for ∀x ∈ Rn. The
following propositions give the properties of V̄ (x).

Proposition 3 (Ref. 7) The set-valued mapping
V̄ (x) is upper-semicontinuous.

Proposition 4 (Ref. 7) Suppose x0 ∈ Rn. If all V0 ∈
V̄ (x0) are nonsingular, then there exists β̄ > 0 such
that

‖V −10 ‖ 6 β̄, ∀V0 ∈ V (x0).

The Levenberg-Marquardt method is one of the most
used methods for solving optimization problems8, 9.
We are now in the position to consider the local
versions of Levenberg-Marquardt type methods for
the nonsmooth nonlinear complementarity problem
(1). Similar methods have also been mentioned in
Ref. 10. Given a starting vector x0 ∈ Rn, let xk+1 =
xk + dk, where dk is the solution of the system

((Vk)TVk + σkI)d = −(Vk)TG(xk),

Vk ∈ V̄ (xk), σk > 0.

In the inexact versions of this method, dk can be given
by the solution of the system

((Vk)TVk + σkI)d = −(Vk)TG(xk) + rk,

Vk ∈ V̄ (xk), σk > 0,
(5)

where rk is the vector of residuals and we can assume
‖rk‖ 6 αk‖(Vk)TG(xk)‖ for some αk > 0. We now
give a local convergence Levenberg-Marquardt type
method for (1).

Algorithm 1 Levenberg-Marquardt Method I
Step 1: We are given x0, ε > 0, λki ∈ Rn, 0 < |λki | <

+∞.
Step 2: Solve the system to get dk:

((Vk)TVk + diag(λ
(k)
i gi(xk)))d =

− (Vk)TG(xk) + rk, Vk ∈ V (xk), (6)

for i = 1, . . . n and rk is the vector of residuals

‖rk‖ 6 αk‖(Vk)TG(xk)‖, αk > 0.

Step 3: Set xk+1 = xk + dk. If ‖G(xk)‖ 6 ε,
terminate. Otherwise, let k := k + 1 and go to
Step 2.

Based upon the above analysis, we give the following
local convergence result for Algorithm 1.

Lemma 1 Suppose that x? is a solution of the prob-
lem (1). We have

‖diag(λ
(k)
i gi(xk))‖ 6M,

for ∀x ∈ U(x?, δ), for λ(k)i ∈ R, i = 1, . . . , n.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org


ScienceAsia 40 (2014) 91

Proof : Use the fact that the function in (1) is locally
Lipschitzian and continuous. �

Theorem 1 Suppose that {xk} is a sequence gener-
ated by the above method and there exist constants
a > 0, αk 6 a for all k. Let x? be a solution
of the problem (1), G be semismooth at x?, and all
V? ∈ V̄ (x?) be nonsingular. Then the sequence {xk}
converge Q-linearly to x? for ‖x0 − x?‖ 6 ε.

Proof : By Lemma 1, for all xk sufficiently close to
x?, we get

‖((Vk)TVk + diag(λ
(k)
i gi(xk)))−1‖

6
β̄2

1− β̄2(M + ε)
.

Let C = β̄2/(1− β̄2(M + ε)). We have

‖((Vk)TVk + diag(λ
(k)
i gi(xk)))−1‖ 6 C.

Furthermore, by Proposition 2, there exists δ̄ > 0,
which can be taken arbitrarily small, such that

‖G(xk)−G(x?)− Vk(xk − x?)‖ 6 δ̄‖xk − x?‖

for all xk in a sufficiently small neighbourhood of
x? depending on δ̄. By Proposition 3 and the upper
semicontinuity of the V̄ (x), we also know that for all
Vk ∈ V (x) ⊂ V̄ (x) and all xk sufficiently close to x?

‖(Vk)T‖ 6 c1,

where c1 > 0 is a suitable constant From the locally
Lipschitz continuity of G(x), we have

‖(Vk)TG(xk)‖ 6 ‖(Vk)T‖‖G(xk)−G(x?)‖
6 c1L‖xk − x?‖,

for all xk in a sufficiently small neighbourhood of x?

and a constant L > 0. We also know that

[(Vk)TVk + diag(λ
(k)
i gi(xk))](xk+1 − x?)

= [(Vk)TVk + diag(λ
(k)
i gi(xk))](xk − x?)

− (Vk)TG(xk) + rk

= (Vk)T[G(x?)−G(xk) + Vk(xk − x?)]

+ diag(λ
(k)
i gi(xk))(xk − x?) + rk.

Multiplying the above equation by [(Vk)TVk +

diag(λ
(k)
i gi(xk))]−1 and taking into account the

above results, we get

‖xk+1 − x?‖ 6 C(‖(Vk)T‖‖G(xk)−G(x?)

− Vk(xk − x?)‖+ ‖diag(λ
(k)
i gi(xk))‖

‖xk − x?‖+ a‖(Vk)TG(xk)‖)
6 C(c1δ‖xk − x?‖

+M‖xk − x?‖+ ac1L‖xk − x?‖)
= C(c1δ̄ +M + ac1L)‖xk − x?‖.

Let ϑ = C(c1δ̄ +M + ac1L). Then

‖xk+1 − x?‖ 6 ϑ‖xk − x?‖.

Since δ̄ can be chosen to be arbitrarily small, by taking
xk sufficiently close to x?, there exist M > 0 and a >
0 such that ϑ < 1, so that the Q-linear convergence
of {xk} to x? follows by taking ‖x0 − x?‖ 6 ε for a
small enough ε > 0. Thus we complete the proof of
the theorem. �

Theorem 2 Suppose that {xk} is a sequence gener-
ated by the above method and there exist constants
a > 0, αk 6 a for all k such that ‖rk‖ 6 αk‖G(xk)‖,
αk > 0. Let x? be a solution of the problem (1), G be
semismooth at x?, and all V? ∈ V̄ (x?) be nonsingular.
Then the sequence {xk} converge Q-linearly to x? for
‖x0 − x?‖ 6 ε.

The proof of Theorem 2 is similar to that for
Theorem 1 so we omit it.

Remark 1 Theorem 1 and Theorem 2 hold with
‖rk‖ = 0.

Remark 2 In Algorithm 1, if dk is computed by
(5) instead of (6), then Theorem 1, Theorem 2, and
Remark 1 can also be obtained.

In the following, we give the global versions of
the Levenberg-Marquardt type method for the above
nonsmooth nonlinear complementarity problem (1).
In this section, we assume that the merit function

Ψ(x) = 1
2‖G(x)‖2

is continuously differentiable.
We now describe the new Levenberg-Marquardt

method for (1). The global convergence of the method
is also given.

Algorithm 2 Levenberg-Marquardt Method II
Step 1: We are given x0 ∈ Rn, α, β, γ ∈ (0, 1), µ0 =
‖G(x0)‖2, k := 0.
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Step 2: If ‖∇Ψ‖ = 0 then stop. Otherwise, compute
dk by the system of linear equations

(V T
k Vk + µkI)d = −V T

k G(xk), (7)

where Vk ∈ V (xk).
Step 3: If dk satisfies

‖G(xk + dk)‖ 6 γ‖G(xk)‖, (8)

set xk+1 = xk + dk, otherwise compute xk+1 by
xk+1 = xk + βmkdk, where mk is the smallest
nonnegative integer m such that

Ψ(xk+βmdk)−Ψ(xk) 6 αβm∇Ψ(xk)Tdk.
(9)

If ‖∇Ψ‖ = 0, terminate. Otherwise, let µk+1 =
‖G(xk+1)‖2, k := k + 1, and go to Step 2.

In the following, we give the global convergence
result.

Theorem 3 {xk} is a sequence generated by Algo-
rithm 2. Then any accumulation point x∗ of {xk} is a
stationary points of Ψ.

Proof : Since ∇Ψ 6= 0 implies dk 6= 0, from (7) and
the above analysis, we get

∇Ψ(xk)Tdk = (V T
k Vk)Tdk

= − ((V T
k Vk + µkI)dk)Tdk < 0.

By (8) and (9), we know {Ψ(xk)} is monotonically
decreasing and µk has a limit. If µk → 0, then any
accumulation point of {xk} is a solution of (1). If

lim
k→∞

µk = µ̄ > 0,

then we have

∇Ψ(xk)Tdk = −((V T
k Vk+µkI)dk)Tdk < −µ̄‖dk‖2.

Hence any accumulation point of {xk} is a solution of
(1). So we complete the proof. �

Remark 3 The different merit functions can be based
on the well-known Fischer-Burmeister function

ϕ(a, b) =
√
a2 + b2 − a− b.

Then we can see that (1) is equivalent to the problem

Φ(x) =

 ψ(F1, Z1)
...

ψ(Fn, Zn)

 = 0.

Table 1 Numerical tests for Example 1 using Algorithm 1.

iteration xk G(x)

2 (0.5009, 1.0000)T (0.2509, 0.1254)T

3 (0.2509, 1.0000)T (0.0630, 0.0315)T

4 (0.1257, 1.0000)T (0.0158, 0.0079)T

5 (0.0630, 1.0000)T (0.0039, 0.0019)T

6 (0.0315, 1.0000)T (0.99, 0.49)T × 10−3

7 (0.0158, 1.0000)T (0.25, 0.12)T × 10−3

8 (0.0079, 1.0000)T (0.62, 0.31)T × 10−4

9 (0.0039, 1.0000)T (0.15, 0.07)T × 10−4

10 (0.0019, 1.0000)T (0.39, 0.19)T × 10−5

11 (0.0009, 1.0000)T (0.99, 0.49)T × 10−6

12 (0.0004, 1.0000)T (0.24, 0.12)T × 10−6

13 (0.0002, 1.0000)T (0.62, 0.31)T × 10−7

14 (0.0001, 1.0000)T (0.15, 0.07)T × 10−7

15 (0.0000, 1.0000)T (0.39, 0.19)T × 10−8

The merit function Ψ(x) in the above methods can be
defined by

Ψ(x) = 1
2‖Φ(x)‖.

Then the above merit function is a continuously dif-
ferentiable map and the Fischer-Burmeister function
can also be replaced by the family of new nonlinear
complementarity problem functions11

φnew(a, b) = ‖(a, b)‖p − (a+ b),

where p is any fixed real number in the interval
(1,+∞) and ‖(a, b)‖p denotes the p-norm of (a, b).
Then we can see that (1) is equivalent to the problem

Φp(x) =

 ψnew(F1, Z1)
...

ψnew(Fn, Zn)

 = 0.

The merit function Ψ(x) in the above methods can
also be defined by

Ψp(x) = 1
2‖Φp(x)‖.

By some assumptions, we can give the global conver-
gence results of Algorithm 2 by using Ψp(x).

NUMERICAL TESTS

In this section, in order to show the performance of
the above new Levenberg-Marquardt type methods,
we present some numerical results for them. The
results indicate that the new Levenberg-Marquardt
algorithms work quite well in practice.

Example 1 We consider the complementarity prob-
lem

F (x) > 0, Z(x) > 0, Z(x)TF (x) = 0,
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Table 2 Numerical tests for Example 1 using Algorithm 2.

iteration xk G(x)

2 (0.5009, 1.0000)T (0.2509, 0.1254)T

3 (0.1866, 1.0000)T (0.0348, 0.0174)T

4 (0.1703, 1.0000)T (0.0290, 0.0145)T

5 (0.1580, 1.0000)T (0.0249, 0.0124)T

6 (0.1481, 1.0000)T (0.0219, 0.0109)T

7 (0.1400, 1.0000)T (0.0196, 0.0098)T

8 (0.1331, 1.0000)T (0.0177, 0.0088)T

9 (0.1272, 1.0000)T (0.0161, 0.0080)T

10 (0.1221, 1.0000)T (0.0149, 0.0074)T

11 (0.1175, 1.0000)T (0.0138, 0.0069)T

12 (0.1134, 1.0000)T (0.0128, 0.0064)T

13 (0.1098, 1.0000)T (0.0120, 0.0060)T

where the functions

F (x1, x2) = (max{x21, 56x
2
1},max{x21, x21 + 3x22})T,

Z(x1, x2) = (2x21 + x22 + 10, 12x
2
1)T.

We use Algorithm 1 to compute Example 1. Results
for Example 1 with initial point x0 = (0.1, 0.7)T,
αk ≡ 1 and λ1 = 0.01, λ2 = 0.01, ε = 1× 10−4

are presented in Table 1.
Now we use Algorithm 2 to compute Example 1.

Results for Example 1 with initial point x0 = (1, 1)T

and λ1 = 0.01, λ2 = 1, ε = 1× 10−4 are presented
in Table 2.
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