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ABSTRACT: We analyse the aftershocks of the Wenchuan earthquake in 2008 using a multivariate non-normal distribution
fitted to the observations for the variables selected from the inter-aftershock times, depths, magnitudes, sines and cosines of
the azimuths, slant angles, and slip angles of a number l + 1 of consecutive aftershocks. From the multivariate distribution,
we find a prediction interval for the occurrence time of the next aftershock when the values of the other selected variables
are given. The performance of the prediction interval is assessed by its ability to cover the observed occurrence time of the
next aftershock, and by the average length of the interval. A similar prediction interval is also obtained for the magnitude
of the next aftershock. It is found that as l increases from 1–4, while the performance of the prediction interval for the
magnitude of the aftershock improves only slightly, that of the prediction interval for the inter-aftershock time improves
quite substantially. The Wenchuan model with l = 4 is also used for predicting the inter-aftershock time in the 2011 Tohoku
earthquake. It is found that the drop in the coverage probability of the prediction interval for the next aftershock time in the
Tohoku earthquake is only about 8%, indicating that the characteristics of the aftershocks at different locations of the earth
might have some similarities.
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INTRODUCTION

An aftershock is a smaller earthquake that occurs after
a previous large earthquake, in the same region of
the main shock. Earthquakes and aftershocks follow
several empirical laws. The Omori law proposed by
Omori in 1894 describes the aftershock frequency
as one which decreases by roughly the reciprocal of
time after the main shock. Bath’s law states that
the differences in magnitude between a mainshock
and its largest aftershock is constant, regardless of
the mainshock magnitude. Gutenberg-Richter’s law
states that in any given region and time period, the
number N of earthquakes having a magnitude of at
least M is given by N = 10(a−bM), where a and
b are constants. While tending to follow these laws,
the actual times of occurrence and magnitudes of the
earthquakes and aftershocks are stochastic. Ref. 1
used a point process technique to study the temporal
component of the earthquake activity. More sophisti-
cated models which express the conditional intensity
function of aftershocks as a function of the occurrence
times and magnitudes of the previous aftershocks can
be found in Refs. 2, 3. Some authors included the
spatial location of the shocks in their models4, 5.

Presently, we fit a multivariate non-normal dis-
tribution called the multivariate power-normal distri-
bution to the variables given by the inter-aftershock
times, depths, magnitudes, sines and cosines of the
azimuths, slant angles, slip angles of the current after-
shock and l − 1 previous shocks, and the occurrence
time of the next aftershock. From the multivariate
distribution, we find the prediction interval for the oc-
currence time of the next aftershock when the values
of the after variables are given. When l varies from 1–
4, the prediction interval is found to have a coverage
probability which is close to the target value, and there
is a substantial decrease in the average length of the
prediction interval. The omission of the sines and
cosines of the three angles is found to have an obvious
effect on the average length of the prediction interval
when l 6 3.

A similar prediction interval is also obtained for
the magnitude of the next aftershock. When l varies
from 1–4, the prediction interval is found to have a
coverage probability which is close to the target value,
and there is only a slight decrease in the average length
of the prediction interval. The omission of the sines
and cosines of the three angles is found to result in a
slight increase in the average length of the prediction
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interval.
The layout of the paper is as follows. Next we

define the variables which will be included to form
the multivariate power-normal distribution. Then we
describe the method given in Ref. 5 for deriving the
conditional probability density function (pdf) of a par-
ticular variable from the multivariate power-normal
distribution. The method given in Ref. 5 for fitting the
multivariate power-normal distribution is described
and finally we give the coverage probabilities and
average lengths of the prediction intervals for the
occurrence time and magnitude of the next aftershock
in the Wenchuan earthquake.

VARIABLES INCLUDED FOR FORMING
MULTIVARIATE POWER-NORMAL
DISTRIBUTION

Let Vi be the time of occurrence of the ith aftershock
of the earthquake which occurred at time V0. Next, let
hi = (ti, di,mi, S

(1)
i , C

(1)
i , S

(2)
i , C

(2)
i , S

(3)
i , C

(3)
i ) be

the vector of characteristics of the ith aftershock. The
components in hi are defined as: ti = Vi−Vi−1 is the
inter-aftershock time, di the depth, mi the magnitude,
S
(j)
i and C(j)

i , j = 1, 2, 3, respectively, the sinus and
cosines of the azimuths, slant angles, and slip angles,
of the ith aftershock.

In this paper, we try to predict the time ti+1

elapsed before the occurrence of the (i + 1)th after-
shock using the present value hi and the lag values
hi−1, . . . ,hi−l+1, where l = 1, 2, . . .. To carry
out the prediction, we first find a multivariate power-
normal distribution for (hi−l+1, . . . ,hi−1,hi, ti+1),
which has 9l + 1 components. From the multi-
variate power-normal distribution, we find the con-
ditional distribution for ti+1 when the values of
hi,hi−1, . . . ,hi−l+1 are given. The interval formed
by the 100(α/2)% and 100(1 − α/2)% points of the
conditional distribution may then be regarded as a
prediction interval for the future value ti+1. When
the above 100(α/2)% point is negative, we may set
the lower limit of the prediction interval to be zero.
The performance of the prediction interval may be
assessed by its ability to cover the future value ti+1,
and its average length.

CONDITIONAL PDF DERIVED FROM
MULTIVARIATE POWER-NORMAL
DISTRIBUTION

Ref. 6 considered the following power transformation

ε̃ = ψ(λ+, λ−, z)

=


[(1 + z)λ

+ − 1]/λ+, z > 0, λ+ 6= 0,

log(1 + z), z > 0, λ+ = 0,

− [(1− z)λ− − 1]/λ−, z < 0, λ− 6= 0,

− log(1− z), z < 0, λ− = 0.

(1)

If z has the standard normal distribution, then ε̃ has
a non-normal distribution which is derived by a type
of power transformation of a random variable with
normal distribution. We may say that ε̃ has a power-
normal distribution.

We may now use the univariate power-normal
distribution to obtain the multivariate power-normal
distribution. First let y be a vector consisting of k
correlated random variables. The vector y is said to
have a k-dimensional power-normal distribution with
parameters µ,H , λ+i , λ−i , σi, 1 6 i 6 k, if

y = µ+H ε

where µ = E(y), H is an orthogonal matrix,
ε1, . . . , εk are uncorrelated, for

εi =
σi[ε̃i − E(ε̃i)]√

Var(ε̃i)
(2)

where σi > 0 is a constant, and ε̃i has a power-normal
distribution with parameters λ+i and λ−i . When the
values of y1, . . . , yk−1 are given, we may find an
approximation for the conditional pdf of yk by using
the following numerical procedure.

(1) Select a large integer Np > 0 and compute
y
(ip)
k = y−k + (ip − 1)h, 1 6 ip 6 Np, where
y+k and y−k are such that P (y−k < yk 6 y+k ) is
close to 1, and h = (y+k − y

+
k )/Np.

(2) Form the vector y(ip) = (y1, . . . , yk−1, y
(ip)
k )′

and find the value of ε(ip) such that

y(ip) = µ+H ε(ip).

(3) Replace (λ+, λ−) in (1) by (λ+i , λ
−
i ) and find

z such that εi = ε
(ip)
i . Let the answer of z be

denoted by z(ip)i .
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(4) Compute

fip =

k∏
i=1

exp

[
−
(
z
(ip)
i

)2
/2

]
√

2π
∣∣∣(dεi/dzi)zi=z(ip)

i

∣∣∣ .
(5) Estimate the conditional pdf (evaluated at y(ip)k )

of yk by fip/
∑Np

ip=1 fip ..

ESTIMATION OF PARAMETERS IN
MULTIVARIATE POWER-NORMAL
DISTRIBUTION

We may use the following procedure to estimate the
parameters in the multivariate power-normal distribu-
tion for a vector of which the ith observed value is
(hi−l+1, . . . ,hi−1,hi, ti+1).

(1) Let L = 9l and

r̃(n1) = (hi−l+1, . . . ,hi−1,hi, ti+1)′

when i = n1. The value r̃(n1) may be viewed as
the n1th observed value of a certain (L+ 1)× 1
vector r̃ of random variables.

(2) Compute

r̄i =
1

N1

N1∑
n1=1

r̃
(n1)
i

and

m
(k1,k2)
ij

=
1

N1

N1∑
n1=1

(
r̃
(n1)
i − r̄i

)k1 (
r̃
(n1)
j − r̄j

)k2
,

1 6 i, j 6 L+ 1.

(3) Compute the L+ 1 eigenvectors of the variance-
covariance matrix {m(1,1)

ij − m(1,0)
ij m

(0,1)
ij } and

form the matrix H1 of which the ith column is
the ith eigenvector.

(4) Compute s(n1) = H ′1(r̃(n1) − r̄).

(5) Compute

m
(k)
i =

1

N1

N1∑
n1=1

(
s
(n1)
i

)k
,

1 6 i 6 L+ 1, k = 2, 3, 4.

(6) Find (λ+i , λ
−
i ) and σi such that E(εki ) = m

(k)
i ,

where εi is defined in (2) and 1 6 i 6 l + 1,
k = 2, 3, 4.

Table 1 Coverage probability and expected length of
prediction interval for next aftershock time measured in days
(α = 0.05).

l Coverage Probability Expected Length

With angles Without angles With angles Without angles

1 0.9512 0.9561 1.5589 1.7736
2 0.9314 0.9412 1.1231 1.1547
3 0.9360 0.9409 1.0944 1.1951
4 0.9303 0.9208 0.9303 0.9322
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Fig. 1 Prediction intervals for next aftershock time in
the 2008 Wenchuan earthquake: upper limit (dark grey),
observed time (light grey), lower limit (black).

(7) The variable r̃ may then be expressed as r̃ =
r̄ + H1ε which has an (L + 1)-dimensional
multivariate power-normal distribution with pa-
rameters

r̄,H1, λ
+
i , λ

−
i , σi , i = 1, . . . , L+ 1.

PREDICTION OF NEXT AFTERSHOCK TIME
AND MAGNITUDE OF WENCHUAN
EARTHQUAKE

The Wenchuan aftershocks from 12 May 2008 to
7 August 2008 with magnitude larger than MW 3.0
shall be analysed in this section. By using the results
in previous sections, we obtain the coverage probabil-
ities and expected lengths of the prediction intervals
for the occurrence time and magnitude of the next
aftershock. The numerical results thus obtained are
shown in Table 1 and Table 2.

Table 1 shows that as l increases from 1–4, the
prediction interval for the next aftershock time has a
coverage probability which is not very far from the
target value 0.95, and there is a substantial decrease
in the average length of the prediction interval irre-
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Table 2 Coverage probability and expected length of
prediction interval for next aftershock magnitude measured
in MW (α = 0.05).

l Coverage Probability Expected Length

With angles Without angles With angles Without angles

1 0.9265 0.9415 1.4384 1.4888
2 0.9559 0.9461 1.4212 1.4632
3 0.9507 0.9405 1.4093 1.4658
4 0.9455 0.9406 1.3984 1.4660
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Fig. 2 Prediction intervals for the next aftershock magnitude
in the 2008 Wenchuan earthquake: upper limit (dark grey),
observed magnitude (light grey), lower limit (black).

spective of whether the sines and cosines of the three
angles are included in the list of variables for forming
the multivariate power-normal distribution. The table
also shows that the omission of the angles has an
obvious effect on the average length of the prediction
interval when l 6 3. The prediction intervals for
l = 4, with angles, are also shown in Fig. 1.

From Table 2, we see that as l increases from
1–4, the prediction interval for the next aftershock
magnitude has a coverage probability which is quite
close to the target value 0.95, and there is only a
slight decrease in the average length of the prediction
interval. The omission of the angles is found to yield a
slight increase in the average length of the prediction
interval. The prediction intervals for l = 4, with
angles, are given in Fig. 2.

When l = 4, the Wenchuan model is next used
to find prediction intervals for the next aftershock
times in the 2011 Tohoku earthquake. The prediction
intervals thus obtained are found to have a cover-
age probability of 0.8734 and an average length of
0.8867 day. These prediction intervals are displayed
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Fig. 3 Prediction intervals based on the Wenchuan model
for next aftershock time in the 2011 Tohoku earthquake:
upper limit (dark grey), observed time (light grey), lower
limit (black).
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Fig. 4 Prediction intervals based on the Tohoku model for
next aftershock time in the 2011 Tohoku earthquake: upper
limit (dark grey), observed time (light grey), lower limit
(black).

in Fig. 3. A multivariate power-normal distribution
has also been obtained fitted to the 2011 Tohoku data.
The corresponding prediction interval for the next
aftershock times in the 2011 Tohoku earthquake are
found to have a coverage probability of 0.9487 and
an average length of 0.6974 day. These prediction
intervals are shown in Fig. 4. Thus the prediction
intervals based on the Wenchuan model for the next
aftershock time in the 2011 Tohoku earthquake have
poorer performance in terms of coverage probability
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and average length. However, the drop of only
about 8% in coverage probability indicates that the
characteristics of the aftershocks in different locations
of the earth might have some similarities.

CONCLUSIONS

Aftershocks are dangerous because they are difficult
to predict, can be of large magnitude, and can last
for years. The present paper shows that the char-
acteristics of the present and past aftershocks can
help to construct shorter prediction intervals for the
occurrence time and magnitude of the next aftershock.
As the dataset analysed contains information only on
aftershocks with magnitude larger than MW 3.0, it
would be useful to find out whether the inclusion of
smaller magnitude aftershocks would help to further
shorten the prediction intervals.
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