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ABSTRACT: An optimal control model of Aedes aegypti population dynamics concerning classification of indoor-outdoor
life cycles is taken into account in this paper. A dengue epidemics measure, the basic mosquito offspring, is obtained
from the well-known next-generation matrix. The number is used to analyse the stability of the mosquito-free equilibrium.
This mosquito-free equilibrium describes a steady-state condition in the mosquito population dynamics where there are no
mosquitoes. Comprehensive analysis on the existence and stability of the positive non-trivial equilibrium state is shown as
well. Further work deals with designation of the control measures and numerical implementation of the optimal control
model using various scenarios. We highlight those measures expressed as the semi-discrete mass profile of the Temephos
spraying and the thermal fogging.
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INTRODUCTION

In recent decades, the impacts of dengue flavivirus on
humans have become a global health concern. They
range from asymptomatic infections to symptoms in-
corporated with severe circulatory shocks and haem-
orrhagic vascular leaks. The World Health Organiza-
tion has published guidelines for clinical management
including diagnostic methods in dengue surveillance
and vector controls. Controlling dengue vector has
been perceived to be more effective than curing fla-
vivirus transmission in human blood. The four fla-
vivirus serotypes (DEN 1-4) are primarily transmitted
by infected female A. aegypti1, 2. People worldwide
have investigated the temporal and spatial dynamics of
A. aegypti population by means of endogenous forces
and climate change3, 4. This species has been crowned
as the main transmitter of dengue diseases in tropical
countries, although typical diseases have successfully
been transmitted by A. albopictus in some areas in
Asia5. A particular dengue disease is endemic in
several countries worldwide and public costs to pay
the lethal effects caused by the disease have been
risen significantly. Dengue diseases have threatened
about 2.5 billion people per year. However, there
are no licensed vaccines or antivirals for preventing
the transmission of all flavivirus serotypes in human
blood6, 7. Vector control will one day be used as an
additional key determinant in suppressing the dengue

persistence around the world.
The main vector control proposed in this paper

consists of two schematic processes. First, sup-
pression of the size of indoor immature phases by
using Temephos spraying. The Temephos spraying
is mainly used to kill mosquito larvae rather than
to kill eggs and pupae8, 9. Second, suppression of
the size of indoor-outdoor mature phases by using
thermal fogging. The thermal fogging is composed of
chemicals used to disrupt respiration of larvae, pupae,
and adults.

A. aegypti mosquitoes lay their eggs on calm and
clean water environment. They lay their eggs in
three to five batches during their lifetime, resulting
approximately 100–200 units in each laying time10.
In terms of quantity, the size of available blood meal
determines the number of produced eggs in the field11.
It is known that Aedes larvae (respectively pupae) can
live in water for 5–10 days (7–13 days)12. The length
of the larval-period depends on water temperature and
air humidity. A group of larvae particularly grows in
an existing site with restricted logistic availability. In
order to maintain its life within this restriction, a larva
competes with its own13. Moreover, it is known that
both male and female A. aegypti adults can survive for
0.7 days (female) and 5.8 days (male) on average14.

Based on the nature of breeding site, the origin
of the first three phases of A. aegypti proliferation
are classified into two major locations: indoor and
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outdoor. In urban areas, mosquito newborns from
outdoor contribute significantly to the rise of the entire
A. aegypti population size. The size of mosquito
population increases as the number of proper sites
increases after rainfall.

In this study, we construct an optimal control
scheme as a strategy in determining the decision-
making process. The result will determine expenses
related to accumulated daily costs of A. aegypti con-
trol. The optimal control model construction is moti-
vated by Caetano et al15, which was currently focused
on using the continuous-time control. We highlight
the other motivational paper on mosquito reduction,
where the author gives a prime importance to the use
of the sterile insect technique16. Due to an appearance
of need of precise daily treatment, construction of an
optimal control model regulated by a unified daily-
valued control is needed. The daily-valued control
(semi-discrete control) seems accurate in claiming
how many daily dosages of chemicals we need to
suppress the size of A. aegypti population.

MOSQUITO POPULATION DYNAMICS
MODEL

We construct the mosquito population dynamics
model involving the presence of control. Mathemati-
cally, the entire A. aegypti population is divided into
five time-dependent compartments: the indoor egg
E1(t), the outdoor egg E2(t), the indoor larva L1(t),
the outdoor larva L2(t), and the adult A(t). The
presence of pupa is ignored in the model since it
has similar adaptation characteristics and life duration
compared to larva. The mosquito population is as-
sumed to be homogeneous, meaning that every single
individual in a particular compartment can homoge-
neously be mixed with its own. All mosquitoes are
considered to live too concisely to develop resistance
against the two proposed chemicals.

Two time-dependent control measures are added
to the model to suppress the size of the mosquito
population, represented by the Temephos spraying
and the thermal fogging. The corresponding masses
are denoted by u1(t) (for the Temephos spraying)
and u2(t) (for the thermal fogging) with the unit of
mg. We introduce the dimension modifier constants
wi, i = 1, 2 (1/mg×1/day). Each constant converts
1 mg of an associated control measure to the negative
growth rate of treated compartments. The Temephos
spraying basically kills a group of larvae before they
turn into pupae and also makes the eggs impotent. The
thermal fogging basically kills a group of mosquito
adults, but it also blocks the underwater respiration
process of larvae. The effectivity of the Temephos

spraying on the size of the indoor egg and the effec-
tivity of the thermal fogging on the size of the indoor
and outdoor larva is described by the constants q1, q2,
and q3, respectively.

The observed area is assumed to be near homo-
geneous water containers, both indoor and outdoor.
Depending on the size of the area, it is supposed
that the ratio of the size of the outdoor to the size
of the indoor water containers is represented by m.
Realistically, we assume m > 1. Here we want to
estimate the average size of both immature and mature
phases of A. aegypti in and nearby each house.

It is assumed that the adult will choose an in-
door breeding site with the preference probability p
equipped by the adult-derived birth rate φ (1/day). The
natural mortality rates for each compartment are de-
noted by µi, i = 1, . . . , 5 (1/day). The age-transitional
rates are denoted by αi, i = 1, . . . , 4 (1/day). The
logistic coefficients σi, i = 1, 2 (1/individual×1/day)
take into account the carrying capacities of the water
container for the larva, both indoor and outdoor. In
our model, we use the estimate σ2 ≈ σ1/m.

Let x(t) = [E1(t), E2(t), L1(t), L2(t), A(t)]
are referred to as the state variables and u(t) =
[u1(t), u2(t)] are referred to as the control variables.
Including the time-dependence, we have x : [0, T ] →
R5 and u : [0, T ] → R2. Our A. aegypti population
dynamics model is given by the system

ẋ(t) = F (x(t), u(t)), F : R5 × R→ R5, (1)

written component-wise as

Ė1(t) = pφA(t)− α1E1(t)
− q1w1u1(t)E1(t)− µ1E1(t) (2a)

Ė2(t) = (1− p)φA(t)− α2E2(t)
− µ2E2(t) (2b)

L̇1(t) = α1E1(t)− σ1L1(t)2 − α3L1(t)
− w1u1(t)L1(t)− q2w2u2(t)L1(t)
− µ3L1(t) (2c)

L̇2(t) = α2E2(t)− σ2L2(t)2 − α4L2(t)
− q3w2u2(t)L2(t)− µ4L2(t) (2d)

Ȧ(t) = α3L1(t) + α4L2(t)− w2u2(t)A(t)
− µ5A(t). (2e)

The system (1) is supplemented by the positive initial
condition x0 ∈ R5.

Our current objectives are suppressing the size of
each compartment and minimizing the cost for control
implementation. It is observed from the model that
somehow we need big values for control measures in
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order to significantly suppress the size of particular
treated compartments. This will result in a high
cost for the control. In this case, we need a cer-
tain balance compromising this control-compartments
problem. This required balance is expressed as the
real-valued objective function

J(x, u) =
1

2T

∫ T

0

5∑
i=1

ωx,ix
2
i (t)

+
2∑
j=1

ωu,ju
2
j (t) dt. (3)

The trade-off coefficients ωx,i > 0, i = 1, . . . , 5
and ωu,j > 0, j = 1, 2 are used to equalize the
influence of x2

i and u2
j in the objective function. As

a rule-of-thumb, typical values for these coefficients
behave like

ωx,i
ωu,j

≈
ū2
j

x̄2
i

(4)

where ūj is the value of the empirical control measure
used to suppress the size of the associated empirical
state variable x̄i in the field. The length of observation
time T > 0 is assumed to be fixed.

Control design

We assume that both control measures u1(t) and u2(t)
are piecewise constant and change every h1 and h2

days, respectively. Hence we introduce the two (i =
1, 2) sets of discrete time-points ti,j = jhi where j =
0, . . . , d(T/hi)e. We model the control measures as
follows

ui(t) =
∑

06j6d(T/hi)e

aij 1[ti,j ,ti,j+1)(t) (5)

for i = 1, 2. Here 1[ti,j ,ti,j+1)(t) denotes the char-
acteristic function of the time interval [ti,j , ti,j+1)
and aij denotes the control measure values at those
discrete intervals.

MODEL ANALYSIS

Positively invariant

A biologically meaningful solution of the system ẋ =
F (x, 0) must be non-negative for all time, provided
that the given initial value is non-negative. The
following theorem states this result.

Theorem 1 Let x0 be given positive vector-valued
initial value of the uncontrolled system (1), i.e., ẋ =
F (x, 0). Then the solution x has positive elements for
all t > 0.

Proof : The uncontrolled system ẋ = F (x, 0) induces
a flow in R5. We show, that the domain Ω = R5

+ =
{xi > 0, i = 1, . . . , 5} is invariant under this flow.
Let nx denote the outer normal at a boundary point
x ∈ ∂Ω. Then an easy calculation shows, that

nTxF (x, 0) 6 0

for all x ∈ ∂Ω. Hence, trajectories cannot leave the
domain Ω. �

Equilibria

The system ẋ = F (x, 0) possesses trivial and non-
trivial equilibria. These equilibrium points can be
obtained by solving the five stationary equations (2).
After some algebraic manipulations, we arrive at fol-
lowing reduction:

L∗21 + χ1L
∗
1 − ε1α4L

∗
2 = 0, (6a)

L∗22 + χ2L
∗
2 − ε2α3L

∗
1 = 0, (6b)

where

ε1 =
α1pφ

(α1 + µ1)µ5σ1
,

ε2 =
α2(1− p)φ

(α2 + µ2)µ5σ2
,

χ1 =
α3(1− σ1ε1) + µ3

σ1
,

χ2 =
α4(1− σ2ε2) + µ4

σ2
.

Given the positive roots (L∗1, L
∗
2) of (6), we obtain the

remaining three components of the positive equilib-
rium state as a function of Λ = α3L

∗
3 + α4L

∗
2:

x∗=(E∗1 (Λ), E∗2 (Λ), L∗1, L
∗
2, A

∗(Λ))

=
(

pφ

(α1 + µ1)µ5
Λ,

(1− p)φ
(α2 + µ2)µ5

Λ, L∗1, L
∗
2,

1
µ5

Λ
)
.

The following theorem explains the existence and
stability of the positive non-trivial equilibrium state
(L∗1, L

∗
2).

Theorem 2 Let ε1, ε2, χ1 and χ2 be defined as above.
In any of

Case 1 χ1, χ2 < 0;

Case 2 χ1 < 0 and χ2 > 0 or χ1 > 0 and χ2 < 0 or
χ1χ2 = 0;

Case 3 χ1, χ2 > 0 and χ1χ2 < ε1ε2α3α4;

there exists a unique positive equilibrium state
(L∗1, L

∗
2) which is asymptotically stable.
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Fig. 1 Schematic view of the two curves L2 = f(L1) (solid
line) and L1 = g(L2) (dashed line) in Case 3.

Proof : First we consider the existence of a unique
positive root of the two equations (6). Eq. (6a) gives
rise to a curve L2 = f(L1) := (1/ε1α4)L1(L1 + χ1)
in the L1L2-plane. Similarly, we can interpret (6b)
as a curve L1 = g(L2) := (1/ε2α3)L2(L2 + χ2).
By examining the three cases separately, we obtain
the existence of a unique intersection point (L∗1, L

∗
2)

of the two curves in the first quadrant. For the first
two cases this is rather obvious, whereas the third case
requires some consideration. In Fig. 1 we depict the
situation of Case 3. An intersection of the two curves
in the first quadrant only exists, provided the slopes
satisfy f ′(0) < 1/g′(0), i.e., χ1/ε1α4 < ε2α3/χ2 or
χ1χ2 < ε1ε2α3α4.

Note, that in all three cases, the slope of the
two curves at the positive equilibrium state (L∗1, L

∗
2)

are given by f ′(L∗1) = (1/ε1α4)(2L∗1 + χ1) and
g′(L∗2) = (1/ε1α4)(2L∗2 + χ2). Both slopes are
always positive. Furthermore, it always holds that,
f ′(L∗1) > 1/g′(L∗2), i.e.,

2L∗1 + χ1

ε1α4
>

ε2α3

2L∗2 + χ2
. (7)

To determine the stability of the unique positive
equilibrium state, we compute the eigenvalues of the
reduced Jacobian

JL(L∗1, L
∗
2) =

(
−2σ1L

∗
1 − χ1σ1 σ1ε1α4

σ2ε2α3 − 2σ2L
∗
2 − χ2σ2

)
.

According to the Routh-Hurwitz-criterion, the eigen-
values of JL lie in the negative half-plane, if tr JL < 0
and det JL > 0.

For the trace, it holds, that

tr JL = −[σ1(2L∗1 + χ1) + σ2(2L∗2 + χ2)] < 0 ,

since 2L∗i + χi > 0 for both i = 1 and i = 2.
For the determinant, it holds that

det JL = σ1σ2[(2L∗1 +χ1)(2L∗2 +χ2)−ε1α4 ε2α3] .

From (7) it follows that det JL > 0. �

The basic offspring

Analysing the sensitivity of the constant control to the
system (1), we build a real 5× 5 matrix, say G, where
entry gij is the number of individual newborns in com-
partment i produced by an individual in compartment
j within an average life period of compartment j’s
individual17. For example, as a single indoor egg
produces α1 indoor larvae per unit time during its
productive period 1/(α1 + q1w1u1 + µ1), we obtain
the according entry g31 = α1/(α1 + q1w1u1 + µ1).
The mosquito-free equilibrium ξ is defined as a state,
where no agent giving birth to new eggs, larvae, and
adults. In this model, the mosquito-free equilibrium
equals to the trivial equilibrium. The matrix G evalu-
ated on the mosquito-free equilibrium, i.e., G|x=ξ =
G, will look like

G =


0 0 0 0 k1

0 0 0 0 k2

k3 0 0 0 0
0 k4 0 0 0
0 0 k5 k6 0


where

k1 =
pφ

w2u2 + µ5
,

k2 =
(1− p)φ
w2u2 + µ5

,

k3 =
α1

α1 + q1w1u1 + µ1
,

k4 =
α2

α2 + µ2
,

k5 =
α3

α3 + q2w2u2 + w1u1 + µ3
,

k6 =
α4

α4 + q3w2u2 + µ4
.

Let σ(G) denotes the spectrum of G and let

ρ(G) = max
λ∈σ(G)

|λ|

be the spectral radius of G. After some computations
we obtain

ρ(G) =

∣∣∣∣∣
(
S

R

)1/3
∣∣∣∣∣
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Fig. 2 ρ(G) with respect to the constant control.

where S and R are algebraic functions of the parame-
ters.

The spectral radius determines whether any pop-
ulation diverges from or converges to the mosquito-
free equilibrium on an infinite time horizon. If the
population converges for an arbitrary initial value to
the mosquito-free equilibrium, we call the mosquito-
free equilibrium asymptotically stable. As the matrix
G becomes a ‘ratio’ between an initial population and
a resulting step-forward population, it is concluded
that the mosquito-free equilibrium will be stable if
ρ(G) < 1 and is unstable if ρ(G) > 1. Here we show
the contour lines of ρ(G) with respect to the constant
control measures in the domain [0, 0.4]2 while all
parameters are defined as in the next section (Fig. 2).
G and ρ(G) are well-known as the next generation
matrix and the basic mosquito offspring based on the
system (1).

OPTIMAL CONTROL PROBLEM

In the sequel we derive optimal control scheme where
the optimization problem is written as follows

min
u∈Uad

J(x, u) s.t. P (x, u) = 0. (8)

In this case, P (x, u) = 0 is short-hand notation for
(1). By Uad ⊂ L2([0, T ]; R2) we denote the set of
admissible controls which is assumed to be compact.
To solve the constrained optimization problem (8), we
introduce the Lagrangian L = X × Z × Uad → R
defined by

L(x, z, u) = J(x, u)− 〈P (x, u), z〉 (9)

where X,Z ∈ L2([0, T ]; R5) are the two dual spaces
for the state and the adjoint variables, respectively.
For the according duality product we use the notation
〈·, ·〉 : X × Z → R.

Considering the first-order optimality condition,
we need the Lagrangian function L to satisfy ∇L = 0
with respect to its three arguments. Zeroing the partial
derivative of L with respect to z, we regain the state
(1). Zeroing the partial derivative of L with respect
to x, we gain the adjoint equation completed by the
transversality condition (see Ref. 18)

żi = − ωx,ixi −∇xi
F · z,

zi(T ) = 0, i = 1, . . . , 5. (10)

The adjoint equation can be written component-wise
as

ż1(t) = − ωx,1E1(t) + [α1 + q1w1u1(t)
+ µ1]z1(t)− α1z3(t) (11a)

ż2(t) = − ωx,2E2(t) + (α2 + µ2)z2(t)
− α2z4(t) (11b)

ż3(t) = − ωx,3L1(t) + [2σ1L1(t) + α3

+ w1u1(t) + q2w2u2(t)
+ µ3]z3(t)− α3z5(t) (11c)

ż4(t) = − ωx,4L2(t) + [2σ2L2(t) + α4

+ q3w2u2(t) + µ4]z4(t)
− α4z5(t) (11d)

ż5(t) = − ωx,5A(t)
+ (w2u2(t) + µ5)z5(t)
− pφz1(t)− (1− p)φz2(t). (11e)

Finally, zeroing the partial derivative of L with
respect to u, we find the gradient equation

∇uJ(x, u)− 〈∇uP (x, u), z〉 = 0. (12)

From this equation, we gain the optimal control

u∗1(t) = − q1w1E1(t)z1(t) + w1L1(t)z3(t)
ωu,1

(13a)

u∗2(t) = − q2w2L1(t)z3(t) + q3w2L2(t)z4(t)
ωu,2

− w2A(t)z5(t)
ωu,2

. (13b)

To provide limitation for each control measure,
i.e., ui(t) ∈ [ai, bi], i = 1, 2 for all t in [0, T ], we
use the saturation

ui(t) 7→ ui(t) =


ai, ui(t) 6 ai,
bi, ui(t) > bi,
ui(t), otherwise.

(14)
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In the optimization project, we use an iterative
method based on the gradient descent algorithm. The
method is used to search for the value of the extremal
(x†, u†) satisfying∇L(x†, u†, z(x†, u†)) = 0.

Algorithm 1
Step 1: Fix the initial guess u ∈ Uad for the control,

where each element of u is interpreted as a linear
combination of the characteristic functions

Step 2: Solve the state equation in a forward scheme
to calculate x

Step 3: Calculate the objective function J(x, u)
Step 4: Solve the adjoint equation in a backward

scheme to calculate z
Step 5: Solve the gradient equation to get the

descent vector u∗ supplemented by x and
z in Steps 2 and 4. Use the actual
values {u∗i }j=0,1,...,d(T/hi)e in the particular
times {ti,j}j=0,1,...,d(T/hi)e to update the values
u∗i (t) 7→

∑
06j6d(T/hi)e{u

∗
i }j1[ti,j ,ti,j+1)(t),

i = 1, 2
Step 6: Update u 7→ u−κu∗ and saturate u as in (14)
Step 7: Go to Step 2. Combine this loop with an

update (reduction) of the step-length κ by using a
sort of approximate line search methods. Do this
loop unless some termination criteria are met.

OPTIMAL CONTROL RESULT

It is emphasized that the semi-discrete control must
be applied well in the real field. In this paper,
we highlight the exact daily-valued control measures
in mass unit. We explore the mosquito population
dynamics regulated by the additional control measures
in order to study the effect of the control to mosquito
abundance in the field. It is assumed that the control is
conducted in T = 100 days. The Temephos spraying
is conducted once in h1 = 5 days, meanwhile the
thermal fogging is conducted once in h2 = 10 days.
Using various combinations of the two control mea-
sures and the in-moment initial value, we investigate
and compare numerical results from the following
scenarios.

Scenario-1: This supplements the dynamical sys-
tem (2) with the initial value as the size of all com-
partments when they grow at the earliest time without
the presence of the control. We use the initial values
united as the vector [8, 8, 6, 6, 5].

Scenario-2: The initial value is taken from the size
of all compartments when the growth tends to reach
the peak of increment. This currently occurs in one-
fourth of the total observation time. The condition is
considered without the presence of the control. The
initial value is given as the vector [21, 43, 24, 37, 8].
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Fig. 3 The uncontrolled trajectory of the indoor egg, the
outdoor egg, and the indoor larva.
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Fig. 4 The controlled trajectory of the indoor egg, the
outdoor egg, and the indoor larva.

Scenario-3: The initial value is taken from the
size of all compartments when they grow at a half
of the total observation time. The condition is con-
sidered without the presence of the control. In our
preliminary simulation, this time admits the fact that
all compartments are at the beginning to reach the
positive equilibrium. The initial value is given as the
vector [93, 200, 70, 122, 27].

The trade-off coefficients: ωx,i, i = 1, . . . , 4
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Fig. 5 The uncontrolled trajectory of the outdoor larva and
the adult.

and ωu,i, i = 1, 2, which are used in the objective
function, are given as ωx,1 = ωx,2 = ωx,3 = ωx,4 =
1, ωx,5 = 2, and ωu,1 = ωu,2 = 400.000. The
guessed initial value for the control is taken to which
satisfy the limitation 0 6 ui(t) 6 1.5 mg, i = 1, 2 for
all t in [0, T ]. We give the value for each parameter
as follows: m = 1.5, p = 0.4, φ = 3 (1/day),
α1 = 0.3 (1/day), α2 = 0.2 (1/day), α3 = 0.08
(1/day), α4 = 0.05 (1/day), q1 = 0.04, q2 = 0.05,
q3 = 0.05, w1 = 1.0 (1/mg×1/day), w2 = 1.5
(1/mg×1/day), σ1 = 0.004 (1/individual×1/day),
σ2 = σ1/m (1/individual×1/day), µ1 = 0.02 (1/day),
µ2 = 0.01 (1/day), µ3 = 0.02 (1/day), µ4 = 0.01
(1/day), µ5 = 0.4 (1/day).

The controlled trajectory defines the dynamics
of the size of a particular compartment under the
optimal control. The uncontrolled trajectory defines
the dynamics of the size of a particular compartment
without the optimal control. Fig. 3 and Fig. 4 clearly
illustrate the uncontrolled trajectory and controlled
trajectory of the indoor egg, the outdoor egg, and the
indoor larva. It is seen from the figures that all the
controlled trajectories are lied in the range below all
the associated uncontrolled trajectories. This means
that the optimal control makes significant suppression
to all dynamics of the size of the first three A. aegypti
compartments.

In a same viewpoint, Fig. 5 and Fig. 6 illustrate
the uncontrolled trajectory and the controlled trajec-
tory of the outdoor larva and the adult. We end up
with the same conclusion that the optimal control can
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Fig. 6 The controlled trajectory of the outdoor larva and the
adult.
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Fig. 7 The descent percentage D.

significantly suppress the size of the outdoor larva
and the prospective dengue vector. It is clearly seen
from Fig. 6 that all the shock-points illustrated in the
controlled trajectory of the adult remain under 10 units
during the observation time. This situation seemingly
supports human effort in combating the spread of
dengue fever.

We define the descent percentage D, where it for-
mulates the percentage of the difference between the
sum of all uncontrolled trajectories and the sum of all
controlled trajectories over the sum of all uncontrolled
trajectories. Fig. 7 shows that D increases with time.
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Fig. 8 Trajectories of the optimal control for Scenario-1.

The figure indicates that the most significant decline
occurs in Scenario 1. It is also seen from the figure that
the first 25 days of observation can be accounted as
the days when the control effort needs to be improved
in order to produce an optimal estimation of the cost.
Resembling with computing D, we find that the total
size of all compartment’s endpoints when both control
measures are at present tends to reach the least value
comparing to that when one control measure vanishes.

Fig. 8 shows that the mass profile of the thermal
fogging is in greater range than that of the Temephos
spraying for Scenario-1. We find the same result for
Scenario-2 and Scenario-3. These results, derived
from the model, suggest that the thermal fogging
plays an important role in suppression of the size
of A. aegypti population in the field. We find also
that the mass profile of the thermal fogging rises
from Scenario-1 to Scenario-3. Meanwhile, the mass
profile of the Temephos spraying is almost stagnant. A
combination of these results with the result described
in Fig. 2 shows that the mass of the thermal fogging
needs to be enhanced rather than the mass of the
Temephos spraying during the observation time.

CONCLUSIONS

An optimal control problem is constructed in this
paper based on the mosquito population dynamics
regulated by the two control measures: the Temephos
spraying and the thermal fogging. In the presence
of the constant control, a value combination of the
control measures in the domain [0, 0.4]2 still gives
a life-coexistence among all compartments in the

model. The basic mosquito offspring is obtained
from the maximum of the modulus of all elements
in the spectrum of the next generation matrix. This
number can be used as an indicator to both analyse the
stability of the mosquito-free equilibrium and describe
the sensitivity of each control measure. Preliminary
simulation result shows that the mosquito-free equilib-
rium (referred to as the trivial equilibrium) is always
unstable for any choice of the constant control mea-
sures undertaken in the simulation. A combination
of the existence and stability of the positive non-
trivial equilibrium state and the instability of the trivial
equilibrium, leads us to the early hypothesis, that there
is always a life-coexistence among all compartments
after applying a constant control in the range under-
taken in the simulation. Whereas the constant control
seems less applicable in everyday life, an optimal
control is required such that the balance between min-
imizing the cost for the control and suppressing the
trajectory of all compartments is achieved together.
From our optimal control simulation, the results show
that all the controlled trajectories are lied under all the
associated uncontrolled trajectories after performing
the optimal control. From every specific scenario
of the control implementation, we conclude that one
needs to enhance the mass of the thermal fogging
rather than the mass of the Temephos spraying during
the observation time.
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