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ABSTRACT : In this paper, we determine the non-abelian tensor square,G⊗G, for non-abelian groups of orderp4, where
p is an odd prime.
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INTRODUCTION

The non-abelian tensor products have their roots in
algebraicK-theory as well as in homotopy theory and
were introduced by Brown and Loday1,2. The non-
abelian tensor square is a special case of the non-
abelian tensor product whereG andH are the same
group. The non-abelian tensor square of a group
G, denoted asG ⊗ G is generated bygg′⊗h =
(gg′⊗gh)(g⊗h), g⊗hh′ = (g⊗h)(hg⊗hh′), for all
g, g′, h, h′ ∈ G, where hg = hgh−1 denotes the
conjugate ofg by h.

In 1911, Burnside3 obtained the classification
of groups of orderp4. Jang Oh4 proved that non-
abelian groups of orderp4 satisfy the conditions in the
following theorem.

Theorem 1 LetG be a non-abelian group of orderp4.
Then one of the following holds.
(i) |Z(G)| = p2, |G′| = p, andG′ ⊆ Z(G)
(ii) |Z(G)| = p, |G′| = p2, andZ(G) ⊆ G′.

In this paper, we focus on the non-abelian groups
of orderp4 that satisfy the conditions inTheorem 1(i).

Theorem 2 Let G be a group of orderp4, wherep is
an odd prime. ThenG is isomorphic to exactly one
group in the following list.

G1 = 〈x, y|xp3
= yp = 1, xy = x1+p2

〉,

G2 = 〈x, y, z|xp = yp = zp2
= 1,

[x, y] = [y, z] = 1, [x, y] = zp〉,

G3 = 〈x, y|xp2
= yp2

= 1, xy = x1+p〉,

G4 = Mp×〈w〉,

G5 = 〈x, y, z|xp2
= yp = zp = 1,

[x, y] = [y, z] = 1, xy = x1+p〉,

G6 = 〈x, y, z|xp2
= yp = zp = 1,

[x, y] = z, [x, z] = [y, z] = 1〉,

where

Mp = 〈x, y, z|xp = yp = zp = 1,
[x, y] = [y, z] = 1, [x, y] = z〉,

w = 〈w|wp = 1〉, [x, y] = [y, z] = 1, and[x, y] = zp.

PRELIMINARIES

This section includes some basic results on the Schur
multiplier and non-abelian tensor square of groups
which are used in order to prove our main theorem.

In 2001, Seon Ok5 obtained the Schur multiplier
of groups of orderp4, wherep is an odd prime as
stated in the following theorem.

Theorem 3 Let G be groups of orderp4, wherep is
an odd prime. Then exactly one of the following holds:

M(G) =


1, G is G1,

(Zp)2, G is G2, G5 or G6,

Zp, G is G3,

(Zp)4, G is G4.

The following five theorems stated are used to
compute the non-abelian tensor square of some finite
groups.
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In 1987, Brown et al6 computed the non-abelian
tensor square of some groups such as quaternion
groups, dihedral groups, symmetric groups and meta-
cyclic groups. The non-abelian tensor square of meta-
cyclic group is presented in the following theorem.

Theorem 4 If G=〈x, y|yn = xm = 1, xyx−1 = yl〉
wherelm≡1 mod n andn is an odd number, thenG⊗
G = Zm×Zm1×Zm2×Zm3 wherem1 = (n, l − 1),
m2 = (n, l − 1, 1 + l + · · · + lm−1), m3 = (n, (1 +
l) + · · ·+ lm−1).

Brown et al6 also computed the non-abelian ten-
sor square of direct product of two groups. In this
case, the non-abelian tensor square can be computed
by the use ofTheorem 5. They also determined two
properties for Whitehead’s universal quadratic functor
Γ as stated inTheorem 6.

Theorem 5 LetG andH be groups. Then(G×H)⊗
(G×H) ∼= (G⊗G)×(G⊗H)×(H ⊗G)×(H ⊗H).

Theorem 6 LetG andH be abelian groups. Then
(i) Γ(G×H) = ΓG×ΓH×Γ(G⊗H),
(ii)

ΓZn =

{
Zn, n is odd,

Z2n, n is even.

In the following theorem, Blyth et al7 computed
the non-abelian tensor square of groupG with Gab

which is finitely generated.

Theorem 7 LetG be a group such thatGab is finitely
generated. IfGab has no element of order two or ifG′

has no complement inG thenG⊗G ∼= Γ(Gab)×G ∧
G.

Nakaoka8 gives the conditions that can be used to
compute the non-abelian tensor of a finite group.

Theorem 8 LetG be a finite group andi > 0. Then
(i) there is an exact sequence

1→[Gi+1, G
ϕ
i ]→τ(Gi, Gi)→τ(Gab

i , Gab
i )→1

where[Gi+1, G
ϕ
i ]6τ(Gi, Gi),

(ii) |Gi ⊗Gi| 6 |Gab
i ⊗Z Gab

i ||Gi+1 ⊗Gi|.

The Schur multiplier, non-abelian tensor square
and capability of groups of orderp2q have been
considered by Rashid et al in Ref.9, wherep andq
are distinct primes. In Ref.10, they also computed
the Schur multiplier of groups of order8q, whereq is
an odd prime.

PROOF OF MAIN THEOREM

In this paper, we focus on the non-abelian tensor
square of non-abelian group of orderp4, wherep is an
odd prime. The non-abelian tensor square of groups
of orderp4, wherep is an odd prime is computed in
the next theorem.

Theorem 9 Let G be a group of orderp4, wherep is
an odd prime. Then

G⊗G =



Zp2×(Zp)3, G is G1,

(Zp)9, G is G2 or G5,

(Zp2)2×(Zp)2, G is G3,

(Zp)11, G is G4,

Zp2×(Zp)5, G is G6.

Proof: Let G be a non-abelian group of orderp4,
wherep is an odd prime. ByTheorem 2there are
6 types of these groups. First, we prove forG1, by
choosingn = p3, m = p, l = 1 + p2, andG1 is
a metacyclic group. Then byTheorem 4, G ⊗ G =
Zm×Zm1×Zm2×Zm3 , wherem1 = (p3, 1 + p2 −
1) = p2, m2 = (p3, 1 + p2 − 1, 1 + (1 + p2) + · · ·+
(1+p2)p−1) = p, andm3 = (p3, (1+1+p2)+ · · ·+
(1 + p2)p−1) = p. ThereforeG⊗G ∼= Zp2×(Zp)3.

For groupG2, by Theorem 8, the following com-
putations are considered. In this group,G′

2 = Zp and
Gab

2 = (Zp)3. As Gab
2 ⊗ Gab

2
∼= (Zp)9, G′

2 ∧ G′
2 =

1 and G′
2 ⊗Z[Gab

2 ] I(Gab
2 ) ∼= Zp. The exact se-

quence 1→[G2, G
ϕ
2 ]→τ(G2, G2)→τ(Gab

2 , Gab
2 )→1

shows that|τ(G2, G2)| dividesp9 where[G′
2, G

ϕ
2 ] 6

τ(G2, G2) andτ(Gab
2 , Gab

2 ) ∼= Gab
2 ⊗Z Gab

2 . Hence
|[G′

2, G
ϕ
2 ]| dividesp. Then from the exact sequence,

we obtain τ(G2, G2) ∼= (Zp)9. Since τ(G2, G2)
is abelian andλ : τ(G2, G2) → G2 is the homo-
morphism, it followsp dividesτ |G2, G2|. Therefore
G2 ⊗G2

∼= (Zp)9.
Next, we consider the third caseG3, by choosing

n = p2,m = p2, l = 1 + p, G3 is metacylic group.
By using the same proof asG1, then G3 ⊗ G3 =
(Zp2)2×(Zp)2.

For groupG4 = Mp×〈w〉, whereMp is isomor-
phic to non-abelian group of orderp3 of exponentp.
Then byTheorem 5, G4⊗G4

∼= (Mp×〈w〉)⊗(Mp×
〈w〉) ∼= (Zp)11.

For groupG5, we haveG5 = K×〈z〉whereK =
〈x, y|xp2

= yp = 1, xy = x1+p〉, 〈z〉 = 〈z|zp = 1〉.
We know thatK is isomorphic to non-abelian group of
orderp3 of exponentp2. Again by usingTheorem 5,
we haveG5⊗G5

∼= (K×〈z〉)⊗ (K×〈z〉) ∼= (Zp)9.
Lastly, for group G6, we have G′

6 = Zp

and Gab
6 = Zp × Zp2 . The exact sequence
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1→[G′
6, G

ϕ
6 ]→τ(G6, G6)→τ(Gab

6 , Gab
6 )→1. On the

other hand,(G6∧G6)/M(G6) ∼= G′
6. By Theorem 3,

M(G6) ∼= (Zp)2, that is (G6 ∧ G6) ∼= (Zp)3 and
by Theorem 6, we haveΓ(Gab

6 ) = Γ(Zp × Zp2) =
(Zp)2×Zp2 . Gab

6 is a finitely generated abelian group
with no element of order 2. Then byTheorem 7, we
haveG6 ⊗G6

∼= Γ(Gab
6 )×G6 ∧G6

∼= Zp2 × (Zp)5.
�
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