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ABSTRACT: Let R be a finite commutative ring with unity 1 6= 0. The restricted unitary Cayley graph induced from the
squared mapping is the graph whose vertex set is R and whose edge set is {{a, b} : a, b ∈ R and a − b ∈ TR}, where
TR = KR(R

×)2 and KR = {a ∈ R× : a2 = 1}. We study the structure of our graph HR and determine its eigenvalues
and energy.
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PRELIMINARIES

Let R be a finite commutative ring with unity 1 6= 0.
The unitary Cayley graph of R, GR = Cay(R,R×),
is the Cayley graph whose vertex set is R and whose
edge set is {{a, b} : a, b ∈ R and a − b ∈ R×},
where R× denotes the group of units of R. Consider
the exact sequence of groups

1 −→ KR −→ R×
θ−→ (R×)2 −→ 1,

where θ : a 7→ a2 is the square mapping on R×

with kernel KR = {a ∈ R× : a2 = 1} and
(R×)2 = {a2 : a ∈ R×}. Note that KR consists
of the identity and all elements of order two in R×.
Let TR = KR(R

×)2. Define the subgraph HR of
the unitary Cayley graphs by HR = Cay(R, TR), in
which two vertices are adjacent if and only if their
difference is in TR. Since −1 ∈ TR, the graph HR

is undirected. In addition, we observe that if |R×| is
odd, KR = {1} and R× = (R×)2, so HR = GR. All
finite rings R with group of units R× having an odd
number of elements are completely determined1.

The motivation of the graph defined above
comes from the quadratic unitary Cayley graph
Cay(Zn,±(Z×n )2) introduced by Beaudrap2. He
bounded the diameter of such graphs and character-
ized the conditions on n for Cay(Zn,±(Z×n )2) to be
perfect. When n = ps, where p is a prime and s ∈ N,
his graph and our graph coincide. The main purpose
here is to obtain the eigenvalues and energy of the
graphs using an approach similar to Ref. 3.

Now we give an example. Let q be a prime power
such that q ≡ 1 mod 4. The Paley graph is the graph

whose vertex set is the finite field Fq with q elements
and whose edge set is {{a, b} : a, b ∈ Fq and a −
b ∈ (F×q )2}. Since Fq is a field, KFq = {±1}. The
congruence condition on q implies that −1 is a square
in Fq and hence TFq

= (F×q )2. Thus the Paley graph
is HFq

.
A k-regular graph G with v vertices is said to be

strongly regular with parameters (v, k, λ, µ) if there
are integers λ and µ such that
(i) every two adjacent vertices have λ common neigh-

bours, and
(ii) every two non-adjacent vertices have µ common

neighbours.
For a graph G, its eigenvalues are defined to be

the eigenvalues of the adjacency matrix of G. The set
of all eigenvalues ofG is called the spectrum ofG. We
can explicitly determine the eigenvalues of a strongly
regular graph by using the following lemma.

Lemma 1 (§10.2 of Ref. 4) A strongly regular graph
with parameters (v, k, λ, µ) has exactly three eigen-
values:
(i) k whose multiplicity is 1;
(ii) 1

2

[
(λ−µ)+

√
(λ− µ)2 + 4(k − µ)

]
whose mul-

tiplicity is 1
2

[
(v − 1) − (2k + (v − 1)(λ −

µ))/(
√

(λ− µ)2 + 4(k − µ))
]
;

(iii) 1
2

[
(λ − µ) −

√
(λ− µ)2 + 4(k − µ)

]
whose

multiplicity is 1
2

[
(v − 1) + (2k + (v − 1)(λ −

µ))/(
√

(λ− µ)2 + 4(k − µ))
]
.

It is well known that the Paley graph is strongly
regular as we recall in the next lemma. Hence we ob-
tain its eigenvalues from Lemma 1. As is standard, if
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λ1, . . . , λk are eigenvalues of a graph G of respective
multiplicities m1, . . . ,mk, we use the notation

specG =

(
λ1 . . . λk
m1 . . . mk

)
to describe the spectrum of G.

Lemma 2 (p.221 of Ref. 4) Let q be a prime power
such that q ≡ 1 mod 4. The Paley graph over
the finite field Fq is strongly regular with parameters
(q, (q − 1)/2, (q − 5)/4, (q − 1)/4) and

specHFq
=

(
q−1
2

√
q−1
2

−√q−1
2

1 q−1
2

q−1
2

)
.

The sum of absolute values of all eigenvalues of
a graph G is called the energy of G and denoted by
E(G). The energy is a graph parameter stemming
from the Hückel molecular orbital approximation for
the total π-electron energy (for a survey on molecular
graph energy see, e.g., Ref. 5). This concept was
introduced in Ref. 6 and later studied intensively3, 7–9.

Lemma 3 If q is a prime power congruent to 1
modulo 4, then E(HFq

) = 1
2 (q − 1)(1 +

√
q).

The following theorem gives the eigenvalues and
the energy of unitary Cayley graph of R.

Theorem 1 (Proposition 2.1, Theorem 2.4 of Ref. 3)
Let R be a finite commutative ring.
(i) If R is a local ring with maximal ideal M , then

specGR =

(
|R×| − |M | 0

1 |R|
|M | − 1 |R|

|M | (|M | − 1)

)

=

(
|R×| − |M | 0

1
|R×|
|M |

|R|
|M | (|M | − 1)

)
,

and E(GR) = 2|R×|. In particular, if F is the
field with q elements, then

specGF =

(
q − 1 − 1
1 q − 1

)
=

(
|F×| − 1
1 |F×|

)
and E(GF ) = 2(q − 1).

(ii) If R = R1×R2×· · ·×Rk and Ri is a local ring
for all i ∈ {1, 2, . . . , k}, then E(GR) = 2k|R×|.

For two graphsG andH , their tensor productG⊗
H is the graph with vertex set V (G) × V (H), where
(u, v) is adjacent to (u′, v′) if and only if u is adjacent
to u′ in G and v is adjacent to v′ in H .

Theorem 2 (Ref. 10) Let G and H be graphs. Sup-
pose that λ1, . . . , λn are the eigenvalues of G and
µ1, . . . , µm are the eigenvalues of H (repetition is
possible). Then the eigenvalues of G ⊗ H are λiµj ,
where 1 6 i 6 n and 1 6 j 6 m. In particular,
E(G⊗H) = E(G)E(H).

In what follows, we shall study the energy of HR

when R is the ring of integers modulo n and R is
the quotient ring of polynomials over finite fields. We
prove the main theorem in the next section. The final
section provides some computational examples using
elementary number theory.

MAIN RESULTS

Let R be a finite commutative ring. Then R can be
expressed as a direct sum of local rings, that is, R =
R1×R2×· · ·×Rk, whereRi is a local ring. Note that
R = R1 ×R2 × · · · ×Rk induces the isomorphisms

R× = R×1 ×R
×
2 × · · · ×R

×
k ,

(R×)2 ∼= (R×1 )
2 × (R×2 )

2 × · · · × (R×k )
2.

In addition, KR
∼= KR1

× KR2
× · · · × KRk

. This
proves the following decomposition theorem.

Theorem 3 Let R be a finite commutative ring. If
R = R1 × R2 × · · · × Rk and Ri is a local ring
for all i ∈ {1, 2, . . . , k}, then

HR
∼= HR1

⊗HR2
⊗ · · · ⊗HRk

.

The above theorem tells us that we can concen-
trate only on HR when R is a local ring.

Let R be a finite local ring with unique maximal
ideal M . Then |R| = pl for some l > 1 and
p is a prime number. Note that the kernel of the
homomorphism ϕ : R× → (R/M)× mapping a to
a + M is 1 + M . Thus we have the isomorphism
R×/(1 + M) ∼= (R/M)×. Recall that R/M is a
field and (R/M)× is cyclic. Since |R×| = |R| −
|M | = |M |(|R|/|M | − 1), |M | = pm for some
m < l, and |M | = |1 + M |, we have the result
that 1 +M is the Sylow p-subgroup of R×. Hence,
R× ∼= (R/M)× × (1 +M).

Assume that p is an odd prime. The above
observation gives KR = {±1} and leads us to
distinguish two cases. If −1 is not a square in R, then
KR(R

×)2 = R× and HR = GR.
Next, we suppose that −1 is a square in R. Since

|1 + M | = pm and p is an odd prime, we have
(1 +M)2 = 1 +M so that (R×)2 ∼= ((R/M)×)2 ×
(1+M). WriteR/M = {r1+M, r2+M, . . . , rpl−m+
M}. Then for each a ∈ R, there is a unique i and
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ma ∈ M such that a − ri = ma. This yields the bi-
jection τ : R→ R/M ×M by τ : a 7→ (ri+M,ma)
for all a ∈ R. Thus for all a, b ∈ R, (a− b) ∈ (R×)2

if and only if τ(a − b) ∈ ((R/M)×)2 ×M . Hence,
τ induces an isomorphism HR

∼= HR/M ⊗ K|M |,
where K|M | is the |M |-complete graph with a loop
on each vertex. Note that HR/M is a Payley graph.
Furthermore, we know that the adjacency matrix of
the |M |-complete graph with a loop on each vertex,
K|M |, is the |M | × |M | matrix of ones, so

specK|M | =
(
|M | 0
1 |M | − 1

)
,

and E(K|M |) = |M |. Hence Lemma 3, Theorem 1
and Theorem 2 complete our main conclusions.

Theorem 4 Let R be a finite local ring with unique
maximal ideal M of characteristic odd prime p.
(i) If −1 is not a square in R, then HR = GR and

E(HR) = E(GR) = 2|R×|.
(ii) If−1 is a square inR, thenHR

∼= HR/M⊗K|M |,
where K|M | is the |M |-complete graph with a
loop on each vertex. Moreover, if |R/M | = pt,
then

specHR =(
|R×|
2

|M |(pt/2−1)
2

|M |(−pt/2−1)
2 0

1 pt−1
2

pt−1
2 |R| − pt

)

and E(HR) =
|R×|(pt/2 + 1)

2
.

EXAMPLES

In this section, we provide two computational exam-
ples of Theorem 4 using elementary number theory.
We present the results when R = Zn, the ring of
integers modulo n and R = A/fA, where A = Fq[x],
q = ps an odd prime power, s > 1, and f is a non-
constant polynomial in A.

Quadratic residues of n

Let n > 1 be a positive integer. We write Gn = GZn

and Hn = HZn
. We study the structure of the graph

Hn and obtain its energy using the results discussed in
the previous sections.

As usual, our work will start with the case when n
is a prime power. For p = 2, if s = 1, it is immediate
that H2 = G2. If s = 2, we have Z×22 = {±1} = K22

and (Z×22)
2 = {1}, and thus T22 = {±1} and H4 =

G4. If s = 3, we have Z×23 = {±1,±3} = K23 and
(Z×23)

2 = {1}, so T23 = Z×23 and H8 = G8. Finally,
let s > 4. We recall the fact that Z×2s ∼= Z2 × Z2s−2 .

Since (Z×2s)2 ∼= Z2s−3 and K2s
∼= Z2 × Z2, we have

K2s(Z×2s)2 ∼= Z2 × Z2s−3 . Thus T2s = ±(Z×2s)2. It
follows from Lemma 2 of Ref. 2 that H2s

∼= H8 ⊗
K2s−3 . Hence, we have proved the next theorem.

Theorem 5 The graphs H2 = G2, H4 = G4, H8 =
G8 and for s > 4, we have

H2s
∼= H8 ⊗K2s−3 ,

where K2s−3 is the 2s−3-complete graph with a loop
on each vertex. Moreover,

specH2 =

(
1 −1
1 1

)
,

specH4 =

(
2 −2 0
1 1 2

)
,

specH8 =

(
22 −22 0
1 1 6

)
,

specH2s =

(
2s−1 −2s−1 0
1 1 2s − 2

)
for all s > 4. Furthermore, E(H2s) = 2s for all
s > 1.

Next, let p be an odd prime and s > 1. Recall that
−1 is a square in Zps if and only if p ≡ 1 mod 4.
Theorem 4 directly gives the following results.

Theorem 6 Let p be an odd prime and s > 1.
(i) If p ≡ 3 mod 4, then Hps = Gps and E(Hps) =

E(Gps) = 2(ps − ps−1).
(ii) If p ≡ 1 mod 4, thenHps = Hp⊗Kps−1 , where
Kps−1 is the ps−1-complete graph with a loop on
each vertex. Moreover,

specHps =(
ps−ps−1

2

ps−1(
√
p−1)

2

ps−1(−√p−1)
2 0

1 p−1
2

p−1
2 ps − p

)

and E(Hps) = (ps − ps−1)/2(√p+ 1).

Quadratic residues of f

Let Fq be the finite field with q = ps elements of
characteristic odd prime p. Let A = Fq[T ], and
let f ∈ A be a non-constant polynomial. We write
Gf = G(A/fA) and Hf = H(A/fA).

Let P ∈ A be an irreducible polynomial and e >
1. Write |P | for qdegP .

Theorem 7 (Theorem 1.10 for d = 2 of Ref. 11)
Let a ∈ A and e > 1. Then the congruence x2 ≡ a
mod P e has a solution if and only if a(|P |−1)/2 ≡ 1
mod P in A.

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.scienceasia.org


652 ScienceAsia 39 (2013)

This theorem gives the following criteria to deter-
mine if −1 is a square modulo P e.

Corollary 1 Let Fq be the finite field with q = ps

elements of characteristic odd prime p. Let P ∈ Fq[T ]
be an irreducible polynomial and e > 1. Then −1 is
a quadratic non-residue of P e if and only if p ≡ 3
mod 4 and sdegP is odd. And −1 is a quadratic
residue of P e if and only if (i) p ≡ 1 mod 4 or
(ii) p ≡ 3 mod 4 and sdegP is even.

Theorem 4 implies eigenvalues and energy of the
graph HP e for all e > 1 as follows.

Theorem 8 Let Fq be the finite field with q = ps

elements of characteristic odd prime p. Let P ∈ Fq[T ]
be an irreducible polynomial and e > 1.
(i) If p ≡ 3 mod 4 and sdegP is odd, then HP e =

GP e and E(HP e) = 2(|P |e − |P |e−1).
(ii) If p ≡ 1 mod 4 or (p ≡ 3 mod 4 and sdegP

is even), then HP e ∼= HP ⊗ K|P |e−1 , where
K|P |e−1 is the |P |e−1-complete graph with a loop
on each vertex. Moreover,

specHP e =

(
|P |e−|P |e−1

2

|P |e−1(
√
|P |−1)

2

1 |P |−1
2

|P |e−1(−
√
|P |−1)

2 0
|P |−1

2 |P |e − |P |

)

and E(HP e) = (|P |e − |P |e−1)/2(
√
|P |+ 1).
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