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ABSTRACT: Let G be a group and ω(G) be the set of element orders of G. Let k ∈ ω(G) and sk be the number of
elements of order k in G. Let nse(G) = {sk | k ∈ ω(G)}. L3(2) ∼= L2(7) is uniquely determined by nse(G). In this
paper, we prove that if G is a group such that nse(G) = nse(L3(4)), then G ∼= L3(4).
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INTRODUCTION

If n is an integer, then we denote by π(n) the set of
all prime divisors of n. Let G be a group. The set
of element orders of G is denoted by ω(G). Let k ∈
ω(G) and sk be the number of elements of order k in
G. Let nse(G) = {sk|k ∈ ω(G)}. Let π(G) denote
the set of primes p such that G contains an element of
order p. A finite group G is called a simple Kn-group
if G is a simple group with |π(G)| = n. Thompson
posed a very interesting problem related to algebraic
number fields as follows1.

Thompson’s Problem. Let T (G) = {(n, sn)|n ∈
ω(G) and sn ∈ nse(G)}, where sn is the number of
elements with order n. Suppose that T (G) = T (H).
If G is a finite solvable group, is it true that H is also
necessarily solvable?

It was proved that if G is a group and M some
simple Ki-group, i = 3, 4, then G ∼= M if and
only if |G| = |M | and nse(G) = nse(M) (see
Refs. 2, 3). And the groups A12, A13 and L5(2) are
characterizable by order and nse (see Refs. 4–6).

We only consider the sizes of elements of the
same order but disregard the actual orders of elements
in T (G) of Thompson’s Problem. In other words,
can nse(G) characterize finite simple groups? Some
groups for L2(q), where q ∈ {7, 8, 9, 11, 13}, have
been characterized by only the set nse(G) (see Refs.
7, 8). In this paper it is shown that the projective
special linear group L3(4) can also be characterized
by nse(L3(4)).

SOME LEMMAS

Lemma 1 (Ref. 9) Let G be a finite group and m be
a positive integer dividing |G|. If Lm(G) = {g ∈
G|gm = 1}, then m | |Lm(G)|.

Lemma 2 (Ref. 10) Let G be a finite group and p ∈
π(G) be odd. Suppose that P is a Sylow p-subgroup

of G and n = psm with (p,m) = 1. If P is not cyclic
and s > 1, then the number of elements of order n is
always a multiple of ps.

Lemma 3 (Ref. 8) LetG be a group containing more
than two elements. If the maximum number s of
elements of the same order in G is finite, then G is
finite and |G| 6 s(s2 − 1).

Lemma 4 (Theorem 9.3.1 of Ref. 11) Let G be a fi-
nite soluble group and |G| = mn, where m =
pα1

1 · · · pαr
r and (m,n) = 1. Let π = {p1, . . . , pr}

and hm be the number of Hall π-subgroups ofG. Then
hm = qβ1

1 · · · qβs
s satisfies the following conditions for

all i ∈ {1, 2, . . . , s}:
(i) qβi

i ≡ 1 (mod pj) for some pj .
(ii) The order of some chief factor of G is divisible by

qβi

i

PROOF OF THEOREM

LetG be a group such that nse(G) = nse(L3(4)), and
sn be the number of elements of order n. By Lemma 3
we have G is finite. We note that sn = kφ(n), where
k is the number of cyclic subgroups of order n. Also
we note that if n > 2, then φ(n) is even. Ifm ∈ ω(G),
then by Lemma 1 and the above discussion, we have{

φ(m) | sm,
m |

∑
d |m sd.

(1)

Theorem 1 Let G be a group with
nse(G) nse(L3(4)) = {1, 315, 2240, 3780, 5760,
8064}, where L3(4) is the projective special linear
group of degree 3 over the finite field of order 4. Then
G ∼= L3(4).

Proof : We prove the theorem by first proving that
π(G) j {2, 3, 5, 7}, second showing that |G| =
|L3(4)|, and so G ∼= L3(4).
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By (i), π(G) j {2, 3, 5, 7, 19}. If m > 2, then
φ(m) is even, then s2 = 315, 2 ∈ π(G). If 3, 5, 7 ∈
π(G), then s3 = 2240, s5 = 8064, and s7 = 5760.
In the following, we prove that 19 /∈ π(G). If 19 ∈
π(G), then by (i), s19 = 3780. If 2 · 19 ∈ ω(G), then
s38 /∈ nse(G). Therefore 38 /∈ ω(G). It follows that
the Sylow 19-subgroup P19 acts fixed point freely on
the set of elements of order 2, then |P19| | s2(= 315),
a contradiction. Hence π(G) j {2, 3, 5, 7}.

If 2i ∈ ω(G), then φ(2i) = 2i−1 | s2i and so
1 6 i 6 8. If 3j ∈ ω(G), then φ(3j) | s3j and so 1 6
j 6 4. If 5k ∈ ω(G), then 1 6 k 6 2. If 52 ∈ ω(G),
then s25 /∈ nse(G), a contradiction. Hence k = 1.
If 7l ∈ ω(G), then 1 6 l 6 2. If 72 ∈ ω(G), then
s49 /∈ nse(G), a contradiction. Therefore l = 1.

If 2m · 3n ∈ ω(G), then 1 6 m 6 7 and 1 6 n 6
4. If 2a · 5 ∈ ω(G), then 1 6 a 6 6. If 2b · 7 ∈ ω(G),
then 1 6 b 6 7.

If 3c · 5 ∈ ω(G), then 1 6 c 6 3. By (i), s15 =
s45 = 5760. If 3d · 7 ∈ ω(G), then 1 6 d 6 3.

If 5·7 ∈ ω(G), the s35 /∈ nse(G), a contradiction.
Hence 5 · 7 /∈ ω(G).

If 2e · 3f · 5, then 1 6 e 6 5 and 1 6 f 6 4. If
2g · 3h · 7, then 1 6 g 6 6 and 1 6 h 6 3.

Hence we have ω(G) j
{1, 2, 22, 23, 24, 25, 26, 27, 28} ∪ {3, 32, 33, 34} ∪
{5}∪{7}∪{2·3, 22 ·3, 23 ·3, 24 ·3, 25 ·3, 26 ·3, 27 ·3, 2·
32, 22 ·32, 23 ·32, 24 ·32, 25 ·33, 26 ·32, 27 ·32, 2·33, 22 ·
33, 23 ·33, 24 ·33, 25 ·33, 26 ·33, 27 ·33, 2·34, 22 ·34, 23 ·
34, 24 ·34, 25 ·34, 26 ·34, 27 ·34}∪{2·5, 22 ·5, 23 ·5, 23 ·
5, 24 ·5, 25 ·5, 26 ·5}∪{2·7, 22 ·7, 23 ·7, 24 ·7, 25 ·7, 26 ·
7, 27 ·7}∪{3 ·5, 33 ·5, 33 ·5}∪{2 ·3 ·5, 22 ·3 ·5, 23 ·3 ·
5, 24 ·3 ·5, 25 ·3 ·5, 2 ·32 ·5, 22 ·32 ·5, 23 ·32 ·5, 24 ·32 ·
5, 25 ·32 ·5, 2 ·33 ·5, 22 ·33 ·5, 23 ·33 ·5, 24 ·33 ·5, 25 ·
33 ·5, 2 ·34 ·5, 22 ·34 ·5, 23 ·34 ·5, 24 ·34 ·5, 25 ·34 ·5}∪
{2 ·3 ·7, 22 ·3 ·7, 23 ·3 ·7, 24 ·3 ·7, 25 ·3 ·7, 26 ·3 ·7, 2 ·
32 ·7, 22 ·32 ·7, 23 ·32 ·7, 24 ·32 ·7, 25 ·32 ·7, 26 ·32 ·7, 2·
33 ·7, 22 ·33 ·7, 23 ·33 ·7, 24 ·33 ·7, 25 ·33 ·7, 26 ·33 ·7, 2·
34 ·7, 22 ·34 ·7, 23 ·34 ·7, 24 ·34 ·7, 25 ·34 ·7, 26 ·34 ·7}

Hence |G| = 20160 + 2240k1 + 3780k2 +
5760k3 + 8064k4 = 2l · 3m · 5n · 7p, where k1,
k2, k3, k4, l, m, n and p are non-negative integers.
So 5040 + 560k1 + 945k2 + 1440k3 + 2016k4 =
2l−2 · 3m · 5n · 7p. Now we consider the cases.

Case (a). π(G) = {2}. In this case, 5040 +
560k1 + 945k2 + 1440k3 + 2016k4 = 2l−2 and
0 6 k1 + k2 + k3 + k4 6 3. Since 24(336 + 35k1 +
90k3 +126k4)+945k2 = 2l−2, it follows that 24 | k2,
Hence k2 = 0. So 336+35k1 +90k3 +126k4 = 2l−6.
It is easy to get that k1 = 0 or 3, which means 3 | 2l−6.
So l = 6, and 336 + 35k1 + 90k3 + 126k4 = 1, a
contradiction.

Case (b). π(G) = {2, 3}. We know that
exp(P3) = 3, 9, 27, or 81. By (i), s9, s27 ∈
{3780, 5760, 8064} and so we get that s81 /∈ nse(G).
Hence exp(P3) = 3, 9, or 27.

Subcase b.1. exp(P3) = 3. By Lemma 1, |P3| |
1 + s3, and so |P3| 6 9. If |P3| = 3, then P3 is
cyclic and by (i), n3 = s3/φ(3) = 2240/2 = 1120,
which means 5 | |G|, a contradiction. If |P3| = 9, then
5040+560k1 +945k2 +1440k3 +2016k4 = 2l−2 ·32,
where k1, k2, k3, k4 and m are non-negative integers
and 0 6 k1 + k2 + k3 + k4 6 11. Hence we have
5040 6 2l−2 · 32 6 5040 + 2016 · 11 and so l = 10
or 11.

Case l = 10. Therefore 9(560+105k2+224k4)+
560k1 + 1440k3 = 28 · 9. Thus 9 | k1, and so k1 = 0
or k1 = 9

Case k1 = 0. If k3 = 0, then 16(35 + 14k4) +
105k2 = 210 and so k2 = 0. But the equation 35 +
14k4 = 26 has no solution. If k3 = 3, then 4(140 +
95k3 + 6k4) + 105k2 = 210, and so 4 | k2. Hence
k2 = 0, 4, 8. If k2 = 0, then the equation 560 + 480 +
224k4 = 210 has no solution in N. If k2 = 4, then
the equation 1360 + 224k4 = 1024 has no solution
in N. Then k2 = 8 and so k4 = 0, we also get a
contradiction. If k3 = 9, then 4 | k2 and so k2 = 0.
Therefore we have that 1700 + 224k4 = 210, but the
equation has no solution in N.

Case k1 = 9. We can get the same result as k1 =
0.

Case l = 11. We also get same the results as
l = 10.

Subcase b.2. exp(P3) = 9. By Lemma 1, |P3| |
1 + s3 + s9 and so |P3| 6 27. If |P3| = 9, then
P3 is cyclic. By (i) s9 = 3780, 5760, 8064, and so
n3 = s9/φ(9) = 945, 1440, 2016. It follows that 5 |
|G| or 7 | |G|, a contradiction. If |P3| = 27, then
5040+560k1 +945k2 +1440k3 +2016k4 = 2l−2 ·33,
where k1, k2, k3, k4 and m are non-negative integers
and 0 6 k1 + k2 + k3 + k4 6 16. Hence we have
5040 6 2l−2 · 33 6 5040 + 2016 · 16 and so l = 8, 9,
or 10.

Case l = 8. We have that 9 | k1, and so k1 = 0 or
9. If k1 = 0, then 16(35 + 10k3 + 14k4) + 105k2 =
26 · 3, it follows that 16 | k2. Hence k2 = 0, and
so 35 + 10k3 + 14k4 = 12, but the equation has no
solution in N.

Case l = 9, 10. As with the case l = 8, we get a
contradiction.

Subcase b.3. exp(P3) = 27. By Lemma 1, |P3| |
1 + s3 + s9 + s27, and so |P3| 6 81. If |P3| = 27,
then P3 is cyclic. By (i), s27 = 3780, 5760 or 8064
and so n3 = s27/φ(27) = 210, 320, 448, it follows
that 5 | |G| or 7 | |G|, a contradiction. If |P3| = 81,
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then by Lemma 2, s81 = 27t for some integer t and so
s27 = 3780. But by Lemma 1, 27 | 1+s3+s9+s27(=
9800, 11780), a contradiction.

Case (c). π(G) = {2, 5}. Since s5 = 8064, by
Lemma 1, 5 | 1+s5, so we have |P5| = 5. Then by (i)
n5(G) = s5/φ(5) = 2016, which means that 7 | |G|,
a contradiction.

Case (d). π(G) = {2, 7}. Since s7 = 5760, by
Lemma 1, 7 | 1+s7, so we have |P7| = 7. Then by (i)
n7(G) = s7/φ(7) = 960, which means that 5 | |G|, a
contradiction.

Case (e). π(G) = {2, 3, 5}. The proof is similar
to Case (c).

Case (f). π(G) = {2, 3, 7}. The proof is similar
to Case (d).

Case (g). π(G) = {2, 5, 7}. The proof is similar
to Case (c) or (d).

Case (h). π(G) = {2, 3, 5, 7}. In the following,
we first show that |G| = 26 · 32 · 5 · 7 or |G| = 27 ·
32 · 5 · 7, then prove that there is no group such that
|G| = 27 ·32 ·5·7 and nse(G) = nse(L3(4)), and show
that |G| = 26 · 32 · 5 · 7 and nse(G) = nse(L3(4)), we
have G ∼= L3(4).

Step 1. |G| = 26 · 32 · 5 · 7 or |G| = 27 · 32 · 5 · 7
We know that |P5| = 5, |P7| = 7. We will show that
15 /∈ ω(G). If 15 ∈ ω(G), set P and Q are Sylow
5-subgroups of G, then P and Q are conjugate in G
and so CG(P ) and CG(Q) are also conjugate in G.
Therefore we have s15 = φ(15) · n5 · k, where k is
the number of cyclic subgroups of order 3 in CG(P5).
As n5 = s5/φ(5) = 8064/4 = 2016, 2016 | s15

and so s15 = 8064. But 15 | 1 + s3 + s5 + s15(=
18369), a contradiction. We conclude that 15 /∈ ω(G).
It follows that the group P3 acts fixed point freely on
the set of elements of order 19 and so |P3| | s5(=
8064). So we have |P3| | 32.

We will show that 14 /∈ ω(G). If 14 ∈ ω(G), set
P and Q are Sylow 7-subgroups of G, then P and Q
are conjugate in G and so CG(P ) and CG(Q) are also
conjugate inG. Therefore we have s14 = φ(14)·n7 ·k,
where k is the number of cyclic subgroups of order 2
in CG(P7). As n7 = s7/φ(7) = 5760/6 = 960,
960 | s14 and so s14 = 5760. But 14 | 1 + s2 + s7 +
s14(= 11836), we get a contradiction. We have that
14 /∈ ω(G). It follows that the group P2 acts fixed
point freely on the set of elements of order 7 and so
|P2| | s7(= 8064). So we have |P2| | 27. Therefore
we have |G| = 2l · 3m · 5 · 7. But∑
sk∈nse(G)

sk = 20160 = 26 · 32 · 5 · 7 6 2l · 3m · 5 · 7.

So we have the results.

Step 2. G ∼= L3(4). First show that there is no
group such that |G| = 27 · 32 · 5 · 7 and nse(G) =
nse(L3(4)). Then get the result in Ref. 3. Since
s7 = 5760, n7 = s7/φ(7) = 5760/6 = 26.3.5. Since
G is soluble, then by Lemma 4, 5 ≡ 1 (mod 7), a
contradiction. So G is insoluble. Therefore we can
suppose that G has a normal series 1 C K C L C G
such that L/K is isomorphic to a simple Ki-group
with i = 3, 4 as 25 and 49 do not divide order of
G. If L/K is isomorphic to a K3-simple group, then
from Ref. 12 L/K ∼= A5, A6, L2(7), L2(8), U3(3),
or U4(2). From Ref. 13, n5(L/K) = n5(A5) = 6,
and so n5(G) = 6t and 5 - t for some integer t.
Hence the number of elements of order 5 in G is
s5 = 6t ·4 = 24t. Since s5 ∈ nse(G), then s5 = 8064
and so t = 2016. Therefore 25 · 32 · 7 | |K| | 24 · 3 · 7,
which is a contradiction. For the other cases, similarly
we can rule out these. If L/K is isomorphic to a
K4-simple group, then from Ref. 14, we have the
following. L/K is isomorphic to one of the following
groups: A7, A8, A9, A10; L2(49), L3(4), S4(7),
S6(2), U3(5), U4(3), J2, or O+

8 (2).
If L/K ∼= A7, then from Ref. 13, n7(L/K) =

120, and so n7(G) = 120t with 7 - t. Hence
the number of elements of order 7 in G is s7 =
120t · 6 = 720t. Thus s7 = 5760 and t = 8.
Now n7(G) = 960. On the other hand, by Sylow’s
Theorem n7(G) = 1, 8, 64 or 288, a contradiction.
For the remaining groups except L3(4), we can also
rule out by the methods as A7.

In the following we show that G ∼= 2.L3(4).
From above, L/K ∼= L3(4). Let Ḡ = G/K and
L̄ = L/K. Then L3(4) 6 L̄ ∼= L̄CḠ(L̄)/CḠ(L̄) 6
Ḡ/CḠ(L̄) = NḠ(L̄)/CḠ(L̄) 6 Aut(L̄)

Set M = {xK | xK ∈ CḠ(L̄)}, then G/M ∼=
Ḡ/CḠ(L̄) and so L3(4) 6 G/M 6 Aut(L3(4)).
Therefore G/M ∼= L3(4), G/M ∼= 2.L3(4) or G/M
is isomorphic to 3.L3(4), S3.L3(4), 2.S3.L3(4), or
2.2.L3(4).

If G/M is isomorphic to 3.L3(4), S3.L3(4),
2.S3.L3(4) or 2.2.L3(4), then order consideration
rules out this case.

IfG/M ∼= L3(4), |M | = 2 and soG has a normal
subgroup of order 2, which is generated by a central
involution. Thus G has an element of order 14, which
is a contradiction.

If G/M ∼= 2.L3(4), then |M | = 1. By Sylow’s
theorem, n7(G) = 1, 8, 36, 64, 288. On the other
hand, since s7 = 5760 and exp(P7) = 7, we have
n7 = s7/φ(7) = 5760/6 = 960, a contradiction.

Second, since |G| = 26 · 32 · 5 · 7 and nse(G) =
nse(L3(4)), we have from Ref. 3, G ∼= L3(4). This
completes the proof. �
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