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ABSTRACT: The epidemic spread of an SEIR (susceptible-exposed-infectious-recovered) model is analysed via a contact
infection process. We solve the system of nonlinear partial differential equations by using the method of separation of
variables. Approximate analytical expressions for the propagating infection wave for various ranges of parameters are
presented.
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INTRODUCTION

The modelling of epidemics has been the object of
a vast number of studies over the past century1.
The desire to understand their mechanism has led to
the formulation of models which make possible the
simulation of events for which laboratory experiments
cannot be conducted easily. Such approaches include
reaction-diffusion models2, 3 and may include nonlin-
ear incidence rates in compartmented models4–9, use
travelling waves equations10, 11 and non-local delayed
terms12.

The process of an epidemic spread in a popu-
lation of individuals with low mobility within the
susceptible-infectious-recovered (SIR) scheme was
studied by Postnikov and Sokolov. In a continuum
limit, such a propagation mechanism is described by
a nonlinear reaction-diffusion equation with a diffu-
sion coefficient that is a function of the density of
susceptibles. The travelling wave solution of the
corresponding system of partial differential equations
has been obtained and analysed13. The spread of a
contact infection following the SIR scheme through
an immobile population with the slab geometry has
been considered14. The choice of compartments to
be included in a model depends upon the character-
istics of the particular disease being modelled and
the purpose of the model. In the SEIR model, the
population is partitioned into four compartments at
any time t: susceptible individuals S(t) (individuals
at risk of getting infection), infected individuals who

are not yet infectious E(t), infected individuals who
are infectious (capable of transmitting the infection)
I(t), and recovered individuals R(t) (those who have
recovered from the infection after being infectious for
a defined period).

Some diseases, such as the viral diseases SARS
and measles but also several vector-mediated diseases
like the four strains of dengue, need to be modelled
using an SEIR approach. In this paper, we extend
the study of Ref. 14 to analyse the infection wave
solutions of an SEIR model instead of an SIR model
and we try to complete the analytical study. We
show the distribution of the infection waves for the
different ranges of parameters, and compare it to the
SIR behaviour.

THE MODEL AND ITS SOLUTIONS

Infection wave in a comoving frame: separation of
variables

S, E, I and R are the fractions of the population in
each state, and are functions of the space variable x
as well as of time, and so S + E + I + R = 1. Each
individual is assumed to be slowly moving with a high
returning rate. Hence the propagation of the disease
is a contact process where an infectious individual
happens to encounter a susceptible one. As has been
discussed by Kendall3, and as is done in Refs. 13, 14,
we consider the spatially averaged concentration of
infected at the point where we compute the transition
from susceptible to exposed. Applying the scheme of
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Naether, Postnikov and Sokolov13, 14, we obtain

∆E(x, y) =
c

4
S(x, y)[I(x+ b, y) + I(x− b, y)

+ I(x, y + b) + I(x, y − b)]∆t, (1)

where c is the contact rate and b is the lattice spacing.
After we expand terms in brackets in (1) by using
a Taylor series expansion about (x, y) up to the first
non-vanishing term in b, we get the partial differential
equation

∂E

∂t
= cSI +DS

∂2I

∂x2
(2)

where D = cb2/4. It should be emphasized that D
is not a diffusion coefficient of individuals but comes
from the Taylor expansion of the average of contacts
around the point considered.

The transition rate from exposed to infectious is
proportional to E/τ , where τ is the intrinsic incuba-
tion time. Thus including this incubation term, one
obtains

∂E

∂t
= cSI − E

τ
+DS

∂2I

∂x2
.

In the same way, the rate of infectious who recover
is defined by I/s, where (1/s) is the recovery rate
of an infectious person. From the above assumptions,
the basic mechanisms for the development and spatial
spread of the disease are defined as follows:

∂S

∂t
= −cSI −DS ∂

2I

∂x2
(3)

∂E

∂t
= cSI − E

τ
+DS

∂2I

∂x2
(4)

∂I

∂t
=
E

τ
− I

s
(5)

∂R

∂t
=
I

s
(6)

where S + E + I +R = 1.
As in Ref. 14, we consider a continuous de-

scription and the propagation of a stationary wave of
infection. We change to a comoving frame x′ = x−vt
where v is the velocity of the wave of infection.

− v dS

dx′
= −cSI −DS d2I

dx′2
(7)

− v dE

dx′
= cSI − E

τ
+DS

d2I

dx′2
(8)

− v dI

dx′
=
E

τ
− I

s
(9)

− v dR

dx′
=
I

s
. (10)

Using the fact that S + E + I + R = 1 everywhere,
one can rewrite (7) as

− v dS

dx′
= −cS(1− S) +DS

d2S

dx′2

+ S

(
cR+D

d2R

dx′2

)
+ S

(
cE +D

d2E

dx′2

)
. (11)

Returning to consider (7), after dividing both sides by
−S, we obtain

v
d lnS

dx′
= cI +D

d2I

dx′2
. (12)

If we substitute I in the right-hand side of (12), then

d

dx′

[
lnS + s

(
cR+D

d2R

dx′2

)]
= 0.

This means that the initial system of equations pos-
sesses an integral of motion

lnS + s

(
cR+D

d2R

dx′2

)
= c0 (13)

where c0 is a constant.

Approximate solutions: leading front

To determine the value of the constant c0, we consider
x → ∞, far in front of the infection wave. In this
domain, S = 1 (and lnS = 0), R = 0 = d2R/dx′2,
E = I = 0, d2E/dx′2 = d2I/dx′2 = 0 so that
c0 = 0. Consequently,

lnS + s

(
cR+D

d2R

dx′2

)
= 0. (14)

After some calculations, we obtain the relation

E = vτ
dS

dx′
+ v2τ2

d2S

dx′2
+ v2τ2

d2E

dx′2
. (15)

Using the above relations, we can rewrite (11) as

− v dS

dx′
= −cS(1− S) +DS

d2S

dx′2

− 1

s
S lnS +DS

d2E

dx′2
+ cvτS

dS

dx′

+ v2τ2cS
d2S

dx′2
+ v2τ2cS

d2E

dx′2
. (16)

The second derivative in (16) at the front of the
infection wave is small and can be neglected. Since
S is still close to unity in front of the infection wave,
one can use a Taylor expansion and write lnS =
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ln(1 − (1 − S)) ≈ −(1 − S). Equation (16) can be
written as

v(1 + cτ)
dS

dx′
=

(
c− 1

s

)
S(1− S). (17)

Taking v(1 + cτ) = vmin = 2
√
D(c− (1/s)) (from

the marginal stability principle), the above equation
becomes

dS

dx′
=
v(1 + cτ)

4D
S(1− S).

The solution is

S =
e
v(1+cτ)

4D x′+k1

e
v(1+cτ)

4D x′+k1 + 1

where k1 is a constant which has to be determined. By
using a trigonometric identity, we obtain

S = 1
2

[
1 + tanh

((
v

8D

)
((1 + cτ)x′−x′0)

)]
(18)

where k1=−vr′0/4D and

v =
2
√
D(c− (1/s))

(1 + cτ)
. (19)

From our evaluations, the corresponding equa-
tions for R, E and I are related to the equation of
motion of a harmonic oscillator under an external
forcing: (d2y/dx′2)+wy = F (x′). Here y is I , R, or
E. w = c/D and F (x′) = (v/D)d lnS/dx′ for y =
I . w = −c/D, F (x′) = lnS/sD for y = R. w =
−1/v2τ2, F (x′) = −(1/vτ)(dS/dx′)−d2S/dx′2 for
y = E. The solutions are

S(x′) = 1
2

[
1 + tanh

((
v

8D

)
((1 + cτ)x′ − x′0)

)]
R(x′) = − 1

sc
lnS

I(x′) =
v

c

d lnS

dx′

E(x′) = 1− S(x′)− I(x′)−R(x′)

where x′0 = −4k1D/v, v is given by (19), and k1 is
any constant.

Approximate solutions in the wake of the infection
wave

Now we consider the wake (rear tail) of the infection
wave. The density of the recovered population can be
found as follows. Consider the equation

lnS + scR+ sD
d2R

dx′2
= 0.

Far in the tail of the wave, the densities of the
recovered and of the susceptibles reach their limiting
values: I = 0, E = 0, R = R∗ = constant, and
R∗ + S∗ = 1. Hence the invariant (14) takes the
form lnS∗ = sc(S∗ − 1) or S∗ = esc(S

∗−1). This
transcendental equation has the solution

S∗ =
−Wk(−S0σ)

sc
(20)

where Wk(z) is the kth branch of the Lambert W
function, the solution of z = Wk eWk , S0 = 1, and
σ = sc e−sc. From (20), we can see that if Wk 6 −1,
then S∗ will have positive solutions. But if Wk > −1
then some values of Wk will give negative values of
S∗. So W−1 is the only possible solution. Hence
we choose W−1. Using S(x′) = S∗ + f(x) (with
f(x) 6 S∗) and (17), we obtain

DS∗
d2f

dx′2
+ (v + cvτS∗)

df

dx′
+

(
cS∗ − 1

s

)
f = 0.

(21)
As usual, the exponential substitution f(x′) = eβx

′
,

leads to (∂f/∂x′) = (∂ eβx
′
/∂x′) = β eβx

′
and

(∂2f/∂x′2) = β2 eβx
′
. Equation (21) can be written

as

DS∗β2 + (v + cvτS∗)β +

(
cS∗ − 1

s

)
= 0

which has the roots

β = − v + cvτS∗

2DS∗

±

√(
v + cvτS∗

2DS∗

)2

−
CS∗ − 1

s

DS∗
. (22)

Only the positive solution has a physical meaning
because S is an increasing function of x′. The full
function is S = S∗ + f = S∗ + c1 eβx

′
, where c1 is

an appropriate constant. Hence

S =
−W−1(−S0σ)

sc
+ c1 eβr

′

where β is positive in (22). We use the approximation
W (x) ≈ x−x2 + 3

2x
3− 8

3x
4 + 125

4 x5 and after some
calculations we obtain the full solutions in the wake of
infection wave:

S(x′) = c1 eβx
′
+

1

sc
(−S0σ + S2

0σ
2

− 3
2S

3
0σ

3 + 8
3S

4
0σ

4 − 125
4 S5

0σ
5),

R(x′) = − 1

sc
ln

(
c1 eβx

′
+

1

sc
(−S0σ + S2

0σ
2

− 3
2S

3
0σ

3 + 8
3S

4
0σ

4 − 125
4 S5

0σ
5)

)
,
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I(x′) =
c1svβ eβx

′

scc1 eβx′ − S0σ + S2
0σ

2

− 3
2S

3
0σ

3 + 8
3S

4
0σ

4 − 125
24 S

5
0σ

5

where c1 is a constant. The approach considered
above is no longer applicable since the fast growing
f(r) gets large compared to S∗. However, here S
itself is quite small, so one can neglect both the
quadratic term and the second derivative in (21) and
obtain

d lnS

dx′
=
c

v
+

lnS

sc
− cτ dS

dx′
.

Taking the exponential solution of the above equation,
the solutions for the tail of the infection wave are

S(x′) = exp

(
k2 e

x′
sv(1+cτ) − sc

)
R(x′) = − 1

sc
lnS = −k2

sc
e

x′
sv(1+cτ)

−sc

I(x′) =
v

c

d lnS

dx′

E(x′) = 1− S(x′)− I(x′)−R(x′)

where k2 is a constant.
The solutions are calculated and plotted using

MATLAB. Parameters used in the model (3)–(6) are:
c (the rate constant of the transmission of the disease
from infectious to susceptible humans) = 0.6, 0.8, and
0.1; D (diffusion coefficient) = 1 km2/day; τ (intrinsic
incubation time) = 6.8, 8, 10, 15, 20 days; s (recovery
time) = 3, 5, 15, 20, 25 days.

We examine the change in shape of the disease
wave under variation of the contact and recovery rates.
Figs. 1 and 2 represent the shape of the wave for
the different contact rates. The shape of the wave is
shown in Figs. 3 and 4 for the different recovery rates.
In all of these cases, both front and back solutions
show exponential types of behaviour. The exponential
decrement of the front solutions exhibits a rather small
change.

From Figs. 1–4, we can see that the epidemic
peak, the time of the epidemic peak (tmax) and the
length of outburst are different. The individual pop-
ulation for the higher contact rate and lower recovery
rates (the longer duration for recovering) produce the
higher epidemic peak, tmax and length of the epidemic
outburst. As we see in Figs. 1–4, the peaks of the ex-
posed individuals for both front and back solutions are
higher than the peaks of the infectious ones because
some exposed individuals recover before they become
infectious. Furthermore, the distances from criticality
in these three waves are different because the product
of c and s is different.
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Fig. 1 The spatial solutions for the different contact rates
of exposed and infectious populations (left curve: c = 1,
v = 0.15; middle curve: c = 0.8, v = 0.17; right curve:
c = 0.6, v = 0.18) for t = 700 days. Fixed parameters:
τ = 10 days, s = 15 days. For this and the next 5 figures:
+ shows the wake solution; o shows the front solution; solid
line shows the approximate solution.
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Fig. 2 The time series solutions for the different contact
rates of exposed and infectious populations (left curve: c =
0.6, v = 0.18; middle curve: c = 0.8, v = 0.17; right
curve: c = 1, v = 0.15) for x = 120. Fixed parameters:
τ = 10 days, s = 15 days. tmax = 101, 188, and 264 days
for c = 0.6, 0.8, and 1, respectively.

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.scienceasia.org


414 ScienceAsia 39 (2013)

0 30 60 90 120
0 

0.2

0.4

0.6

0.8

1 

E

x (km)

0 30 60 90 120
0 

0.2

0.4

0.6

0.8

1 

I

x (km)

Fig. 3 The spatial solutions for the different recovery rates
of exposed and infectious populations (top curve: s = 25,
v = 0.1648; middle curve: s = 20, v = 0.1667; bottom
curve: s = 15, v = 0.1678) for t = 700 days. Fixed
parameters: τ = 10 days, c = 0.8.
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Fig. 4 The time series solutions for the different recovery
rates of exposed and infectious populations (top curve: s =
25, v = 0.1648; middle curve: s = 20, v = 0.1667; bottom
curve: s = 15, v = 0.1678) for x = 120. Fixed parameters:
τ = 10 days, c = 0.8. tmax = 190, 200, and 210 days for
s = 15, 20, and 25, respectively.

Figs. 5 and 6 show the shapes of the waves
for the different values of parameters with the same
velocity. We can see that with fixed velocities, the
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Fig. 5 The spatial solutions for the different values of
parameters with the same velocity (v = 0.2) of exposed
and infectious populations (top curve: c = 0.6, s = 15,
τ = 10; middle curve: c = 0.8, s = 5, τ = 8; bottom
curve: c = 1, s = 3, τ = 6.8) for t = 700 days. The
complete trailing and leading edges set of points have been
plotted for the infectious human proportion solution for the
parameter values [c = 0.6; s = 15; τ = 10].
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Fig. 6 The time series solutions for the different values of
parameters with the same velocity (v = 0.2) of exposed and
infectious populations (top curve: c = 0.6, s = 15, τ = 10;
middle curve: c = 0.8, s = 5, τ = 8; bottom curve: c = 1,
s = 3, τ = 6.8) for x = 120.
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Fig. 7 The spatial solution of an infectious human pop-
ulation from SIR and SEIR models compared (c = 0.8,
s = 15 days).

shapes of the waves give the same time for the epi-
demic peaks but different slopes of the curves. On
all figures, the solid line is obtained by connecting
points from the numerical solutions of the analytical
(approximate) solutions. The left side part is made
from points coming from the ‘wake’ solution, while
the right part is made from points coming from the
‘leading front’ solution. These two curves intersect,
and the choice of how long we keep the wake values
before switching to the leading front values is made
automatically to ensure the smoothest curve, which
is the most physical. An exact solution, if it could
be found, would have a smooth behaviour, but it is
difficult to obtain as our calculations are possible only
under the approximation that the second derivative
can be neglected. This approximation fails near the
maximum. Hence we make a smooth junction of the
front and wake solutions. To illustrate this, we show
more values of the trailing and leading solutions on
one of the curves of Fig. 5, which is the case for which
the junction is the least smooth.

The comparison of infection waves from SIR and
SEIR models ((3)–(6)) is shown in Fig. 7. We can see
that the peak of infection wave in the SEIR model is
less than the peak of infection wave in the SIR model.
The length of the outburst in the SEIR model is also
less than the length of the outburst in the SIR model.

CONCLUSIONS

We considered the spread of exposed and infectious
populations in a contact mode of the propagation of
the disease in which the populations have only local
motions. The corresponding analytical solutions are
obtained and the solution shows a propagating wave
of asymmetric shape. We compared these analytical
solutions for the different ranges of parameters. We
show that the dynamics of the SEIR model is slower
than that of an SIR model, and that the total proportion

of infectious cases is substantially smaller. Although
it is not really surprising per-se, as the transition
through the additional exposed class takes time, it is
real progress to be able to quantify the differences,
especially as it may allow curative measures to be
decided in order to limit an epidemic outburst.

Acknowledgements: This work received financial sup-
port from the Franco-Thai collaborative research pro-
gramme (2009/2010), the MATECLID project (APR GICC
2002), and the EPIDENGUE project (ANR 00119 05).
D.G.L. has a PhD grant from the French Ministère de la
Recherche. We also thank a referee for useful suggestions,
and we owe a lot to Michael A. Allen who pointed out a
major blunder.

REFERENCES
1. Diekmann O, Heersterbeek H (2000) Mathematical

Epidemiology of Infectious Disease, Wiley, New York.
2. Murray J (2003) Mathematical Biology II, Springer.
3. Kendall DG (1965) Mathematical models of the spread

of infection. In: Mathematics and Computer Science in
Biology and Medicine, HMSO, London.

4. Liu WM, Hethcote HW, Levin SA (1987) Dynamical
behavior of epidemiological models with nonlinear
incidence rate. J Math Biol 25, 359–80.

5. Greenhalgh D (1992) Some results for an SEIR epi-
demic model with density dependence in the death rate.
IMA J Math Appl Med Biol 9, 67–106.

6. Li MY, Muldowney JS (1995) Global stability for
the SEIR model in epidemiology. Math Biosci 125,
155–64.

7. Zhang J, Ma Z (2003) Global dynamic of SEIR epi-
demic model with saturating contact rate. Math Biosci
185, 15–32.

8. Korobeinikov A (2004) Lyapunov functions and global
properties for SEIR and SEIS epidemic models. J Math
Biol 21, 75–83.

9. Li G, Jin Z (2005) Global stability of an SEI epidemic
model with general contact rate. Chaos Soliton Fract
23, 997–1004.

10. Brunet E, Derrida B (1997) Shift in the velocity of a
front due to a cutoff. Phys Rev E 56, 2597–604.

11. Mai J, Sokolov IG, Blumen A (1998) Discreteness
effects on the front propagation in the A+B → 2A
reaction in 3 dimensions. Europhys Lett 44, 7–12.

12. Gourley SA, Liu R, Wu J (2007) Some vector borne
diseases with structured host populations: extinction
and spatial spread. SIAM J Appl Math 67, 408–33.

13. Postnikov EB, Sokolov IM (2007) Continuum descrip-
tion of a contact infection spread in a SIR model. Math
Biosci 208, 205–15.

14. Naether U, Postnikov EB, Sokolov IM (2008) Infection
fronts in contact disease spread. Eur Phys J B 65,
353–9.

www.scienceasia.org

http://www.scienceasia.org/2013.html
http://dx.doi.org/10.1007/BF00277162
http://dx.doi.org/10.1007/BF00277162
http://dx.doi.org/10.1007/BF00277162
http://dx.doi.org/10.1093/imammb/9.2.67
http://dx.doi.org/10.1093/imammb/9.2.67
http://dx.doi.org/10.1093/imammb/9.2.67
http://dx.doi.org/10.1016/0025-5564(95)92756-5
http://dx.doi.org/10.1016/0025-5564(95)92756-5
http://dx.doi.org/10.1016/0025-5564(95)92756-5
http://dx.doi.org/10.1016/S0025-5564(03)00087-7
http://dx.doi.org/10.1016/S0025-5564(03)00087-7
http://dx.doi.org/10.1016/S0025-5564(03)00087-7
http://dx.doi.org/10.1093/imammb/21.2.75
http://dx.doi.org/10.1093/imammb/21.2.75
http://dx.doi.org/10.1093/imammb/21.2.75
http://dx.doi.org/10.1016/j.chaos.2004.06.012
http://dx.doi.org/10.1016/j.chaos.2004.06.012
http://dx.doi.org/10.1016/j.chaos.2004.06.012
http://dx.doi.org/10.1103/PhysRevE.56.2597
http://dx.doi.org/10.1103/PhysRevE.56.2597
http://dx.doi.org/10.1209/epl/i1998-00427-7
http://dx.doi.org/10.1209/epl/i1998-00427-7
http://dx.doi.org/10.1209/epl/i1998-00427-7
http://dx.doi.org/10.1137/050648717
http://dx.doi.org/10.1137/050648717
http://dx.doi.org/10.1137/050648717
http://dx.doi.org/10.1016/j.mbs.2006.10.004
http://dx.doi.org/10.1016/j.mbs.2006.10.004
http://dx.doi.org/10.1016/j.mbs.2006.10.004
http://dx.doi.org/10.1140/epjb/e2008-00291-9
http://dx.doi.org/10.1140/epjb/e2008-00291-9
http://dx.doi.org/10.1140/epjb/e2008-00291-9
www.scienceasia.org

