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ABSTRACT: In this paper, we study the global existence of solutions for the compressible Navier-Stokes equations with a

non-autonomous external force and a heat source in H*. Under suitable assumptions, we obtain the large-time behaviour of

solutions in H*.
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INTRODUCTION

In this paper, we are concerned with the global ex-
istence and large-time behaviour of solutions to the
following 1-d compressible Navier-Stokes equations
with a non-autonomous external force and a heat
source in Lagrangian coordinates:

Up = Vg, (D

Utza$+f</ Udy,t)7 (2)

0

et:UUm_QQ:""_g(/HUdyvt)v 3)
0

where = € [0, 1], u denotes the specific volume (i.e.,
u = 1/p), v the velocity, 0 the absolute temperature,
o the stress, e the internal energy, and q the heat flux.
The functions f, g are non-autonomous external force
and the heat source.

In this paper, we only investigate the polytropic
viscous ideal gas, i.e.,

BZCUG, 0= 7p+ﬂvla q=—hk—, P= 7R77

U )
“4)
where the coefficients c,, u, k, R are positive con-
stants.

We consider a typical initial boundary value prob-
lem for (1)—(4) in the reference domain ) := € x
[0,400) = [0,1] x [0,400) under the Dirichlet-
Neumann boundary conditions for the fluid unknowns

v(0,t) = v(1,t) =0, ¢(0,t) = q(1,t) =0, t > 0,
4)
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and initial conditions
t=0: u=ug(x), v=uv9(x), 0 =00(x). (6)

In recent years, many mathematicans have paid
attention to the Navier-Stokes equations. Firstly, we
recall some previous work concerning the related
results. When the temperature 6 is a constant, i.e.,
the system only contains (1)—(2), for f = 0 and
g = 0, Kanel!, Itaya?, Kazhikhov?®, Kazhikhov
and Nikolaev*>, Kazhikhov and Shelukhin®, etc.,
have studied the global existence and uniqueness of
the uniformly boundary, global-in-time solution under
various initial conditions and the equation of state and
soon. For f # 0 and ¢ = 0, Mucha’ considered
the compressible barotropic Navier-Stokes system in
monodimensional case with a Neumann boundary
condition given on a free boundary and proved the
global existence with uniform boundedness for large
initial data and a positive force. Moreover, when
t — 00, the author obtained the solutions tended to the
stationary solution. Zhang and Fang® studied a free
boundary problem for compressible Navier-Stokes
equations with density-dependent viscosity. Under
certain assumptions imposed on the initial data, the
authors obtained the global existence and uniqueness
of the weak solution and showed that it converged
to a stationary one as time tends to infinity. Later
on, Qin and Zhao? obtained the global existence and
asymptotic behaviour of solutions in H'(i = 1,2) to
an initial boundary value problem in a bounded region.
When the temperature 6 is not a constant, Qin et al '°
proved the regularity and continuous dependence on


http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.194
http://www.scienceasia.org/2013.html
mailto:yangxinguangyxg@yahoo.cn
www.scienceasia.org

ScienceAsia 39 (2013)

initial data in H%(i = 1,2,4) for large initial data
and then showed the large-time behaviour of solutions
in H'(i = 2,4) for small initial data to the Cauchy
problem. Zheng and Qin'' obtained the existence of
maximal attractor for the problem for f = 0, g = 0.
For more results, we can refer to Refs. 12-14.

For system (1)-(6), Qin and Yu '3 proved the
global existence and large-time behaviour of solutions
in H'(i = 1,2) in a bounded region. But the global
existence and large-time behaviour of solutions in H*
are still open. So in this paper, we study the global
existence and large-time behaviour of solutions in H4.

The aim of this paper is to establish the global
existence and large-time behaviour of solutions to the
system (1)—(6). We shall firstly establish the global
existence in H*, and then we shall prove large-time
behaviour of solutions in H4.

In this paper, we assume for any x € ()

1
/ uo(x) dz := g, O<C§1<uo(w)<00,
0

(7

where Cj is a positive constant. Moreover, we
suppose that for any u(z,-) € L*(R*,L())
with &(z,t) = [J u(y,t)dy and Fla,t) =
fot f(Js u(y,s)dy, s)ds, the non-autonomous exter-
nal force f = f({(z,t),t) and heat source g =
g(&(x,t),t) satisfy the following conditions:

, (8)

fe € LARY, L3(Q) N L™
fi, fee € L*(RT, L2(Q)) N L>(RY, L*(Q

» )

(10)
f£t7 ftt7 f§§§ € LQ(R+7L2<Q))7
(11)
g>0, ge LR, L*(Q) N L*(RY, L*(Q))
NLYRT, L>(Q)),
(12)
ges Gt, gee € L*(RT,L*(Q))
NL>(RY, L*(Q)),
(13)
ets Gut» geee € LP(RT, L*()).
(14)

The notation in this paper will be as follows. L9, 1 <
q < +oo, W™, m e N, H' = W'2 H} = W, ?
denote the usual (Sobolev) spaces on 2. In addition,
|l - ||z denotes the norm in the space B; we also put
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|-l = II-l[ z2(q)- Subscripts ¢ and x denote the (partial)
derivatives with respect to ¢ and x, respectively. We
use C;, (i = 1,2,3,4) to denote the generic positive
constants depending on the ||(u, vo, 00)|| i x mri x m7i»
mingeo,1) vo(z), mingeo,1 o (), but not depending
on t. We denote v3y := Vyzy and U3zt 1= Uggqt.

Our result in this paper reads as follows.
Theorem 1 Let (8)—(14) hold. Suppose that
(UO,U(), 90) S H4(0, 1) X Hé(o, 1) X H4(0, 1) with
up > 0 and 6y > 0 for any x € [0,1], and
that the compatibility conditions hold. Then there
exists a unique global solution (u(t),v(t),0(t)) €
L ([0, +00), H*(0,1) x H§(0,1) x H*(0,1)) to the
problem (1)—(6) verifying that for any t > 0,
lu(t) = TllZ7s + e (0)][37s + [luee ()] 71
o)l + loee @1 + 16(E) — O]l

t
+110: ()12 + 10 ()] +/0 (lu =@l + [lvllZs

+ vellErs + loeelzn + 10 = 1l + 11917

+ (102 171) (s) ds < Cu, (15)
[l + ol + s ?)5) as < 04
’ (16)
Moreover, as t — +00, we have
[u(t) = ullgs =0, Jv@®)llms =0,
a7
10(t) = 0l s — 0,
where U = fol u(z,t)de = fol updz, 0 =

fol 0(z,t)dz.

Corollary 1 The global solution (u(t),v(t), 0(t)) ob-
tained in Theorem 1 is in fact a classical solution and
as t — 400, we have

[[(u(t) —a, v(t),0(t) — 0)[|(car1/2)s = 0.

Remark 1 Theorem 1 also holds for the boundary
conditions

v(0,t) =v(1,t) =0, 6(0,t)=06(1,t) =Ty >0
where 6 > 0 can be replaced by Ty = const.
GLOBAL EXISTENCE IN
H*(0,1) x H{(0,1) x H*(0,1)
In this section, we shall establish the global existence
in H4(0,1) x Hg(0,1) x H*(0,1).

First we give the global existence of solutions
in H1(0,1) x H3(0,1) x H'(0,1) and H?(0,1) x
HZ(0,1) x H?(0,1) established in Ref. 15.
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Lemma 1 Under the assumptions (8)-(14), for any
(UO7U0,90) S Hl(O,l) X H(}(O,l) X HI(O, 1) with
up > 0and 6y > 0 for any x € [0,1], and
that the compatibility conditions hold. Then the
problem (1)—(6) admits a unique global solution

(u(t),v(t),0(t)) € HY(0,1) x H}(0,1) x H(0,1)
such that

0< Cfl < u(z,t) < Ch,
(18)
0<Cyt<O(a,t) <Ch, Yz, t) €Q,

a1 + o1 + 1017 +/0 (Ifez 2

+ lloall® + el + llowe | + 1162117 + 11621

+ 1020 [1*)(s) ds < Cy, V> 0. (19)

Lemma 2 Under the assumptions (8)—(14), for any
(u0,v0,00) € H?(0,1) x HZ(0,1) x H?(0,1) with
up > 0 and 6y > 0 for any x € [0,1], and
that the compatibility conditions hold. Then the
problem (1)—(6) admits a unique global solution
(u(t),v(t),0(t)) € H*(0,1) x H3(0,1) x H?(0,1)
such that

t
lu(®)llz2 + lo@)l72 + 107 +/0 (a7

+ llvallFre + llvellF + 102152 + 10:]|7:)(s) ds
<Oy, Vit>0. (20)

Now we are ready to establish the global existence
in H4(0,1) x H§(0,1) x H*(0,1).

Lemma 3 Under the assumptions in Theorem 1, for
any (UO; Vo, 80) € H4(O7 1) X H3(07 1) X H4(07 1)’
the following estimates hold

vae (2, 0)| + a2z, 0)]] < Cs, e
ot (@, 0) | + 18sc e, Ol + e, 0)]
e (2, 0)] < Cay 22)
t
MMMP+AH%M@W®
t
<C4+C4/ 000e(s)]|?ds,  (23)
0

t
WMMP+/H%M@W®
0
t
< czs-3+-cae-ljf 10zt (5)]2 ds
0

t
+ Clg/ (H’tht”Q + ||U1.LtH2)(S) ds. (24)
0
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Proof: By Lemma 1 and Lemma 2, we derive from

@

[os ()] < Crlllua (O] + 1162 ()] + lvaz (D]
+ e @Ol o< lua O + L)1)
< Co[[va(®) L + lIne @O + 1102()]]
+1F@D- (25)

Differentiating (2) with respect to x and using
Lemma 1 and Lemma 2, we deduce

[v2e ()] < Co[[oz ()| 2 + 1wz (E)]]

+ 16 (®)[|r) + Crll fe(@) - (26)

or

[vse ()| < Collv(®) 2 + [t ()1 + [lvze(2)]
10 @Olle) + Crllfe @I @D
Similarly, differentiating (2) with respect to x twice,

using Lemma 1 and Lemma 2 and the interpolation
inequality, we arrive at

[vaat (D] < Collua ()2 + 10 ()l 2 + [ fe(D)]]
+ vz ()l s + [ fe (1) (28)

or

[vaz ()] < Colllua(B)l| a2 + va(t)]|
+ 102() |2 + [[vaze ()] + [ f (@) ]
+ [ fee@)1)- (29)

We easily deduce from (3) and Lemma 1 and Lemma 2
that

10:()]| < Cr(ll0z(O N 2 + [[va (O]l + [lg@)I])-
(30)
We differentiate (3) with respect to z, and use
Lemma 1 and Lemma 2 to get

102: ()| < Collua (@)1 + va (Ol + [102()] 22
+ lge@)1) €2y

or

1032 ()| < Co(llua (@)l + 1102() ][ 222 + 102 @) |
+ o ()| + llge (DI])- (32)
Differentiating (3) with respect to x twice, using

Lemma 1 and Lemma 2 and the embedding theorem,
we derive

1022t ()] < Co(llua(B)l[ 52 + [0 ()] 12 + lge ()]
+ llgee O + 11028 =), (33)
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or

1022 (DI < Co([lue (@) g2 + [Jv2 (@)l a2 + [162(8)]] a2

+ 1022t ()] + llgee (D1 + [lge (D)1)-
(34)

Differentiating (3) with respect to ¢, by (26), (28) and
(30)-(31), we see that

[ose (D] < Co[vz ()| + luz (@] + [16:(2)]]
F 0@ + vae (@) + [[vaae (B)]]
+ LN + 1£:@)1) (35)
< Co([lua (@)l + l[oz (@)l s + 1102() ] 2)
+ Co(llg@OI + llge @1 + I fe(@)l

+ [Ifee @I + £ (36)

Similarly, we have

100 ()] < Calllea (@)l + oD + 16:(0)]
10 + la (Bl + 10:(8) 1
102D + g (@) + lge (D))
37
< Colllua®llz + vw )15 + 10(8) 12)
+ Calllg + lge®)] + 1 fe(0)]

+ llgee @+ llg: ()I])- (38)

Thus estimates (21)—(22) follow from (19), (26), (28),
(31), (33), (35), (38) and (8)—(14).

Differentiating (2) with respect to ¢ twice, multiplying
the result by vy in L2(0, 1), performing an integra-
tion by parts and using Young’s inequality and using
Lemma 1 and Lemma 2, we deduce

= oI + e

< Oallloa )] + 100 + [02e(t) P+ ae(t)?
F10DI1%) + O (e )1 + 1 fee(0)?
+ 1 fee(0)I)- (39)

Thus by (10)—(11), Lemma 1 and Lemma 2,

t
o ()] + / vare ()2 ds
t
<Ci4 Oy / 101a(5)]2 s
0

which, along with (27), gives (23).
Differentiating (3) with respect to ¢ twice, multiplying
the resulting equation by 6, in L?(0, 1), integrating
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by parts and using Young’s inequality, we have

rd [t
5&\/0\ Httdx

1
= —/ (HGI> Hzttdm
0 U )y
! 0 Vg
+ / <—R + ,U) ’Uxett dx
0 u u tt
1
0 =
+ 2/ <—R + /LU> Uxtett dx
0 u u t

1
0 -
+/ (—R +,uv> Vgt Oy d
0 u u

1
+ / (955'02 + 295{0 + JeVt =+ gtt)é’tt dx
0

5
i=1

Using Lemma 1 and Lemma 2 and the interpola-
tion inequality, we get for any € > 0

A1 < — (200) 8ot ()2 + Colloa ()2
11001 + (100t (E)]1% + [Jvae (2)]]2
+ 1106 (E)]12 + 1Baae (D)%), (1)
A < ellvan ()1 + Coe™ (100 (&)1 + oa (6121
+ 101 + l[vae (0N + 1622(B)]1), (42)
Az < Colvae ()| * [[vaae ()| % (o (£)]
+ 100+ lloae (DI 16 2],

which gives

(40)

t t
/ Agds < e sup ||9tt(s)||2+6/ [one(s)]2 ds
0 0

0<s<
+ Che™3. (43)
Analogously,
As < ellvan @ + Coe™ 18 ()11, (44)

As < ell0ua (D] + Coe™ (lgee (D11 + llgee (1)1
+lge O + loze (I + llgee (1)]%) (45)

Integrating (40) over (0, t), using (41)-(45), (13)—(14)
and Lemma 1 and Lemma 2, we obtain

t
16 (8)]12 + / 10a0e(3)]? ds
t
sup [10se(5)]1% + / (lowatll?

0<s<t

<01€<

t
+ [lvatel*) () dS) +Cue™ + 025—1/ (162 ()]
0

+ (1000 1*)(5) ds,

www.scienceasia.org
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which, taking ¢ small enough and using (37) and
Lemma 1, implies (24). The proof is now com-
plete. ]

Lemma 4 Under the assumptions in Theorem 1, for

any (ug,vo,00) € H*(0,1) x H#(0,1) x H*(0,1),
the following estimates hold for any € > 0

t
lowe ()12 + / at ()] ds < Cae™®
0
t
e / (8ot + [vere]2)(s) s, (46)
0
t
16a:(8)]2 + / 1Gaze(3) ds < Cye™®
0
t
L0y / ([omeel + [8re]?) () ds. (A7)
0
Proof: Differentiating (2) with respect to ¢ and z, mul-

tiplying the result by vy, in L2(0, 1) and integrating by
parts, we see that

1d

1
L ()2 = o[22 —/ 0 armag da
th T zVxt|x=0 0 xtVzx

ScienceAsia 39 (2013)

D3 < ellvaat ()| + Ce[luae (1))
+ Ce(l fee O + 1 fee O + I fe0I),

which, together with (10)—(11), (48)—(50) and (19)-
(20), gives

t
lowe ()12 + / omae ()] ds

t
<0 / (82 + 030 (D)])(5) s

+ Cye ", (51)

Differentiating (2) with respect to = and ¢, and using
(19)-(20), we derive

[v32¢ (D) < Crl[vzzt (B)]| + Co([vae (b a1
10Ol + e (@)l a1+ [10:()] 22

+ 1 fee @I + [ fee DN + [ fe (B
(52)

Then (46) follows from (10)-(11), (51)-(52), and
(19)-(20).

Differentiating (3) with respect to = and ¢, multi-
plying the resulting equation by 6,; in L?(0, 1), and

1
+ /0 (fegvu+ feru + feve)vet A2 jpieorating by parts, we arrive at

(48)

3
= ZDi.
=1

By Lemma 1, Lemma 2 and the interpolation inequal-
ity and Young’s inequality, we get for any € > 0

Dy < CL()|0ue ()| Lo + 1160 (800 ()| £
1100 () 0u ()| Lo + 10(t) V00 (8)]| <
10 e (8)0a ()| Loe + [|Vaae (t)]| <
Ve ()0 (1) | oo + ([0t (Bt (8) | e
{02 (8 (8| oo [0t (8) | £

< 02(|vx<t>||m 10O + 10O + lusel

A 0t 2 10zt )1 F + N[Vl 030 (2)]) 2

+ ||vm%|vm<t>||%) [0t )% [zt (£)]) 2

< e vaae (01 + € (1100t (DI + [[vz2e (1)]|%)
+ Cae ™" ([oae (DI + llva () 172

+ [16: (8[| F1), (49)
1
Dy < — Mllvm(t)ll2 + Ca([Jva (0 |71
+ 116 ()3 + vae ()17 + llua (B)]1?),
(50)

www.scienceasia.org

(53)

=1

1d ', -
5&/0 tadl‘ :;El

2
El = <H > ozt
n xt =0

1
0
*/ (Ii) emxtdz7
0 n xt

1 1
By = — / (O"Um)actomt dxa Ey = / gactext dz.
0 0

Ey =

From (19)-(20) and the interpolation inequality and
Young’s inequality, we derive for any € > 0

By < (|10t (0)|1” + (10522 (1))
+ Cae ™ (oa ()12 + 1102(8) 172
+ 1011,
1
Ey < — 2701||9acm(t)||2 + Ca([lva ()17

11021 + 10017 + llua (7).
(55)

(54)

By < &[[vaat ()| + Coe™2(||va(t) 17

+ [16: ()17 + llvae (E)]12), (56)
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E4 < 52||9x;ct(t)“2 + 02672
+lge ()1I).

Differentiating (3) with respect to = and ¢, using the
interpolation inequalities and Young’s inequality and
Lemma 1, Lemma 2 and Lemma 3, we conclude

1032 (D] < Co[Jua(®) ]|y + [[02(8)]] 12

(lgeeON1* + llgee ()]
(57)

+ 102 (O 22 + 10| 272 + 102 () || 712

+ l[vae @)l + lgee O + llgee (D)l
+llge @) (58)

Integrating (53) with respect to t over (0, ¢) and using
(54)—(58), (13)—(14) and (19)—(20), we can get (47).
The proof is now complete. |

Lemma 5 Under the assumptions in Theorem 1, for

any (UO;U0790) € H4(07 1) x Hé(o’ 1) X H4(071)’
the following estimates hold for any t > 0

o (V1> + lvae ()1 + 10 (B[ + (020 () 1|7

t
+/NWNW+MMW+WMW
0

+ (|02t ]|?) () ds < Cy,  (59)
t
MMM%+MMW%M+AWm%1
+ [[ttaa [ F1. ) () ds < Cy,  (60)

lose (D)1 + a0 (). + 103011
+ 102z llfyr0e + sz (17 + [vzae (8)]®

199

Differentiating (2) with respect to = twice and
using (1), we deduce

U3 9'LL T

N(%) +R 3 :Kl(l',t), (64)
where
u u
Ugpx Vg Uy Gumux axuxx
—2u 3 +2 R
(65)
K(z,t) = 9’”“ 9 9 2 vmux
— feu.

From the interpolation inequalities, Young’s inequal-
ity, (19)—(20) and Lemma 3, we derive

@O < Colllz()l 12 + [lua (Ol a1 + l[vz ()]

+ [ fee DN + 1 £, (66)
which, combined with (9)-(10), (19)-(20) and (59),
gives

t
/ | K1 (s)|]?ds < Cy, ¥t > 0. (67)
0

Now multiplying (64) by us,/u and integrating the
result over (0, 1), we see that

u3x

o +e %ol

< C1||l K1 (1)])%,
(68)

il
which, together with (67), implies

t
t
+||9m(t)H2+/0 (lvee* + 10eel? + vwe l[fyr2. ||u31(t)||2+/ use(5)]|> ds < Cy, V> 0. (69)
0

+ 1102t Fy00 + 0tlly1.00
+ [Jusee]|F1) (s) ds < Cy,

t
Aumm%+wm@wﬁ®<@.

(61)

(62)

Proof: We add up (46) and (47) and take £ > so small
to get

t
lvat ()11 + (1622 (1)1 +/0 (Ve

t
ﬂmmm@@<@fﬂcﬁ/umm2
0

+ [|0s:2|1?) (s) ds (63)

Multiplying (23) and (24) by ¢ and £3, respectively,
then adding the result to (63), picking € small enough
and using (19)—(20), we get (59).

By (27), (29), (32), (34), (59) and (19)-(20), and
using the interpolation inequality, we obtain for any
t>0,

lvsa (E)IZ + 11030 (£)1* + [vea () | 2

t
+Wmmﬁm+émmm%+whﬁl

+ Ve lfree + 1022 [f1.0) (s) ds < Ca.
Differentiating (2)—(3) with respect to ¢, using (32),
(59) and (19)—(20), we deduce that for any ¢ > 0,
[veat ()| < Cilloa(®)]] + Co(llve (Bl ar + [lvae ()]

+ 10 () + ua @)l + | fe @]

+ [If(B]) < Ca, (71)
< Cu|0re ()| + Co([lva (@) |1 + [lvae (2]

0@ + 102 1 + llge @]

+llg: (D)) < C. (72)

(70)

[162z: ()l
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which, together with (29), (34), (59) and (19)-(20),
yields

t
Wm@W+Wn@W+AW%mFHWM2
+ |vawt||? + [[vaz]|?)(5) ds < Cy, V't > 0. (73)

Performing the interpolation inequality, (70) and (73),
we get for any ¢ > 0,

032 ()| 7 + 11032 (£)[|7
+ /Ot(llvstI%oo + 105212 )(5) ds < Ca. (74)
We infer from (36), (38) and (74) that for any ¢ > 0,
[z 1ioas <. a9
which, along with (52) and (58)—(59), gives
/Ot<||vggct||2 - [1030¢l12) (5) ds < Ca, ¥E > 0. (76)

Differentiating (64) with respect to x, we arrive at

0
" (“i) + RS _ Ry(at) (7))
u t u
with
9 9
Ko(a,t) = Ky — R34 gpZtielle
u u

U3z Uy )
Tt ( u?2 /¢’
Using the embedding theorem, (19)—(20) and (59), we
derive that for any ¢ > 0

[ K2 ()] < Cillveat ()] + Ca(l|0(t) | s
+ |lua ()| 2 + vz )|z + || fae @]
+ [ fee @l + N fe (1D,

which, together with (9)-(11), (19)-(20), (59) and
(73), implies

t
[ Ml das <ow viso. as)
0

Multiplying (77) by w4, /u in L?(0,1), we have

“e) ot |22 o] < kol
(719)

il
dt
which, along with (78), gives

t
|MNW+AW%@W®<@,W>0
(80)

www.scienceasia.org
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Differentiating (19) with respect to x three times,
using (19)—(20) and the interpolation inequalities, we
infer

[v52 (t)]| < Cllvsae ()] + Co([lua ()] a5
+ e @llas + 1102(8) | as + || f3e ()l
+ 1 fee @O + £ (@O,

which, together with (1), (9)—(11), (76) and (80),
yields

t
/ (lvse |12+ e |2 ) () ds < Ca, V&> 0. (81)
0

Similarly, from (3), we derive

1052 (0]l < Calllua ()l s + vz (@)l s + [102(2)] 25
+ 10zt (D) 1+ [lgse (D)1 + llgee (D]
+lge @1 (82)

From (13)—(14), (80), (73) and (76), we conclude for
any t > 0

t
/ 1052(s)|[2ds < Cu, (83)
0

which, together with (81) and (83), gives

t

[ el + 1820l )(5) ds < € Y2 > 0
0

(84

Finally, using all the previous estimates and the inter-

polation inequality, we can easily derive the desired

estimates (60)—(62). The proof is complete. O

LARGE-TIME BEHAVIOUR IN

H*(0,1) x H{(0,1) x H*(0,1)

In this section, we shall derive the large-time be-
haviour in H*4(0,1) x H§(0,1) x H*(0,1). To begin
with, we need a differential inequality in next lemma.

Lemma 6 Let T be given with 0 < T < +oo.
Suppose that y and h are nonnegative continuous
Sunctions defined on [0,T) and satisfy the following
conditions:

d
T SAWW) + A2 +h(0),

T T
/ y(s)ds < As, / h(s)ds < Ag,
0 0

where Ai,As, A3, Ay are given nonnegative con-
stants. Then for any r > 0, with0 < r < T,

y(t+7r) < (Ag + Aor + A4> et
r
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Furthermore, if T' = +o00, then

lim y(t) =0.

t——+oo

Proof: See, e.g., Ref. 16. O

Lemma 7 Under the assumptions in Lemma I, we
have

i () — s =0, Tim_[o(t)] =0,
(85)
i [10(8) ~ Bl =0
where © = fol wdx and 0 = fol O(y,t)dy.
Proof: See, e.g., Ref. 15. O

Lemma 8 Under the assumptions in Lemma 2, we
have

tim_JJu(t) = =0, Tim_[fo(t)]z> = 0.

t—+o0 t
(86)
i 6(6) = Bl = 0
where U = fol ug dx and 0 = fol 0(y,t) dy.
Proof: See, e.g., Ref. 15. O
Lemma 9 Under the assumptions in Theorem 1, we
have
i fu(t) ~ s =0, (87)
where U = fol ug da.
Proof: In (68), we have deduced
o] o || <o
dt |l n il -
where

KL @O < Co(102(E) L2 + Nua (Ol 0 + llve ()] 12
+ [ fee @I + 17 @1D)-

Using (19)—(20) and Lemma 6, we get

. 2
Jdim s (1) = 0. (88)

Recalling (78)—(79) and Lemma 6, we obtain

lim [Jusa (1)]* = 0,

t—+oo

which, together with (85), (88) and Poincaré’s in-
equality, yields (87). The proof is complete. (]
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Lemma 10 Under the assumptions in Theorem I, we
have
lm |[jv(t)]|ga = 0.

t—+oo

(89)

Proof: Differentiating (2) with respect to x and ¢,
multiplying the result by v,; in L?(0,1) and using
(19)-(20) and Lemma 5, we derive for any € > 0,

d
o O + [vaa (B

< e([[vsae ()7 + 10aee (0)]*) + Calllva(t) 172
1017 + lvae (I + lua (B + | fee (D]
+ [ fee O + 1 £ (D) (90)

Using (90), (9)—(11), (19)—(20), Lemma 5 and
Lemma 6, we obtain

. 2
i o (8)] = 0. 1)

Now we claim that
lim || fe(t)||* = 0. 92)

t—+oo

In fact,

d o o [, dfe
GO =2 [ G

< Ca[lfeN* + I fee I + 1 e (01,

which, together with (9)—(11) and Lemma 6, gives
(92).
Similarly, we can get

. 2 . 2 _
Jim lge@)[* =0, Tm g (t)]* =0,

93)
Jim || fee(®)]” =0, lim [lgee(t)]” = 0.
Using (26), (85)—(86) and (91)—(92), we have
i oz, (2)]] = 0. (94)

By (19)—(20) and Lemma 5, and using the interpola-
tion inequality, we obtain

1Pzt ()] < Co(llva ()2 + llua ()]l 2 + 106 ()| 122
+ 1102 ()| 12)- (95)
Differentiating (2) with respect to ¢ once and x twice,
multiplying the resulting by v, in L?(0, 1) and using
Young’s inequality and (19)—(20), we derive
d
ozt I + losae (D]
< Cillpaat ()7 + Co(llvae (132 + s (1) 132
+ [lue ()32 + [ fse @) + I feer O + [| fee (DI
+Ifee N7 + ILf O,

www.scienceasia.org
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which, together with (19)—(20), (9)—(11), Lemma 5
and Lemma 6, gives

lim {Jvas: (8)]* = 0. (96)

t—+

Differentiating (3) with respect to x and ¢, multiplying
the result by 6, in L2(0,1) and using (19)—(20) and
Lemma 5, we deduce for any € > 0

S0 (]2 + Bean (1)

< (03 (D2 + e + Celoa (0]
100 By + 1000 B+ o 0) s + e (DI
+ lage®I? + lgee )P + I OI?),

which, combined with (13)—(14), Lemma 5 and
Lemma 6, implies

. 2
A 182:(6)[" = 0. ©7)

By (32), (97) and (85)—(86), we see that
lim |63, (t)[| = 0. (98)

t——+oo

Thus by (29), (85)—(86), (96), (93) and (98), we get
Jim_[loas (1)) =0,

which, together with (94) and (85)—(86), yields (89).
The proof is now complete. ]

Lemma 11 Under the assumptions in Theorem 1, we

have B
t_lggrnoo 16(t) — 6] g+ = 0, (99)
where 0 = fol O(x,t)da.
Proof: In Ref. 15, we have deduced
. 2
tlzgloo 16:(¢)]|* = 0. (100)

In Lemma 1, we have obtained for any € > 0

S0 + 10 (D

< eI + leea()P) + Callloa(t) 3
+ 18O + 10O s + e (I + 10e(6) P
+ lgee (I + llgee 7 + e ()17 + e ()]
+lan ).

which, together with (13)—(14), (19)—(20), Lemma 5
and Lemma 6, gives

(101)
t——+oo
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We infer from (3) that

1020t (O] < Co(l0 O + v (@) 2 + uz ()|
F 10O+ 10t (B + 1162 (£)]] 22
+ llge@®1 + llg:(B)I])

whence, by (37), (93), (88)—(89), (97), (100) and (85)—
(86),
lim |04+ (?)]| = 0,

t——+o0

which, combined with (85)—(86) and (34), yields

im0, ()] = 0. (102)
Thus (99) follows from (98) and (102). The proof is
complete. (]

PROOF OF THEOREM 1

Combining Lemma 5, Lemma 9, Lemma 10 and
Lemma 11, we can complete the proof of Theorem 1.
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