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ABSTRACT: Human Leukocyte Antigen (HLA) plays an important role in the control of self-recognition including defence
against microorganisms. The efficient performance of classifying HLA genes facilitates the understanding of the HLA and
immune systems. Currently, the classification of HLA genes has been developed by using various computational methods
based on codon and di-codon usages. Here, we directly classify the HLA genes by using the k-nearest neighbour (k-NN)
classifier. To develop an efficient k-NN classifier, we propose the use of a spectrum kernel to investigate HLA genes. Our
approach achieves an accuracy as high as 99.4% of the HLA major classes prediction measured by ten-fold cross-validation.
Moreover, we give a maximum accuracy of 99.4% in the HLA-I subclasses. These results show that our proposed method
is relatively simple and can give higher accuracies than other sophisticated and conventional methods.
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INTRODUCTION

The human leukocyte antigen system or human lym-
phocyte antigen (HLA) is the molecular name of a
group of molecules in the human major histocompati-
bility complex (MHC) region on human chromosome
6, which encode the cell-surface antigen-presenting
proteins1. The HLA, a class of proteins found on
the surface membranes of cells, serve the purpose of
presenting possible antigens to T and B cells.

The MHC contains a group of molecules that
play a crucial role in immune recognition and for the
tolerance of tissue grafting. In mice and humans,
the MHC molecules have also been found to influ-
ence body odours, body odour preferences, and mate
choice2, 3. These sequences are also some of the most
polymorphic regions of the genome and are known to
play a central role in controlling immunological self
and non-self recognition4. There are different types
of HLA, e.g., HLA-I, and HLA-II. These two gene
types are important in the matching of tissues and
organs for donation and organ transplantation under
outdated immunesuppression protocols. In addition,
the major HLA antigens are essential elements for

immune function. The two different classes have
different functions. The principle function of HLA-I,
is to present virally induced peptides on the surface of
the cell by linking to the T-Cell receptor of a cytotoxic
(CD8) T Cell. This allows the identification of viruses.
As HLA-IIs initiate a molecular immune response,
they are only present on “immunologically active”
cells (B lymphocytes, macrophages, etc.) and not on
all tissues5.

A fundamental problem in computational biology
is biological sequence classification. In this paper, we
focus on the problem of the classification of the HLA
genes which can be further subdivided into two related
sub-problems, i.e., the HLA genes are classified into
their major classes and subclasses. In the major class,
the HLA genes are generally subdivided into three
classes, i.e., HLA-I, HLA-II, and HLA-III, according
to their specific functions in the immune system6, 7.
The subclasses of the HLA-I genes are classified
into HLA-A, HLA-B, HLA-Cw, HLA-E, HLA-F, and
HLA-G. The sub-classes of HLA-II genes are classi-
fied into HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQB1, HLA-DRA, and HLA-DRB.
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A number of computational approaches have been
developed for the sequence classification problem,
including methods based on pairwise similarity of
sequences (such as BLAST8), generative approaches
(such as profile HMMs9, 10) and discriminative ap-
proaches (such as kernel SVMs11, the Fisher ker-
nel12, profile kernels13, the mismatch kernel14, and
pairwise-SVMs15, 16). Ma et al used the support
vector machines (SVMs) based codon usage, where
each element corresponds to the relative synonymous
codon usage frequency of a codon17. This particular
one is known as feature based classification method.
Their SVM method has been compared with K-Means
clustering, Linear Discriminant Analysis18, and k-NN
classifier19. In 2009, the di-codon usage l 20 was
used to compare codon usage for the HLA genes
classification. This work showed that using di-codon
usage as feature inputs outperforms using codon usage
alone.

In this work, we developed an approach to classify
HLA genes using a combined method which inte-
grates the k-nearest neighbour (k-NN) classifier with a
spectrum kernel. We designed a series of combination
parameters, which allowed us to determine relative
contributions from a spectrum kernel and a k-NN
method. Finally, our approach was then compared
with other conventional methods. Our experimental
results show that our simpler combining approach is
comparable to other sophisticated and conventional
methods for major class classification.

Dataset

Recently, there has been an increase in the number of
nucleic acid and protein sequences in the international
immunogenetics databases21–23, which has enabled
computational biologists to study human and primate
immune systems in greater depth. The IMGT/HLA
database was established to provide a locus-specific
database (LSDB) for the allelic sequences of the genes
in the HLA system, also known as the human major
histocompatibility complex. This complex of over
four megabases is located within the 6p21.3 region of
the short arm of human chromosome 6 and contains
an excess of 220 genes24.

HLA genes were extracted from the IMGT/HLA
Sequence Database of EBI (Release 2.28 15/01/2010,
available at http://www.ebi.ac.uk/imgt/hla/). The
name of these HLA genes and alleles, and their quality
control is the responsibility of the WHO Nomencla-
ture Committee for Factors of the HLA System25. The
IMGT/HLA data-base contains entries for all HLA
alleles, and alleles of some related genes, officially
named by the Nomenclature Committee. These en-

Table 1 Numbers of HLA genes and their subclasses.

Major Class Subclass Number of Percentage
sequences (%)

HLA Class I HLA-A 965 30.1
HLA-B 1540 48.0
HLA-Cw 626 19.5
HLA-E 9 0.3
HLA-F 21 0.7
HLA-G 45 1.4
Total 3206 100.0

HLA Class II HLA-DMA 4 0.3
HLA-DMB 7 0.6
HLA-DOA 12 1.0
HLA-DOB 9 0.8
HLA-DPA1 27 2.3
HLA-DPB1 138 11.5
HLA-DQA1 35 2.9
HLA-DQB1 107 8.9
HLA-DRA 3 0.3
HLA-DRB 855 71.4
Total 1197 100.0

Total 4403

tries are derived from expertly annotated copies of the
original EMBL-Bank/GenBank/DDBJ entries. More
details about the data set can be found in Robinson
et al22, 24. Table 1 shows the numbers and percentages
of HLA genes and their subclasses used in our exper-
iment.

SEQUENCE CLASSIFICATION METHOD
BASED ON k-NN CLASSIFIER AND
SPECTRUM KERNEL

Overview of kernel method

Using machine learning, there are techniques called
kernel methods which are used to construct a
maximum-margin separating hyperplane between two
separated classes. This particular kernel method is
known as a support vector machines (SVMs). The
SVM is one of the best-known and most frequently
used kernel methods26. Vapnik first introduced the
kernel method with the principle of structure risk
minimization in statistical learning theory27, 28. In
general, a data set is formally represented as

D = {(xi, yi) | xi ∈ Rn, yi ∈ {1,−1}} ;

i = {1, 2, . . . , n},

where xi is the ith input vector and yi is the class of xi.
Each xi is an n-dimensional vector. Principally, the
idea of the kernel method is to construct a maximum-
margin hyperplane separating the classes of x.
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In the learning process of kernel methods such as
SVMs, a hard-margin separation is usually performed,
even though labelling errors are unavoidable in many
practical problems. To deal with this problem, a
soft-margin separation is introduced to mitigate these
errors by finding a maximum margin separator which
allows misclassifying a training data set29, 30. In gen-
eral, when training data sets are nonlinearly separable,
the basic idea is to retain the simplicity of linear meth-
ods by using mapping functions to map the original
data set into a higher dimensional space, called feature
space, where linear methods can classify them. The
mapping function Φ(x) is performed by defining the
inner product between each pair of data points in
the data set of the feature space through the kernel
function. Thus if Φ(x) denotes the mapping function,
the kernel function can be expressed as a similarity
measurement between the training data set, which is
defined as:

K(x, x′) = 〈Φ(x),Φ(x′)〉 = Φ(x)TΦ(x′).

In the classification problem with training data set
D, we can predict the class of unknown data xn+1

by using a linear decision function determined by
the kernel function of inner product between feature
vectors. The decision function can be expressed as
follows:

f(xn+1) =

N∑
i=1

yiαiK(xn+1, xi)

where yi is the class of xi, K(·, ·) is the kernel
function, and αi is a weighted parameter. More details
about the kernel methods can be found in Refs. 26–29.

Spectrum kernel for sequence classification

One of the most widely used kernels for sequence
classification is a spectrum kernel or string kernel,
which transforms a sequence into a feature vector30.
The kernel function of strings was first proposed
by Watkins31. In 2002, Lodhi et al32 introduced a
powerful string subsequence kernel for text classifica-
tion. Leslie et al33 showed that the spectrum kernel
can effectively be applied to protein classification.
Saunders et al34 also reported on the computational
advantages of the spectrum kernel for its fast and
simple calculation. If a suitable data structure is used,
the prediction can be done in linear time.

The idea behind the spectrum kernel approach
is based on the similarity of two strings containing
common subsequences. The spectrum kernel is a con-
volution kernel specialized for the string comparison

problem. For a number sk > 1, the sk-spectrum of
a sequence x consists of all the possible subsequences
of length sk that it contains. Given the alphabet A,
a sequence x is transformed into a feature space by a
transformation function or feature mapping function.

Φsk(x) = (φa(x))a∈Ask

where φa(x) is the number of times a occurs in x.
The kernel function is the inner product of the features
vectors:

Ksk(x, x′) = 〈Φsk(x),Φsk(x′)〉.

The k-NN classifier based on spectrum kernel for
sequence classification

The sequence classification methods can be divided
in to three main categories: feature based classifica-
tion, sequence distance base classification, and model
based classification. In this work, we develop an
approach to classify HLA genes combining feature
based classification (i.e., spectrum kernel) and se-
quence distance base classification (k-nearest neigh-
bour). The simple method of feature based classi-
fication used here is the k-NN method. The k-NN
method is conceptually based on a distance function
to measure the similarity between a pair of objects.
The classifier is an instance-based learning algorithm
that has been shown to be very effective for a variety
of problem domains19. Given a labelled sequence
data set D, a positive integer k, and a new sequence
x to be classified, the k-NN classifier finds the k
nearest neighbours of x in D, knn(x), and returns the
dominating class label in knn(x) as the label of x35, 36.

Basically, the definition of the distance function
demonstrates that an appropriate distance function is
obviously crucial for the effective performance of a
k-NN classifier. The Euclidean metric is the most
common distance measure. For classifying HLA
genes, there are many computational methods which
have been presented for the classification of the HLA
genes, such as the SVM method based codon17 and di-
codon usage20. Obviously, the feature transformation
method was considered to be the crucial process17, 20.

Currently, there are many kinds of distance func-
tions. However, this measure can be inappropriate
for high dimensional problems, due to only a few of
the features that effectively capture the characteristic
information. Furthermore, the well-known distance
is sensitive to distortions of the time dimension. In
our work, therefore, we propose a combined approach
which integrates the k-NN classifier based on spec-
trum kernel for HLA genes classification. The spec-
trum kernel is a conceptually simple and efficient way
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to perform a sequential classification37. In addition,
the k-NN method is currently a very well-known and
popular classifier.

RESULTS AND DISCUSSION

Description of the experiments

The ten-fold cross-validation procedure was per-
formed on 4275 HLA genes using our combination
method to classify HLA genes into major classes and
HLA-I/HLA-II genes into their subclasses. In Table 2,
the major rows show each k-spectrum considered
individually for different k lengths, and the major
columns show how each k-NN classifier is considered
individually for different k nearest neighbours. We set
the k length of the spectrum kernel (sk = 3–6), and
set k-NN of the k nearest neighbour (3-NN and 5-NN)
to compare the predictive performances.

Given a sequence x = (x1, x2, . . . , xn) of ob-
servations, the major classes y = (y1, y2, . . . , yn)
are obtained by using the combination method, where
yi ∈ {HLA-I and HLA-II}. Moreover, the present
method has also been applied to classify subclasses
of HLA-I/HLA-II. Here, HLA-I subclasses are fo-
cused to classify into HLA-A, HLA-B, HLA-Cw,
HLA-F, and HLA-G. The HLA-II subclasses are then
classified into HLA-DPA1, HLA-DPB1, HLA-DQA1,
HLA-DQB1, and HLA-DRB1. The prediction perfor-
mances are evaluated with accuracy, precision (Prec),
and sensitivity (Sens)38.

The spectrum kernel method was implemented
in the R language using the String Kernel Methods
package, named ‘stringkernels’39, which is a sim-
ple, customizable, and open-source implementation of
string kernel methods. The program ‘stringkernels’
was designed as free software distributed under a
GNU-style copyright based string kernels for use
with ‘kernlab’40. The k-NN classifier was imple-
mented using a more flexible k-NN’s package, named
‘knnflex’41. To compare with the other computa-
tional methods, we used the same criterion to analyse
the selected data. We selected simple and efficient
approaches, i.e., BLAST and profile-HMM, respec-
tively. We also selected the well-known method (i.e.,
k-NN classifier). For the well-known methods, the
kernel support vector machine (KSVMs) spectrum
kernel, and NNs42 were selected to compare against
our combination method. For our experiment, linear
and polynomial kernel functions were evaluated in the
KSVM method. Basically, in the learning process of
the KSVMs and NNs, the HLA genes are converted
into 59-feature vectors based on the codon usage
property17.

Table 2 Performances of the classification of HLA genes
by using the combination method with different sk lengths
and k nearest neighbours.

k-NN

k-spectrum Classification 3-NN 5-NN

All 98.7 86.5
sk = 3 Class I 98.9 82.6

Class II 98.2 97.9

All 97.7 96.7
sk = 4 Class I 97.8 96.7

Class II 79.3 96.7

All 97.0 96.7
sk = 5 Class I 97.3 96.7

Class II 96.4 96.7

All 99.7 98.7
sk = 6 Class I 99.4 98.9

Class II 98.8 98.2

Results and discussion of the combination method

In our experiments, we started with a 3-spectrum,
since the 3-spectrum corresponds to a codon which
is a fundamental property in molecular evolution.
Currently, Ma et al and Nguyen et al17, 20 proposed
that this feature can directly represent a utility in
molecular characterization of species.

For our experiment, the combined 3-NN and
3-spectrum was first considered as a simple combina-
tion. This combination was found to have 98.7% ac-
curacy for the major class classification, and reached
98.8% accuracy for the HLA-II sub-class classifica-
tion. We then increased sk-spectrum lengths to 4
and 5 to compare the simple combination. These two
sk-spectrum lengths give a decrease in the average
predictive performances of both the major-class and
sub-class classification (from 99.0 to 97.0). These
results show that two sk-spectrum lengths may not be
enough to represent all information in HLA genes. In
our experiment, the high performance increases reach-
ing 99.7% (from 97.0–99.7) for major class classifica-
tion when using 3-NN with 6-spectrum. Moreover,
these optimized parameters also give the predictive
performance of subclass classification of HLA-I and
HLA-II as high as 99.4% and 98.8%, respectively.
In biological knowledge, the 6-spectrum is known
as a di-codon which is a fundamental unit of gene
transcription and molecular evolution. Moreover, this
feature could be a good indicator in gene expression
and molecular evolution studies and provide a rich
feature set for gene classification43, 44.

We also compared the predictive performance
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Table 3 The ten-fold cross validation accuracies of the classification of HLA major classes using different classification
methods.

Methods Acc HLA-I HLA-II Chi squared

Prec Sens Prec Sens (p-value)

profile-HMM 98.5 98.3 99.8 99.3 94.8 135.7 (2.2× 10−16)
BLAST 98.2 97.9 99.7 99.1 93.3 164.2 (2.2× 10−16)
NNs 87.1 94.9 87.5 68.7 86.0 1.6 (0.21)
KSVM (linear) 98.5 98.9 99.2 97.7 96.8 33.3 (7.6× 10−9)
KSVM (poly) 98.4 99.1 98.4 96.3 97.2 10.7 (1× 10−3)
KNN classifier 95.7 97.7 96.9 90.9 92.0 45.69 (1.4× 10−11)
String kernel 99.4 99.5 99.7 99.1 98.6 14.6 (1× 10−4)
Combined method 99.4 99.2 100.0 100.0 97.8 164.2 (2.2× 10−16)

for sk spectrum lengths equal to 7, 8, and 9 (data
not shown). The results show that the performances
of these increasing lengths are close to using the
6-spectrum. As indicated, a larger k length does not
necessary obtain a better performance for HLA gene
classification. It can be concluded that the 6-spectrum
is long enough to capture all informative features of
HLA genes; or the over-estimated k-spectrum may
introduce useless information or features into the
learning process.

Comparison of the HLA major class classification
with other classification methods

In the previous section, our optimized feature is the
6-spectrum and 3-NN that give the highest predictive
performance. To compare with the other computa-
tional methods, we used the same criterion to analyse
selected data.

Table 3 lists the predictive performance and chi
squared (p-value) with various computational meth-
ods. BLAST and profile-HMM were first considered
which yield 98.2% and 98.4% accuracies, respec-
tively. These two simple approaches yielded high
accuracies, because of their high identity scores in the
HLA major classes. Therefore, the BLAST method
can provide accuracy reaching 99.0%. However, this
method considers only the most similarity, but the
full length alignment is ignored to take advantage for
analysing. The k-NN classifier was used to compare
our approach, this classifier gave an accuracy of
95.7%. In our experiment, there are two classifiers
based codon usage properties, i.e., SVMs, and NNs.
The SVM classifiers readily yielded 98.0% accuracy
when using both linear and polynomial kernel func-
tions. When classifying by using NNs, we obtain
accuracies lower than 90.0%. As indicated, the SVM
classifier is suitable for classifying HLA genes, when
the HLA genes are represented with the codon usage

property. We further compared the spectrum kernel
which is a powerful measurement32 for text classifi-
cation. The spectrum kernel considerably increases
the accuracy (from 98.2 or 98.4–99.4). However,
there is one disadvantage of the spectrum kernel in
that it is hard to interpret and hard for the user to
gain additional knowledge besides the classification
results. In the HLA genes classification, our approach
achieved maximum performance results in the cases
of sensitivity of HLA-I and precision of HLA-II. For
the other performance tests, the string kernel method
yielded performance results which were better than
our approach.

In Table 3 on the last column, we show the chi
squared test (p-value). There is one computational
method which has a p-value > 0.005, i.e., the NNs.
This result shows that this model consistently has high
predictive performance for the two classes of HLA
genes. Our combined method yields a p-value of
2.2× 10−22.

Comparison of the HLA-I/HLA-II subclasses
classification with other classification methods

In Table 4, we further compare our combina-
tion with the other computational methods for the
HLA-I/HLA-II subclass classification problem. Most
of the computational methods gave accuracy values
as high as 90% on both the HLA-I and HLA-II
sequences. However, there are two computational
methods which yielded accuracies higher than 95%
for both the HLA-I and HLA-II, i.e., string kernel
and our combined method. We found that the k-NN
classifier can be suitable for classifying the major
classes, but this classifier could not efficiently classify
the HLA-II sequences, because this classifier is sensi-
tive to imbalances in the samples and to the distance
measure. Our approach can increase the accuracy in
HLA-II subclass (from 88.9–98.8) when the k-NN
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Table 4 Ten-fold cross validation accuracies of the HLA-I/HLA-II subclasses classification using different classification
methods.

Classification profile BLAST NN KSVM KSVM K-NN String Combined
HMM (linear) (poly) kernel method

Sub-class of HLA-I 97.1 96.6 85.6 97.9 98.9 93.8 98.0 99.4
Sub-class of HLA-II 92.2 91.8 87.6 92.6 90.6 88.9 99.6 98.8

classifier was integrated with the spectrum kernel.
Since the spectrum kernel can represent HLA genes
with suitable vectors, especially 6-spectrum. In the
HLA-I subclass, our combined approach obtained the
maximum performance as high as 99.4% accuracy.
In the HLA-II subclass, the string kernel gave 99.6%
accuracy which is better than our approach. However,
the average accuracy of our approach is similar to the
string kernel in both of the HLA-I/HLA-II subclass
classifications.

Sequence classification on human genes

The human (Homo sapiens) genome consists of
23 chromosome pairs and the small mitochondrial
DNA. Chromosome 6 is one of these human chro-
mosomes which contain the Major Histocompatibility
Complex, with over 100 genes related to the immune
response, and plays a vital role in organ transplanta-
tion. We used our combined approach to classify the
human genes based on the latest release (NCBI Build
37.3) of 32 185 genes45. Given a human gene x =
(x1, x2, . . . , xn), the classes y = (y1, y2, . . . , yn)
are obtained by using the combination method, where
yi ∈ {HLA, other}. In the experimental results,
our approach gives predictive performances more than
90%, which a considerable decrease in precision for
the HLA (76.3%) sequences. Since the k-NN clas-
sifier is sensitive to both the positive data set and
negative data set.

CONCLUSIONS

We have proposed a combination of the k-nearest
neighbour method based on the spectrum kernel which
is a simple approach for gene classification. The
combination method is performed on the problem of
classification of HLA genes. For our experimental
results, our approach gives a maximum of 99.4%
accuracy in the major class classification, and achieves
as high as 100.0% in cases of sensitivity of the HLA-I
and precision of HLA-II sequences. Moreover, in
subclass classification, our approach still provides a
higher performance for HLA-I subclass (99.4%) com-
pared with the other computational methods. For our
experiment, we found that the k-NN classifier gives

the highest accuracy for the major class classifica-
tion (95.7%), but, this method considerably decreases
in subclass classification, i.e., 88.9% accuracy on
HLA-II. Since, this subclass has a lower identity
score. The string kernel yields the highest results
for the HLA-II subclass classification and is also
close to our approach. In practice, our approach
is simple to understand, but surprisingly is able to
accurately classify the HLA genes. Our predictive
performances are better than the other computational
methods for the HLA-I subclass classification, but
the prediction accuracy of the string kernel is better
than our approach for the classification of the HLA-II
subclass. However, our approach already provides
highly predictive performances; it may be improved
by applying mismatch kernels which allow inexact
matching of substrings.
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