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ABSTRACT: The matrix joint diagonalization is a fundamental notion for studying the blind signal processing and the
independent component analysis. We reformulate some classical results on the topic in terms of shear matrices. These
matrices appear naturally in differential geometry and group theory and the present paper deals with certain perturbations of
joint diagonalizers for which the knowledge of shear matrices is crucial.
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INTRODUCTION

Digital signal processing involves linear algebra in
several areas of investigation and, for instance, a
series of recent contributions show applications of
digital signal processing to mathematical models for
music1–3. Ref. 4 is a classic source for the study of
digital signal processing, but more specifically Refs.
5–7 contribute to the blind signal processing, which is
an interesting branch of research. The present paper
deals with some ideas of Cardoso treated in Refs. 8–
10 and is related to indipendent component analysis.
These ideas have been recently generalized by Afsari
in Refs. 11–14 and Yeredor in Refs. 15, 16. Most
of these references contain such fundamental notions
as exact joint diagonalization (EJD), orthogonal joint
diagonalization and non-orthogonal joint diagonaliza-
tion (NOJD). The motivation of the present paper
is the fact that the original ideas of Cardoso8, 9 have
been recently improved in Refs. 7, 14, 15 in terms of
problems of optimization and calculus over smooth
manifolds (see Refs. 17, 18 for relations to Rieman-
nian geometry, control theory, topology, theory of
compact Lie groups and numerical analysis).

Our main results generalize Proposition 1 of Ref.
9 in terms of certain families of matrices which are
obtained by shear matrices. This allows us to describe
the joint diagonalizers of many other matrices and find
new criteria of classification.

We first recall some notions from Refs. 6, 17–19
and then deal with the main results. Terminology and
notation are standard and follow Refs. 2, 6, 18, 19.

FEEDBACK OF DIFFERENTIAL GEOMETRY

Following Refs. 2, 17–19, the Hilbert space Cn of
dimension n > 1 over the field C of the complex

numbers allows us to consider the following groups

GL(n,C) = {B ∈ Cn×n | det(B) 6= 0},

GL(n,R) = {B ∈ Rn×n | det(B) 6= 0},

Z(GL(n,C)) = {A,B ∈ GL(n,C) | AB = BA},

Z(GL(n,C)) = {aI ∈ GL(n,C) | a ∈ C− {0}},

PGL(n,C) = GL(n,C)/Z(GL(n,C)),

PGL(n,R) = GL(n,R)/Z(GL(n,R)),

SL(n,C) = {B ∈ Cn×n | det(B) = 1},

SL(n,R) = {B ∈ Rn×n | det(B) = 1},

PSL(n,R) = SL(n,C)/Z(SL(n,C)),

PSL(n,R) = SL(n,R)/Z(SL(n,R)).

Assume that B ∈ GL(n,C). BH = B
∗
, where ∗

denotes the transpose and the bar denotes complex
conjugation, denotes the conjugate transpose of B.
We have

U(n) = {B ∈ GL(n,C) | (Bx,Bx) = (x, x), x ∈ Cn}
= {B ∈ GL(n,C) | B−1 = BH},

O(n) = {B ∈ GL(n,R) | (Bx,Bx) = (x, x), x ∈ Rn}
= {B ∈ GL(n,R) | B−1 = B∗},

SO(n) = O(n) ∩ SL(n,R).

Furthermore, B ∈ GL(n,C) is called hermitian, if
BH = B, and anti-hermitian, if BH = −B.

GL(n,C) has the topology induced by ‖ ‖ : A ∈
GL(n,C) 7→ ‖A‖ = sup{‖Ax‖ | ‖x‖ 6 1} ∈
[0,+∞[ for all x ∈ Cn and is a topological group. The
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same is true for GL(n,R). Notice that O(n), SO(n),
U(n), SU(n) are compact groups for n = 1, 2, . . ..

If A ∈ GL(n,C), the off of A is the map

off : A ∈ GL(n,C) 7−→ (1)

off(A) =
∑

i,j∈{1,2,...,n}
i 6=j

|aij |2 ∈ [0,+∞[

where aij is the (i, j)-th entry of A (see Ref. 9). In
general if V ∈ U(n) and

M = (M1,M2, . . . ,Mk, . . . ,Mm) (2)

is an m-tuple of matrices in GL(n,C)m, then

Y : (V,M) ∈ U(n)×GL(n,C)m 7−→ (3)

Y(V,M) =

m∑
k=1

off(V HMkV ) ∈ [0,+∞[

and V is called unitary minimizer (or joint diagonal-
izer) of Y of M, if Y(V,M) = 0. In the case of
connected compact groups, existence and uniqueness
of non-trivial solutions for Y(V,M) = 0 are ensured
by Weierstrass theorems (see Ref. 17), but we cannot
say whether an arbitrary (V,M) satisfies Y(V,M) =
0 or not (this is the EJD problem in Refs. 13, 14).

Now, instead of M, consider the m-tuple of
GL(n,C)m

M0 = (UD1U
H, . . . , UDkU

H, . . . , UDmU
H) (4)

where U ∈ U(n) and Dk is the diagonal matrix of
Cn×n with diagonal entries d1(k), . . . , dn(k). We
have

Y(U,M0) =

m∑
k=1

off(UH(UDkU
H)U)

=

m∑
k=1

off(U−1UDkU
−1U) =

m∑
k=1

off(Dk) = 0,

(5)

and Y is minimized. Here it is clear that U is a joint
diagonalizer for Y with respect toM0.

A more general situation is the following:

Mλ = (UD1U
H + λR1, . . . , UDkU

H + λRk, . . .
(6)

. . . , UDmU
H + λRm),

where λ ∈ R and Rk ∈ GL(n,C) (for k =
1, 2, . . . ,m). When λ = 0, (6) reduces to (4).
Therefore it is very interesting to look for λ 6= 0

for which (U,Mλ) ∈ U(n) × GL(n,C)m satisfies
Y(U,Mλ) = 0. The answer is positive in the
sense of Proposition 1 of Ref. 9. On the other hand,
small values of λ, close to 0, allow us to study the
perturbations in a neighbourhood of the minimum
value of Y on (U,M0). Some discussions and more
details on this point can be found in Refs. 5, 7, 8, 11–
14.

Now let ei be the n×1 row vector with 1 in the ith
position and 0 elsewhere, that is, e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . ., ei = (0, . . . , 0, 1, 0, . . . , 0),
. . ., en = (0, 0, . . . , 1). e∗i denotes the 1 × n column
vector with 1 in the ith position and 0 elsewhere. Then
we have the matrix

0 0 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . . . . 0

 (7)

whose entries eij are 1 in the (i, j)th position and 0
elsewhere. More generally, ai is the ith row and a∗i
the ith column of A ∈ GL(n,C), whose entries are
aij .

Proposition 1 (See Proposition 1 of Ref. 9) Assume
thatMλ in (6) satisfies

∀i, j ∈ {1, 2, . . . , n} such that i 6= j (8)

∃k ∈ {1, 2, . . . ,m} such that di(k) 6= dj(k).

Then Y(U(I + λG),Mλ) = 0 for λ 6= 0 small
enough, where G is an anti-hermitian matrix whose
diagonal is null. Furthermore, its off-diagonal entries
are

gij =
1

2

m∑
k=1

f∗ij(k), u∗iRkuj + fij(k)u∗iR
H
k uj , (9)

where

fij(k) =
dj(k)− di(k)

m∑
l=1

|dj(l)− di(l)|2
∈ C. (10)

Notice that (8) is essential for expressing (10).

Remark 1 In Proposition 1, J = I and we consider
only small enough λ 6= 0 so that o(λ) is omitted. As
noted in Ref. 9, ifU(I+λG+o(λ)) minimizesY , then
U(I + λG + o(λ))J minimizes Y . In particular, this
is true when λ is small enough and o(λ) is omitted.
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MAIN RESULTS

From Chapter 3 of Ref. 19, each invertible matrix with
coefficients in C (resp. R) and determinant equal to 1
can be generated by matrices of the form

K(1, a) = I + aeij

called shear matrices (or transvections), where a ∈ C
(resp. a ∈ R). Now K(1, a) differs from I only in
that there is an a in the (i, j)th position, and, if a = 0,
then K(1, 0) = I . These matrices are important
because they generate SL(n,C) (resp. SL(n,R)) and
each B ∈ SL(n,C) (resp. SL(n,R)) can be written
uniquely as product of finitely many K(1, a), for
suitable a. This is the so-called rational canonical
form of a special linear matrix (pp. 73–76 of Ref. 19).

Lemma 1 (See 3.2.10 of Ref. 19) For all n > 2,

SL(n,C) = 〈K(1, a) | a ∈ C〉

and
SL(n,R) = 〈K(1, a) | a ∈ R〉.

Now we make the following observation.

Remark 2 We note that off(K(1, a)) = |a|2 and

a = 0 ⇒ off(K(1, 0)) = off(I) = 0.

The matrix K(di(k), a) = di(k) + aeij is obtained
from I + aeij by replacing the 1’s on the principal
diagonal with the d1(k), . . . , dn(k), corresponding to
Dk. Now

di(k) = 1 ∀i = 1, 2, . . . , n ⇒ K(di(k), a) = K(1, a).

Then we can consider the family of matrices

Ma,λ = (U ·K(di(1), a) · UH + λR1, . . .

. . . , U ·K(di(2), a) · UH + λR2, . . .

. . . , U ·K(di(m), a) · UH + λRm), (11)

so thatM0,λ =Mλ andM0,0 =M0. Consequently,
we may generalize the results in Refs. 8, 9, 14, replac-
ing (6) with (11).

Now we consider the linear maps

γijk : V ∈ U(n) 7→ γijk(V ) = e∗i V
HMH

k V ej ∈ C
(12)

and
Tijk : V ∈ U(n) 7−→ Tijk(V ) (13)

= eie
∗
jV

HMH
k V − V HMH

k V eie
∗
j ∈ GL(n,C).

Immediately, we deduce

Y(V,M) =

m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

|γijk|2. (14)

Now the linear map

S : (V,M) ∈ U(n)×GL(n,C)m 7−→ S(V,M)

=

m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

γ∗ijk Tijk ∈ GL(n,C) (15)

(recall that (A∗)∗ = A and (AB)∗ = B∗A∗ in
GL(n,C) and the equality V H = V

∗
) implies

γ∗ijk(V ) = (e∗i V
HMH

k V ej)
∗

= e∗jV
∗(MH

k )∗(V H)∗ei

= e∗jV
∗(MH

k )∗V ei. (16)

In particular, if (V,M) ∈ (U(n) ∩ GL(n,R)) ×
GL(n,R)m, then V = V , V H = V ∗, (MH

k )∗ =
Mk = Mk, hence

γ∗ijk(V ) = e∗jV
HMkV ei. (17)

Once we substitute (17) and (13) in (15), we find
Equation 12 of Ref. 9. We may do the same for the
linear map

SH : (V,M) ∈ U(n)×GL(n,C)m 7→ SH(V,M)

=

(
m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

γ∗ijk Tijk

)H

=

m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

(γ∗ijk)H TH
ijk ∈ GL(n,C). (18)

Here is a short proof of Lemma 1 of Ref. 9.

Lemma 2 If (V,M) ∈ (U(n) ∩ GL(n,R)) ×
GL(n,R)m, then S is hermitian.

Proof : Since (17) is satisfied, (γ∗ijk)H = γ∗ijk and
Tijk(V )H = Tijk(V ), then

S(V,M) =

m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

γ∗ijk Tijk

=

m∑
k=1

∑
i,j∈{1,...,n}

i6=j

γijk T
H
ijk = SH(V,M). (19)

www.scienceasia.org

http://www.scienceasia.org/2012.html
www.scienceasia.org


404 ScienceAsia 38 (2012)

�
Now we generalize Lemmas 2 and 3 of Ref.

9 by using Ma,λ instead of Mλ. The condition
S(V,Ma,λ) = SH(V,Ma,λ), described by Lemma 2,
has a physical meaning. It is a stationary equation
which allows us to study the perturbations around
the solution (U,Ma,λ) ∈ (U(n) ∩ GL(n,R)) ×
GL(n,R)m, minimizing Y . A more detailed analysis
can be done if we stop at the terms of the first order in
λ 6= 0 and look for an anti-hermitian L ∈ GL(n,C)
such that, for small enough λ 6= 0 and a 6= 0,

S(U(I + λL),Ma,λ) = SH(U(I + λL),Ma,λ).
(20)

The problem can be more conveniently centred at U ,
noting that

S(U(I + λL),Ma,λ) = S(I + λL,Na,λ), (21)

where

Na,λ = (K(di(1), a) + λUHR1U, K(di(2), a)

+ λUHR2U, . . . ,K(di(k), a) + λUHRkU,

. . . , K(di(m), a) + λUHRmU). (22)

Eq. (21) is exactly Eq. 14 of Ref. 9 for a = 0 and we
stop at the terms of first order in λ.

Corollary 1 From (21) and Lemma 2, the equations
(20) and S(I + λL,Na,λ) = SH(I + λL,Na,λ) have
the same solutions for small enough values of λ 6= 0
and a 6= 0.

We can say more.

Lemma 3 Assume L is an anti-hermitian matrix and
(I + λL,Na,λ) ∈ (U(n) ∩ GL(n,R) × GL(n,R)m.
If we stop at the terms of the first order in λ 6= 0, then
the entries of S(I + λL,Na,λ) are

sij(I + λL,Na,λ)

=

m∑
k=1

δijkαijk + (δijkβijk + εijkαijk)λ, (23)

where αijk, βijk, δijk, εijk are linear maps depending
only on K(di(k), a) and λ 6= 0 and a 6= 0 are small
enough.

Proof : From (13),

Tijk(I + λL) = eie
∗
j (I + λL)H ·K(di(k), a)H

· (I+λL)− (I+λL)H ·K(di(k), a)H · (I+λL)eie
∗
j

= eie
∗
j (I + λLH) ·K(di(k), a)H · (I + λL)

− (I + λLH) ·K(di(k), a)H · (I + λL)eie
∗
j

= (eie
∗
jI + eie

∗
jλL

H) · (K(di(k), a)H · I
+K(di(k), a)H · λL)− (I ·K(di(k), a)H

+ λLH ·K(di(k), a)H) · (I · eie∗j + λL · eie∗j )
= eie

∗
jK(di(k), a)H + λeie

∗
jK(di(k), a)HL

+λeie
∗
jL

HK(di(k), a)H +λ2eie
∗
jL

HK(di(k), a)HL

−K(di(k), a)Heie
∗
j − λK(di(k), a)HLeie

∗
j

−λLHK(di(k), a)Heie
∗
j−λ2LHK(di(k), a)HLeie

∗
j

(24)

Stopping at the terms of first order in λ,
we delete λ2eie

∗
jL

HK(di(k), a)HL and
λ2LHK(di(k), a)HLeie

∗
j , then

Tijk(I + λL) = eie
∗
jK(di(k), a)H

+ λeie
∗
jK(di(k), a)HL+ λeie

∗
jL

HK(di(k), a)H

−K(di(k), a)Heie
∗
j − λK(di(k), a)HLeie

∗
j

− λLHK(di(k), a)Heie
∗
j .

Expanding in λ, we put

αijk = eie
∗
jK(di(k), a)H −K(di(k), a)Heie

∗
j (25)

and

βijk = (eie
∗
jK(di(k), a)HL−LHK(di(k), a)Heie

∗
j )

+ (eie
∗
jL

HK(di(k), a)H −K(di(k), a)HLeie
∗
j ).

(26)

Hence

Tijk(I + λL) = αijk + βijkλ. (27)

On the other hand, (17) becomes

γ∗ijk(I+λL) = e∗i (I+λL)HK(di(k), a)(I+λL)ej

= e∗i (I + λLH)K(di(k), a)(I + λL)ej

= (e∗iK(di(k), a)+λe∗iL
HK(di(k), a))·(Iej+λLej)

= e∗iK(di(k), a)ej + λe∗iK(di(k), a)Lej

+λe∗iL
HK(di(k), a)ej+λ2e∗iL

HK(di(k), a)Lej .
(28)
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We can do again an approximation at the terms of the
first order in λ, deleting λ2e∗iL

HK(di(k), a)Lej , and
we find

= e∗iK(di(k), a)ej + λe∗iK(di(k), a)Lej

+ λe∗iL
HK(di(k), a)ej .

Expanding in λ, we put

δijk = e∗iK(di(k), a)ej (29)

and

εijk = e∗iK(di(k), a)Lej + e∗iL
HK(di(k), a)ej

(30)
and hence

γ∗ijk = δijk + λεijk. (31)

We may conclude that

sij(I + λL,Na,λ) =

m∑
k=1

∑
i,j{1,...,n}

i6=j

γ∗ijk Tijk

=

m∑
k=1

∑
i,j{1,...,n}

i 6=j

(δijk + εijkλ)(αijk + βijkλ).

(32)

Now

(δijk + εijkλ)(αijk + βijkλ)

= δijkαijk + (δijkβijk + εijkαijk)λ+ (εijkβijk)λ2

= δijkαijk + (δijkβijk + εijkαijk)λ

and the result follows. �
We are ready to prove the main result.

Theorem 1 Assume that L is an anti-hermitian ma-
trix and (I + λL,Na,λ) ∈ (U(n) ∩ GL(n,R) ×
GL(n,R)m. Then

Y(I + λL,Na,λ) =

m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

|γijk(I + λL)|2,

(33)
for small enough λ 6= 0 and a 6= 0 around U ∈
U(n)∩GL(n,R). Furthermore, the stationary condi-
tion S(I+λL,Na,λ) = SH(I+λL,Na,λ) is satisfied
with entries sij(I + λL,Na,λ) as in (23).

Proof : Apply Corollary 1 and Lemma 3. �

The cases λ = a = 0 and λ 6= 0 with a = 0 can
be found in Refs. 8, 9, 14. Now notice that

Na,λ = (K(di(1), a), . . . ,K(di(m), a))

+ λ(UHR1U, . . . , U
HRmU) = Ca + λD, (34)

where

Ca = (K(di(1), a), . . . ,K(di(m), a)) ∈ SL(n,C)m

and

D = (UHR1U, . . . , U
HRmU) ∈ GL(n,C)m.

Then

Nλ = {(K(di(1), a), . . . ,K(di(m), a))+λD | a ∈ R}
= {(K(di(1), a), . . . ,K(di(m), a)) | a ∈ R}+λD

(35)

and, in particular, for di(1) = . . . = di(m) = 1,

N = {(K(1, a), . . . ,K(1, a)) | a ∈ R}+ λD (36)

generate SL(n,C)m + λD (see Lemma 2).

Corollary 2 Assume L is an anti-hermitian matrix,
N as in (36) and (I+λL,N ) ∈ (U(n)∩GL(n,R)×
GL(n,R)m. Then

Y(I + λL,N ) =

m∑
k=1

∑
i,j∈{1,...,n}

i 6=j

|γijk(I + λL)|2,

(37)
for small enough values of λ 6= 0 and a 6= 0 around
U ∈ U(n) ∩ GL(n,R). Furthermore, the stationary
condition S(I+λL,N ) = SH(I+λL,N ) is satisfied
with entries sij(I + λL,N ) as in (23).

The importance of Corollary 2 is emphasized by
the following observation.

Remark 3 The perturbations of joint diagonalizers of
shear matrices are described by (37).

Corollary 2 has the following consequence.

Remark 4 The rational canonical form of a special
linear matrix allows us to conclude that the perturba-
tions of joint diagonalizers of special linear matrices
can be obtained by linear combinations of perturba-
tions of joint diagonalizers of shear matrices.

Non-singular matrices were involved in most the
present paper and it might seem to be a strong re-
striction. The next observation justifies our choice,
showing that it is not really restrictive.
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Remark 5 LetA be a singular matrix with n rows and
n columns over R (resp. C) and (a11, a22, . . . , ann)
be the entries of its diagonal. If the product a11 ·
a22 · . . . · ann 6= 0, then we may write uniquely
A = T1 +T2 as the sum of the upper triangular matrix
T1, whose diagonal is 1

2 (a11, a22, . . . , ann), and the
lower triangular matrix T2, whose diagonal is the same
of T1. Both T1 and T2 are non-singular matrices.

We end with a concrete example, in which we
can see that the two familiesMλ andMa,λ are very
different when a 6= 0.

Remark 6 In order to simplify the notation, we may
concentrate on the case n = m = 3 of (11), consider
real matrices and denote the (real) numbers di(k) only
by α, β, γ, δ, ε, φ, ι, κ, µ, avoiding indices, and the
matrices K(di(k), a) only by K1, K2, K3. Assume
that θ ∈ R and

U =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


so that

UH = U
∗

=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Now take R1 = R2 = R3 = I3, just for fixing the
ideas (I3 is the identity matrix of GL(3,R)), and

D1 =

 α 0 0
0 β 0
0 0 γ

 , D2 =

 δ 0 0
0 ε 0
0 0 φ



D3 =

 ι 0 0
0 κ 0
0 0 µ

 ,

K1 =

 α a 0
0 β 0
0 0 γ

 , K2 =

 δ 0 a
0 ε 0
0 0 φ

 ,

K3 =

 ι 0 0
0 κ a
0 0 µ

 .

Making the products, we get that the rows of

A = UD1U
H + λI3

are

a1,j = (λ+α cos2 θ+β sin2 θ, (β−α)(cos θ sin θ), 0)

a2,j = (β−α)(cos θ sin θ), λ+β cos2 θ+α sin2 θ, 0)

a3,j = (0, 0, λ+ γ)

the rows of
B = UD2U

H + λI3

are

b1,j = (λ+ δ cos2 θ+ ε sin2 θ, (ε− δ)(cos θ sin θ), 0)

b2,j = ((ε− δ)(cos θ sin θ), λ+ ε cos2 θ+ δ sin2 θ, 0)

b3,j = (0, 0, λ+ φ)

and the rows of

C = UD3U
H + λI3

are

c1,j = (λ+ ι cos2 θ+κ sin2 θ, (κ− ι)(cos θ sin θ), 0)

c2,j = ((κ− ι)(cos θ sin θ), λ+κ cos2 θ+ ι sin2 θ, 0)

c3,j = (0, 0, λ+ µ).

Now the rows of

L = UK1U
H + λI3

are

l1,j = (λ+ α cos2 θ + β sin2 θ + a sin θ cos θ,

(β − α)(cos θ sin θ) + a cos2 θ, 0)

l2,j = ((β − α)(cos θ sin θ)− a sin2 θ,

λ+ β cos2 θ + α sin2 θ − a sin θ cos θ, 0)

l3,j = (0, 0, λ+ γ)

which clearly differ from the respective rows a1,j and
a2,j by the presence of the new terms ±a sin θ cos θ,
−a sin2 θ, a cos2 θ. Similarly, this happens for

M = UK2U
H + λI3

where

m1,j = (λ+ δ cos2 θ + ε sin2 θ + a sin θ cos θ,

(ε− δ)(cos θ sin θ) + a cos2 θ, 0)

m2,j = ((ε− δ)(cos θ sin θ)− a sin2 θ,

λ+ ε cos2 θ + δ sin2 θ − a sin θ cos θ, 0)

m3,j = (0, 0, λ+ φ)

and for
N = UK3U

H + λI3

where

n1,j = (λ+ ι cos2 θ + κ sin2 θ + a sin θ cos θ,

(κ− ι)(cos θ sin θ) + a cos2 θ, 0)

n2,j = ((κ− ι)(cos θ sin θ)− a sin2 θ,

λ+ κ cos2 θ + ι sin2 θ − a sin θ cos θ, 0)

n3,j = (0, 0, λ+ µ)

We conclude that Ma,λ = {L,M,N} is different
fromMλ = {A,B,C} whenever a 6= 0.
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