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ABSTRACT: This paper proposes a novel method for modelling magneto-rheological (MR) dampers. It uses an elementary
hysteresis model (EHM) with a feed-forward neural network (FNN) to capture hysteresis characteristics of an MR damper,
and another FNN to determine the current gain. These parts can be trained separately, thus reducing the size of the training
dataset. The inputs of the proposed model include velocity, acceleration, and current to estimate the generated damping
force. Unlike previous FNN models, this model does not require force sensor inputs. Simulation results show the high
performance of the proposed EHM-based FNN when compared to conventional methods such as a recurrent neural network.
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INTRODUCTION

Magneto-rheological (MR) dampers are semi-active
control devices that offer several advantages including
quick response time, ease of design, very low input
power requirement to produce high yield strength, and
stable hysteretic behaviour over a broad range of tem-
peratures. They consist of cylinders containing MR
fluid with micron-sized, magnetically polarizable par-
ticles dispersed in a carrier medium such as mineral or
silicone oil1. MR dampers can change between liquid
and semi-solid characteristics with different damping
coefficients depending on the applied strength of a
magnetic field. This magnetic field can be controlled
by applying a voltage or current. MR dampers are
used in a wide range of applications, such as sus-
pension systems in automobiles, seismic protection,
and human prosthetics. In automotive applications,
MR dampers are installed between the wheel and
chassis as part of the suspension system to reduce seat
vibration. This provides performance advantages over
conventional friction dampers because the damping
values can be varied to suit many frequency ranges2.
Other researchers have also installed MR dampers
in buildings and structures to reduce the effects of
seismic activities3. State-of-the-art prosthetic knee
devices employ MR dampers to generate variable knee
friction for different phases of the ambulation cycle.
This offers amputees the ability to walk more naturally
and with greater comfort4. These applications show
the advantages of MR dampers over conventional

dampers. However, it is a highly nonlinear dynamic
system that requires accurate models to develop an
efficient controller.

Models of MR dampers fall into two categories:
parametric and non-parametric models. Parametric
models are based on mechanical elements represented
by springs, viscosity, and friction. The most well
known parametric model is the modified Bouc-Wen
model that consists of 14 parameters determined from
curve fitting of experimental data1. Modified Bouc-
Wen gave accurate results but the limitation of this
model is the linear dependency between damping
force and applied voltage. To remove this restriction,
a third-order polynomial equation can be used to
represent the nonlinear relationship between force and
applied current. The third-order polynomial modified
Bouc-Wen5 increases the total number of parameters
to 19. Other parametric models such as modified Lu-
gre6 and hyperbolic tangent models7 were proposed
as simpler alternatives to the modified Bouc-Wen.
These parametric modelling methods require assump-
tions about the structure of the mechanical model,
and accuracy can decrease if the initial assumptions
about model structure are flawed, or if the proper con-
straints are not applied to the parameters8. Another
type of MR damper model employs non-parametric
approaches such as a feed-forward neural network
(FNN)9, recurrent neural network (RNN)10, neuro-
fuzzy11 and black-block model8. Non-parametric
models generally require more experimental data for
training than parametric models.
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In this paper, a non-parametric FNN using an ele-
mentary hysteresis model (EHM) is proposed. EHM is
used to represent hysteresis characteristics of the MR
damper. Conventional FNN can estimate damping
force accurately but requires force information from
a previous state9. To do this, force sensors must be
installed in the system, otherwise the damping force
cannot be predicted accurately because it can only
approximate one-to-one or multiple-to-one mapping,
whereas hysteresis requires multi-valued mapping.
RNN is an alternative model that does not require
force sensors10. However, it is complex and requires
more time to train. The EHM-based FNN is proposed
to solve these problems. The model consists of a
hysteresis model and a gain function. The hysteresis
model is constructed as an EHM-based FNN12, 13

whose inputs contain system excitation variables. The
gain function employs another FNN that is used to
determine the force gain caused by electromagnetic
effects, which is chosen as the applied current to the
MR damper. The model does not require external
force information unlike the previous FNN model.
The EHM-based FNN also uses a simple training
process because both parts of the model can be trained
separately. The proposed model is compared to
previous FNN and RNN models through simulations.
The results show that the accuracy of the proposed
model outperforms the RNN model for various types
of datasets. Details of the EHM-based FNN imple-
mentation are shown in the following sections.

MAGNETO-RHEOLOGICAL DAMPER

A MR damper typically is a cylinder that contains
MR fluid whose characteristics change depending on
an applied magnetic field. The current (or voltage)
controller input is varied to regulate its damping force.
Due to the highly nonlinear dynamic properties of
the MR damper, system identification is required for
accurate control. The behaviour of the MR damper de-
pends on three important variables: (1) excitation such
as displacement, velocity and acceleration, (2) applied
current and (3) damping force. The relationship
between damping force and velocity shows hysteresis
loops whose shapes vary according to the applied
current. Many models have been created to describe
its behaviour. The most commonly used model is
the modified Bouc-Wen proposed by Spencer et al1.
However, the relationship between force and current
in the modified Bouc-Wen model is linear, unlike the
actual behaviour of the MR damper. Therefore, a
third-order polynomial equation is used to adapt the
modified Bouc-Wen to represent the nonlinear depen-
dency between applied current and force5, which is
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Fig. 1 Hysteresis at different current values generated by
the third-order polynomial modified Bouc-Wen model.

governed by the following seven equations:

F = c1ẏ + k1(x− x0) (1)
ẏ = 1

(c0+c1)
[αz + c0ẋ+ k0(x− y)] (2)

w = ẋ− ẏ (3)
ż = γ|w|z|z|(n−1) − βw|z|n +Aw (4)
α = αa + αbI + αcI

2 + αdI
3 (5)

c1 = c1a + c1bI + c1cI
2 + c1dI

3 (6)
c0 = c0a + c0bI + c0cI

2 + c0dI
3 (7)

where F , x, ẋ and I are force, displacement, velocity,
and applied current, respectively. The 19 physical pa-
rameters can be identified from experimental data by
using optimization techniques. Parameters of a large-
scale 20 t MR damper5 are given as A = 2679.0 m−1,
β = 647.46 m−1, γ = 647.46 m−1, k1 = 617.31 N/m,
k0 = 137 810 N/m, n = 10, x0 = 0.18 m, αa = 15 114,
αb = 168 326, αc = −87 071, αd = 16 566, c1a =
−2 791 630, c1b = 48 788 640, c1c = 5 334 183, c1d
= −9 363 108, c0a = 457 741, c0b = 1 641 376, c0c
= −1 545 407 and c0d = 437 097. The third-order
polynomial modified Bouc-Wen generates hysteresis
as shown in Fig. 1 when excited at 2 Hz and varying
the current from 0–1.5 A. The model is better able
to simulate the nonlinear relationship between force
and applied current than the modified Bouc-Wen. All
validation and training datasets in the simulations
are generated from a third-order polynomial modified
Bouc-Wen model.

ELEMENTARY HYSTERESIS MODEL

The elementary hysteresis model (EHM) was pro-
posed by Tong et al12 and improved by Ma et al13
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to construct a one-to-one mapping between inputs and
outputs of a neural network. When an input extremum
(local minimum or local maximum point) occurs, the
output will move along a regular curve, such as a
monotone conic path. This produces a branch of
major or minor loop. By continuous transformation,
an arbitrary number of minor loops can be obtained
so that an EHM can be constructed. The constructed
model is used as a bridge between the input signals
and the hysteresis output.

Calculation of EHM

The EHM signal is calculated using a parabolic func-
tion and defined as:

f(xi(t))

=

{
f(xe) + a[xi(t)− xe]2;xi(t+ 1) > xi(t)

f(xe)− a[xe − xi(t)]2;xi(t+ 1) < xi(t)

(8)

where xi is the current input, xe is the input at the
extremum adjacent to the current input, f(xi) is the
output of the current point and f(xe) is the output
of the point xe, a is a constant parameter of the
parabolic equation. Consider the input profile shown
in Fig. 2(a). The resulting EHM loop is given in
Fig. 2(b), where the major loop traverses via point a to
f and returns to a. While EHM output travels in this
major loop, if the input signal reaches an extremum
point, a minor loop will be generated. Considering
Fig. 2(a), the initial extremum point is set to a as the
input signal starts to increase from point a to point
b. The EHM output in Fig. 2(b) therefore generates a
parabolic curve from point a to point b. After that,
the input signal decreases from point b to point c,
and the extremum point is changed to point b, and
EHM switches to a decreasing function. The next
calculation process will go on this manner until the
input signal traverses back to point a. In some cases,
the EHM function may generate minor loops inside
other minor loops, as seen in loop g-h-i- j-g. When
the input signal traverses back to its outer loop, the
current extremum point is set as the extremum point
of that outer loop.

EHM-based neural network hysteresis model

The EHM function can be combined with a neural
network to approximate hysteresis types of behaviour.
FNN with structure 2-n-1 was used successfully
to approximate backlash-based hysteresis simulation
model in a previous work12. The two inputs of their
FNN consist of input signal and EHM signal that is
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Fig. 2 (a) Example of an input signal and (b) the generated
EHM curve.

generated from the input signal. MR damper hystere-
sis is similar to backlash, but the width of the loop
also depends on excitation frequency14. Change of
excitation frequency can be measured from accelera-
tion. The proposed EHM-based neural network model
for approximating MR damper hysteresis is shown in
Fig. 3, with a 3-n-1 structure. The three inputs consist
of velocity (ẋ), acceleration (ẍ) and the EHM signal.
The hidden layer includes a sufficient number of nodes
(n) to approximate hysteresis and uses the tangent
sigmoid function. The output layer uses the linear
transfer function to produce an estimated force (Fh).

MODEL STRUCTURE

Proposed MR damper model with EHM-based
neural network hysteresis

The MR damper is a nonlinear dynamic system con-
sisting of two kinds of inputs: (1) excitation and (2)
applied current that generates a magnetic field. Some
recent research8, 14 divide MR damper model into two
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Fig. 3 The proposed model structure.

functions because the effect of applied current on the
width of hysteresis loops is relatively small. A typical
MR damper model is shown as follows:

F = f(I, x, ẋ, ẍ) (9)

where F is the damping force, I is the applied current,
x, ẋ and ẍ are displacement, velocity and acceleration,
respectively. The proposed MR damper model sepa-
rates the damping force into two parts:

Fh = fh(ẋ, ẍ) (10)
F = fI(Fh, I, ẋ) (11)

where fh is the hysteresis function produced by ex-
citation of the MR damper, fI is the nonlinear gain
function that depends on applied current and velocity.
Each part of the proposed model is developed using
FNN as shown in Fig. 3 and the details are described
in following section.

The hysteresis model

The hysteresis model is created by EHM-based neural
network described in the previous section. In the
training process, the dataset must include all possible
ranges of excitation that may be applied to the MR
damper during actual operation. It is important to
construct the boundary (major loop) of EHM. For
example, in Fig. 2(b) the boundary of EHM is con-
structed between point a and point f . In the validation
process, the EHM output of validation datasets must
stay inside this boundary. Moreover, the starting point
of EHM signal is important for calculating the next
EHM output. If it starts from the wrong position then
the estimation result will not be accurate. The method
to determine EHM signal at the starting point requires
information of actual force at the first extremum point.
Optimization techniques can then be employed to
determine the EHM signal at the first extremum point.

The gain function

The gain function (fI ) is the nonlinear function that
scales the output of the hysteresis model (Fh) de-
pending on the applied current. The maximum and

minimum force of each hysteresis shape depends on
applied current value as shown in Fig. 1. However, the
gain between two hysteresis shapes is not equal at all
velocity and is considered to be a nonlinear function.
The proposed model uses another FNN to construct
a gain function for estimating the total force. Inputs
of the gain function consist of the applied current,
velocity and Fh generated from the hysteresis model.

IMPLEMENTATION OF THE PROPOSED
MODEL

Implementation of the hysteresis model

The constant value (a) in eq.(8) and the number
of hidden nodes are determined in this section. In
simulations, the value of a is varied from a = 0.5–2
without demonstrating significant differences, so a =
1 is arbitrarily set. Another question is how to find the
best number of nodes. The proposed hysteresis model
selects one hidden layer and varies the number of
nodes from 5–65 nodes. The node number estimation
process runs 5 times with different initial weight and
random data division. To select the best number of
hidden nodes, the lowest number that can adequately
represent the training set will be selected to avoid
generalization errors. A suitable node count (n) is
determined by simulation as 45.

The hysteresis model is constructed with an FNN
that is structured as a 3-45-1 network. The inputs
of the network consist of velocity, acceleration and
the EHM signal. The simulation is designed by
using dataset generated from a large-scale MR damper
which has parameters defined previously. Velocity is
varied from −0.16 to 0.16 m/s and the frequency of
piston movement between 1 and 5 Hz. The training
dataset is a sinusoidal signal with different amplitude
and frequency in 80 s range as in Table 1 and the
applied current is fixed at 1.5 A. The training dataset
is divided randomly into three groups consisting of
training data, validation data and testing data with ra-
tio 60:20:20, respectively. The Levenberg-Marquardt
algorithm15 is used as the training algorithm and
mean square error is used as performance function.
Maximum training iterations in the training process is
3000 and the process is stopped when the results of
validation checks do not improve significantly within
6 iterations. In this paper, the training process was
conducted 10 times and the weight of the hysteresis
model was obtained from the best result. The average
training time of the hysteresis model is approximately
21 min.

After the hysteresis model was trained, a 5-s
sinusoidal signal that varies the amplitude from 0–
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Table 1 Sinusoidal velocity signals used in training dataset
of the hysteresis model.

Duration (s) Amplitude (m/s) Frequency (Hz)

10 0.016t 1
10 −0.016t+0.16 1
10 0.016t 2
10 −0.016t+ 0.16 2
10 0.016t 3
10 −0.016t+ 0.16 3
5 0.032t 4
5 −0.032t+ 0.16 4
5 0.032t 5
5 −0.032 t+ 0.16 5
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Fig. 4 The result of the hysteresis model is shown in
(a) velocity domain and (b) time domain from 0–2 s.

0.16 m/s and frequency from 1–5 Hz is used as a
validation dataset. The desired Fh is equal to forces
generated by a large-scale MR damper with applied
current at 1.5 A. Performance of the hysteresis model
is evaluated from normalized root-mean-square error
(NRMSE) between desired and predicted Fh values.
The result of validation data is shown in Fig. 4 with
an NRMSE of 0.92% when compared to the full range
between maximum and minimum generated forces.
It shows that the hysteresis model can predict Fh

accurately except before the velocity reaches the first
extremum point because of the limitation of EHM.

Implementation of the gain function

Another FNN is used to implement the gain function.
It is applied to estimate damping force from Fh that
is generated by the hysteresis model. The simulated

MR damper is operated at an applied current between
0 and 1.5 A and the hysteresis model is trained at
1.5 A. The gain function will scale down the value of
Fh to be the estimated force at other applied current
values. From simulation results, the gain FNN does
not require many hidden nodes, with only 5 nodes
being sufficient to estimate the gain ratio. Thus the
structure of gain FNN is a 3-5-1 network with tangent
sigmoid transfer function in the hidden layer and
linear transfer function in the output layer.

The training dataset used to train the gain FNN
consists of data shown in Fig. 1. This includes the
damping force generated from two cycles of sinu-
soidal velocity at amplitude 0.16 m/s and frequency
2 Hz, and applied current at 0, 0.1, 0.25, 0.5, 0.75,
1, 1.25, and 1.5 A. The force generated at 1.5 A is
used as Fh in the training process. All parameters
and environment in the training process of the gain
function is the same as the hysteresis model. Average
time of the training process is 1.74 min.

The validation datasets consist of hysteresis loops
generated at 0 A and 1.1 A. The results show that
NRMSE of the predicted force compared to the de-
sired force at 0 A is 0.42%, and at 1.1 A is 0.13%.
The predicted force at 1.1 A is more accurate than at
0 A, because it is closer to the base current of 1.5 A.
However, choosing the largest operating current as a
base current gives an advantage, because it only scales
down the output from the hysteresis model and does
not amplify any errors.

VALIDATION OF THE PROPOSED MODEL
AND COMPARISON

Validation of the proposed model

After the hysteresis model and the gain function are
trained separately, the next step is to combine both
parts together. From the previous section, the pro-
posed model selects the number of hidden nodes in
the hysteresis model (n) at 45 and the number of
hidden nodes in the gain function (m) at 5. This
section validates the model and compares it with
conventional FNN and RNN that have been developed
from previous work9, 10 using two datasets.

The first dataset is a 2.5-s time span dataset. It
consists of sinusoidal velocity at 4 Hz with amplitude
0.16 m/s while the applied current is a ramp function
that increases from 0.1 A to 1.35 A. Dataset 1 is shown
in Fig. 5(a) and tests the performance of the gain
function at various current levels. The errors of the
predicted force are calculated after the first extremum
point as 1.95% when compared to the full range
between maximum and minimum generated forces.
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Fig. 5 (a) Validation dataset 1 and (b) dataset 2.

The second dataset is shown in Fig. 5(b). It is a
5-s time span dataset consisting of a chirp velocity of
2–4 Hz with ramp amplitude varying from 0–0.12 m/s,
and the applied current is a random value between
0 and 1.5 A that changes every 0.1 s. This dataset
verifies the performance of the hysteresis model by us-
ing a wide range of velocity frequency and amplitude.
NRMSE of predicted force calculated after the first
extremum is 0.89% when compared to the full range
between maximum and minimum generated forces.

Previous feed-forward neural network setup

The previous FNN developed by Chang et al9 is used
for comparison with the proposed model. The struc-
ture of the previous FNN model is shown in Fig. 6(a)
and consists of 6 inputs including two displacements,
two currents and two force information from previous

states. The model has a hidden layer with 12 nodes
using the tangent sigmoid transfer function, and an
output layer using the linear transfer function. This
model uses actual force from the previous states as
inputs, thus requiring that a force sensor be installed
for online measurement. The training dataset uses the
same velocity and acceleration profiles as the dataset
in Table 1 and duplicates these profiles 5 times with
different applied currents such as 0, 0.25, 0.5, 1,
and 1.5 A. The total dataset length covers a 400-
s time span; which is larger than the training data
of the hysteresis model. The training process and
environment is the same as the process to train the
hysteresis model.

Recurrent neural network setup

RNN is another method that can be used to model MR
dampers. The architecture of RNN has one or more
output feedback loop to estimate the next output. It
is a powerful network that is widely used in many
applications. The RNN model of MR damper which
was proposed by Metered et al10 has two kinds of
external inputs; such as previously applied currents
and past displacements, and uses the estimated force
from prior iterations as an internal input. Simulation
results indicated that the network using only displace-
ment cannot provide accurate results, so the RNN is
modified in this paper by replacing the displacement
input with velocity and acceleration. The modified
RNN is shown in Fig. 6(b) and consists of 15 input
signals including previous current, velocity, accelera-
tion and the estimated force, two hidden layers with
18 nodes each that uses the tangent sigmoid transfer
function, and an output layer using the linear transfer
function. In this paper, RNN is developed by using
a nonlinear autoregressive network with exogenous
inputs (NARX). The training dataset is the same as
data used in the training process of the previous FNN.
Since the training dataset is very large, the model
cannot be trained using conventional NARX method.
Thus the network is constructed in a series-parallel ar-
chitecture and trained using the actual force. After the
network is completely trained, it is converted back to
an NARX model. The training process uses the same
parameter and environment as the training process of
the hysteresis model, and is repeated 15 times. The
best result is selected as the RNN model.

Result and comparison

The results of the previous FNN model, RNN model
and proposed model are shown in Table 2, where
NRMSE values of these models are calculated after
the first extremum point. Since the previous FNN
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Table 2 Average training time and validation results.

Methods Average Training Timea Normalized Root-Mean-Square Errorb

Dataset 1 Dataset 2

FNN 26.46 min 0.091% 0.063%
RNN 7 h 27.48 min 4.43% 8.07%
EHM-based FNN 21.23 min + 1.74 min 1.95% 0.89%

(the hysteresis model + the gain function)
a Training processes conducted using MATLAB running on Windows 7 with CPU Intel i7-3.4Hz RAM 8 GB.
b Error is calculated by root-mean-square error divided by a max-min range of its dataset.
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Fig. 6 (a) The previous FNN and (b) RNN architecture (D
represents delay by once step).

model uses a force sensor to provide past force in-
formation, the results are significantly better than the
other two methods. Therefore, it can be used as a
benchmark for comparison purposes. The advantage
of the proposed model can clearly be seen when
compared with the RNN model, since both methods
do not require a force sensor to be installed. In
simulation, the proposed model estimates force better
than the RNN model for both datasets. Fig. 7 and
Fig. 8(a) show the results of dataset 1 and dataset
2, respectively. In dataset 1, the proposed model is
slightly better than the RNN model, but the RNN error
grows larger as the current increases. In dataset 2, the
error of the proposed model is smaller than the RNN,
especially when the applied current is changed from
one value to another. For example, in Fig. 8(b), when
the applied current changes from 0.53 A to 0.9 A at
time 2.3 s, the RNN result contains higher error. RNN
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Fig. 8 (a) Result of dataset 2 and (b) expanded result from
2.25–2.36 s.

responds slower than the proposed model because it
uses predicted force from previous iterations. When
a change in the applied current occurs, more time is
needed to adapt the network.

CONCLUSIONS

This paper proposes an MR damper model that con-
sists of the hysteresis model and the gain function.
The proposed model estimates force less accurately
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compared to the previous FNN model, but provides
an advantage in that it does not require a force
sensor to measure external force information from
previous iterations. Hysteresis prediction is dependent
on memory of previous states to generate the next
state. The RNN model and the proposed model have
different mechanisms to solve this problem. The RNN
model uses predicted force from previous iteration as
feedback to the system. In contrast, the proposed
model uses EHM with a parabolic function to capture
hysteresis characteristic. Simulation results show that
the proposed model can predict the damping force
more accurately when compared to RNN. Secondly,
the proposed model allows for an easier training pro-
cess compared to the previous FNN and RNN because
the model is divided into two parts: the hysteresis
model and the gain function. These two parts can be
trained separately, so reducing the size of the required
training dataset.
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