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ABSTRACT: In this paper, we have proposed an algorithm that has been improved from the classical Clarke and Wright
savings algorithm (CW) to solve the capacitated vehicle routing problem. The main concept of our proposed algorithm is to
hybridize the CW with tournament and roulette wheel selections to determine a new and efficient algorithm. The objective is
to find the feasible solutions (or routes) to minimize travelling distances and number of routes. We have tested the proposed
algorithm with 84 problem instances and the numerical results indicate that our algorithm outperforms CW and the optimal
solution is obtained in 81% of all tested instances (68 out of 84). The average deviation between our solution and the optimal
one is always very low (0.14%).
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INTRODUCTION

The capacitated vehicle routing problem (CVRP) was
initially introduced by Dantzig and Ramser1 in their
article on a truck dispatching problem and, conse-
quently, became one of the most important and widely
studied problems in the area of combinatorial opti-
mization. Not only is the travelling salesman problem
classified as nondeterministic polynomial time (NP)
hard2, but also the bin packing problem is a special
case of CVRP. Accordingly, the CVRP has been
concluded to be an NP-hard problem3–5. The basic
concept of CVRP is to find a feasible set of vehicle
routes that minimizes the total travelling distance
and/or the total number of vehicles used. For each
route, the vehicle departs from a given depot and
returns to the same depot after completing the service.
CVRP involves a single depot, a homogeneous fleet of
vehicles, and a set of customers who require delivery
of goods from the depot.

Since CVRP was first proposed in 19591, it has
received much attention from researchers and practi-
tioners. Therefore, numerous approaches and algo-
rithms have also been developed. First, an exact algo-
rithm, which is an algorithm that solves a problem to
optimality by computing the distance of every feasible
solution and then choosing a solution with minimum
distance, was reported. The approach consists of a

branch-and-bound algorithm6, a branch-and-cut algo-
rithm7–9, and a branch-and-cut-and-price algorithm10.
In these algorithms, CVRP instances involving more
than 100 customers can rarely be solved to optimality
due to a huge amount of computation time. Second,
a heuristic algorithm, which is an algorithm that
should find solutions among all feasible ones, com-
posed of savings algorithm11, sweep algorithm12, 13,
sequential insertion algorithm14, petal algorithm15, 16,
two-phase insertion17, cluster-first route-second algo-
rithm18, 2-petals algorithm19, k-opt heuristic20, Or-
exchanges21, and λ-interchanges22. These algorithms
usually find a feasible solution (near optimal) fast and
easily but they do not guarantee that the optimal solu-
tion will be found. Finally, a metaheuristic algorithm,
which is an iterative improvement approach by com-
bining a heuristic algorithm with intelligent ideas for
exploring and exploiting the search space, composed
of simulated annealing22, tabu search23, 24, genetic
algorithm25, 26, ant colony algorithm27, 28, memetic
algorithm29, 30, active-guided evolution strategies31,
honey bees mating optimization algorithm32, and par-
ticle swarm optimization algorithm33, 34. In these
algorithms, a good metaheuristic implementation can
provide efficiently near-optimal solutions in a reason-
able computation time.

The Clarke and Wright savings algorithm (CW)11

is the most widely applied heuristic for solving CVRP
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due to its simplicity of implementation and efficient
calculation speed. CW has also been widely applied
as a basis algorithm in many commercial routing pack-
ages. But CW without any improvements provides a
solution that is far from the optimal one. However,
several implementations of CW for CVRP and other
types of VRP were also tackled by many researchers;
we have summarized their methods as follows. First,
Tillman35 modified the savings formula11 to solve
the multi-depot vehicle routing problem by revising
c1,i and cj,1 to cki and ckj which are cost or distance
between nodes i and j to the nearest terminal k as in:

ski,j = cki + ckj − ci,j .

Bodin et al36 modified the savings formula11 in
the case of the Federal Express Corporation’s aero-
plane scheduling problem by deleting cj,1 which is the
travelling time from customer j to depot 1 in order to
deal with one way flights (either outgoing or incoming
aircraft) in:

si,j = c1,i − ci,j .
Goetschalckx and Jacobs-Blecha37 compared

their heuristic with the modified CW proposed by Deif
and Bodin38 in a case of vehicle routing problem with
backhauls by adjusting the savings calculation to be:

si,j = si,j − αsmax.

Here smax is an estimate of the maximum savings
value and α is a penalty multiplier, α ∈ [0.1, 0.3].
Vigo39 compared his heuristic with parameterized
CW consisting of route shape (λ) parameter40, 41 and
weighted (µ) parameter42 in an asymmetric capaci-
tated vehicle routing problem as in:

si,j = c1,i + cj,1 − λcij + µ|c1,i − cj,1|.

Here, λ is a parameter that controls the relative signifi-
cance of direct arc between two customers (λ ∈ [0, 3])
and µ is the asymmetry between two customers with
respect to their distances to the depot (µ ∈ [0, 1]).
Altınel and Öncan43 introduced a new enhancement
of the original CW in parameterized saving consist-
ing of route shape (λ) parameter40, 41 and weighted
(µ) parameter42. Their new heuristic with savings
criterion considers the customer demand parameter
(ν), which includes the demand of customers on a
vehicle’s capacity. Their proposed savings formula is
as follows:

si,j = c1,i + cj,1 − λcij + µ|c1,i − cj,1|+ ν
di + dj
d̄

.

Here di is the demand of customer i and d̄ is the
average demand of all customers. Considering these

three independent parameters (λ, µ, ν), Altınel and
Öncan43 used a simple enumerative approach by
varying parameter λ in the ranges of [0.1, 2] and
parameters µ and ν in the ranges of [0, 2], and using a
step size of 0.1. Totally, 8820 different solutions are
obtained and the best solution is chosen. Therefore,
this approach requires much computing time which
can be reduced by using a genetic algorithm44 and
empirically adjusted greedy heuristics45 to adjust the
parameters. Juan et al46 presented a simulation study
in routing via the generalized CW which is a hybrid
algorithm that combines the parallel version of CW
with Monte Carlo simulation and state-of-the-art ran-
dom number generators. Finally, CW is widely used to
generate initial solutions for further application with
other algorithms to get the improvement47–49.

Due to our summary of the related CW studies
as mentioned above, there are few literature pub-
lished by Gaskell40, Yellow41, Paessens42, Altınel and
Öncan43, and Juan et al46 in which CW is the stand-
alone algorithm applied to solve CVRP by concerning
the modification of inside its procedure. But in those
works, only Juan et al46 successfully reported 50
optimal solutions in real Euclidean distance. There-
fore, one of our motivations is to improve the CW
by using our new competitive approach which can
successfully reach the optimal solutions. In our algo-
rithm, we simply have applied the parallel version of
CW11 combined with our approach adjusted from two
genetic operators in the genetic algorithm including
tournament and roulette wheel selections. It is shown
that our algorithm is very simple to apply for solving
CVRP.

In this paper, an improved Clarke and Wright
savings algorithm (ICW) for CVRP by using the
parallel version of CW combined with our approach
is initially proposed. It is able to compete with CW
related algorithms and other algorithms in terms of
solution quality while solving CVRP.

PROBLEM DEFINITION

The CVRP can be stated as the problem in which
vehicles based at a depot are required to serve ge-
ographical customers in order to satisfy known cus-
tomer demands. All vehicles have the same loading
capacity. All customers have non-negative demands.
Each customer must be visited once by one vehicle.
The loading of each vehicle cannot exceed the loading
capacity. The objective of CVRP is to minimize
the total travelling cost of all vehicles. The model
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formulation of CVRP is shown below.

Minimize
∑
i∈N

∑
j∈N

∑
v∈V

cijx
v
ij (1)

subject to
∑
v∈V

yvi = 1 for i ∈ N, (2)∑
i∈N

xvij = yvj for j ∈ N and v ∈ V , (3)∑
j∈N

xvij = yvi for i ∈ N and v ∈ V , (4)

∑
i∈N

diy
v
i 6 Q for v ∈ V , (5)∑

i∈N
xvi1 6 1 for v ∈ V , (6)∑

j∈N
xv1j 6 1 for v ∈ V , (7)

where N is number of customers including depot (de-
pot is assigned to be customer 1), cij is the travelling
cost between customer i and j (i, j ∈ N, i 6= j), V is
number of vehicles (v ∈ V ),Q is the loading capacity,
di is the demand associated with each customer i,
xvij ∈ {0, 1} (i, j ∈ N ; v ∈ V ), yvi ∈ {0, 1} (i ∈ N ;
v ∈ V ).

In this formulation, the objective function is ex-
pressed by (1) which states that the total travelling
distance of all vehicles is to be minimized. Eq. (2)
represents the constraint that each customer must be
visited once by one vehicle, where yvi = 1 if vehicle v
visits customer i, and 0 otherwise. It is guaranteed in
(3) and (4) that each customer is visited and left with
the same vehicle, where xvij = 1 if vehicle v travels
from customer i to customer j, and 0 otherwise. A
constraint in (5) ensures that the total delivery de-
mands of vehicle v do not exceed the vehicle capacity.
Eq. (6) and (7) express that vehicle availability should
not be exceeded.

METHOD OF APPROACH

In this section, an ICW which combines the advan-
tages of CW with tournament and roulette wheel
selections for solving CVRP is proposed. The concept
of CW is based on the computation of savings for
combining two customers into the same route. There
are two versions of CW: sequential and parallel. In the
sequential version, only one route is expanded until no
more routes can be merged to this route. In contrast, in
the parallel version several routes can be constructed
in parallel. According to ICW, we implemented the
parallel version of CW since it usually generates
the better results than the corresponding sequential

Fig. 1 The flowchart of ICW.
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version5, 47. Our work in this paper continues that of
Pichpibul and Kawtummachai50, 51 which introduced
the decision-making software based on the sequential
version of CW and genetic algorithm, in which the
roulette wheel selection is used as one of our genetic
operators. The flowchart of ICW is given in Fig. 1 and
is described in the following subsection.

The general Clarke and Wright savings algorithm

In the classical version, we first calculate the distance
matrix (di,j) as:

di,j =
√

(xi − xj)2 + (yi − yj)2.

Here, xi, yi and xj , yj are the geographical locations
of customer i and j. Second, the savings value
between customer i and j is calculated:

si,j = d1,i + dj,1 − di,j .

Here, d1,i is the travelling distance between depot 1
and customer i. Third, all savings values are sorted
in the decreasing order. Beginning with the topmost
entry in the list (the largest si,j). Finally, starting
from the top of the savings list, CW includes link
(i, j) in a route if no route constraints will be violated
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through the inclusion of customer i and j in that
route. The route constraints are as follows: (a) Either,
neither i nor j have already been assigned to a route.
(b) Exactly, one of the two customers (i or j) has
already been included in an existing route and that
customer is not interior to that route (a customer is
interior to a route if it is not adjacent to the depot 1 in
the order of traversal of customers). (c) Both customer
i and j have already been included in two different
existing routes and neither customer is interior to its
route. The route linking is repeated to process the
next entry in the savings list until no feasible link is
possible. In the case of non-routed customers, each is
assigned by a route that begins at depot 1, visits the
unassigned customer and returns to the same depot 1.

The proposed Clarke and Wright savings
algorithm

In the proposed version, ICW is an iterative improve-
ment approach designed to find the global optimum
solutions. In contrast to CW which always sorts link
(i, j) in the decreasing order to generate standard sav-
ings list, our approach arranges link (i, j) by adapting
the combination of ideas between tournament and
roulette wheel selections to generate a new savings
list. Goldberg et al52 gave an example of the tour-
nament selection which randomly chooses a set of
chromosomes and picks out the best one from the set
for reproduction. The number of chromosomes in the
set is called tournament size. A common tournament
size is two which is called binary tournament. Fitness
proportionate selection or roulette wheel selection
was introduced by Holland53. His basic idea is to
determine the selection or survival probability for each
chromosome proportional to the fitness value. The
example of our approach is shown in Fig. 2. The new
savings list replaces the previous savings list only if
the current solution is better than the previous one.
In case that the stopping condition is satisfied, ICW
will be terminated. Here, the total number of iterations
and the number of consecutive iterations without any
improvement in the best found solution are employed
as the stopping condition. Notice that, ICW may
generate the infeasible solution in which the number
of available vehicles is inadequate at some iteration.
In this case, the savings list will not be selected to
be a new one by our approach. Therefore, it always
links routes that belong to the same savings list. In
order to avoid this problem, we present the infeasible
acceptance technique which resets the best value equal
to very large penalty value (999 999) when the better
solution found is infeasible.

In Fig. 2, we have illustrated the example of

Fig. 2 The example of our approach to generate the new
savings list.
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generating the new savings list by our approach in
case of five customers. Fig. 2a shows initial savings
values, which represents the savings list sorted by the
decreasing order in case of the first iteration of ICW,
or represents the savings list derived from the previous
better one. In Fig. 2b, our approach begins with
adapting the tournament selection. The tournament
size is a random number between two and six, and
a set of savings values is chosen from the savings list.
In the general tournament selection approach, the best
savings value with minimum distance is picked out
from the set. But in contrast to our tournament selec-
tion, the savings value is picked out from the set by the
roulette wheel selection process. For savings number
n with savings value sn, its selection probability pn
and cumulative probability qn are calculated as:

pn = sn/
∑
i∈T

si for n ∈ T

qn =
∑
i∈n

pi for n ∈ T

Here, T is the tournament size. Therefore, a roulette
wheel is created by these probabilities. The selection
method starts by spinning the roulette wheel with a
random number r from the range between 0 and 1. If
r 6 q1, then choose the first savings value s1; oth-
erwise, choose the nth savings value sn (2 6 n 6 T )
such that qn−1 < r 6 qn. This single savings
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value is collected into the new savings list represented
by Fig. 2c, and is discarded from next tournament
selection operation in order to avoid the duplicate
savings value. Hence, remaining savings values will
be repeatedly executed by tournament selection until
the last saving value is determined in the savings list,
and that value is automatically collected into the new
saving list.

EXPERIMENTAL ANALYSIS

This section presents the numerical experiment of
ICW. We use the benchmark problem instances
available in the literature to verify the efficiency and
effectiveness of our algorithm.

Implementation and hardware

The ICW has been implemented in VISUAL BASIC
6.0 on an Intel Core i7 CPU 860 clocked at 2.80 GHz
with 1.99 GB of RAM on a Windows XP platform.
In our algorithm, some parameters have to be preset
before the execution. For ICW, we have set the
number of tournament sizes to be a random number
from 3–9 and the total number of iterations equal to
10 000. Moreover, ICW is also terminated after 1000
consecutive iterations without any improvement in the
best found solution.

Benchmark instances

In order to test ICW, we used five well-known datasets
of CVRP (composed of 84 instances). These consid-
ered datasets are symmetric with vehicle capacity con-
straints and number of available vehicles restrictions.
Their characteristics are listed in Table 1. Among
84 problem instances, 70 instances are from Augerat
et al8 referred to as A, B, and P. Next, 11 instances are
from Christofides and Eilon54 referred to as E. The
last three instances are taken from Fisher7 referred to
as F. All problem instances have very tight vehicle
capacity constraints in which the ratios of demand to
capacity calculated by (8) below and shown in Table 1
are close to 1.0, except the E-n23-k3 problem which is
equal to 0.75. The standard deviation of customer de-
mands for each problem depicted in Table 1 indicates
that the customer demands in Fisher’s7 benchmark
problem vary much more than in the other benchmark
problems.

Ratio of demand to capacity =
∑
i∈N

di/V Q (8)

Here, di is the delivery demand at customer i, V is the
number of vehicles, and Q is the vehicle capacity.

The benchmark problem sizes that we emphasized
in this paper are classified as small-scale (less than

Table 1 The characteristics for five well-known datasets of
CVRP.

Instance Capacity RDCa SDb

A-n32-k5 100 0.82 7.26
A-n33-k5 100 0.89 6.35
A-n33-k6 100 0.90 11.40
A-n34-k5 100 0.92 7.24
A-n36-k5 100 0.88 6.59
A-n37-k5 100 0.81 8.13
A-n37-k6 100 0.95 11.14
A-n38-k5 100 0.96 6.94
A-n39-k5 100 0.95 8.07
A-n39-k6 100 0.88 11.85
A-n44-k6 100 0.95 6.57
A-n45-k6 100 0.99 6.84
A-n45-k7 100 0.91 6.94
A-n46-k7 100 0.86 7.23
A-n48-k7 100 0.89 6.80
A-n53-k7 100 0.95 8.68
A-n54-k7 100 0.96 7.76
A-n55-k9 100 0.93 9.82
A-n60-k9 100 0.92 9.38
A-n61-k9 100 0.98 9.78
A-n62-k8 100 0.92 7.96
A-n63-k9 100 0.97 7.42
A-n63-k10 100 0.93 9.82
A-n64-k9 100 0.94 9.20
A-n65-k9 100 0.97 7.34
A-n69-k9 100 0.94 8.10
A-n80-k10 100 0.94 7.55

B-n31-k5 100 0.82 6.09
B-n34-k5 100 0.91 15.59
B-n35-k5 100 0.87 7.93
B-n38-k6 100 0.85 7.32
B-n39-k5 100 0.88 6.52
B-n41-k6 100 0.95 5.67
B-n43-k6 100 0.87 6.91
B-n44-k7 100 0.92 10.99
B-n45-k5 100 0.97 7.33
B-n45-k6 100 0.99 6.51
B-n50-k7 100 0.87 10.25
B-n50-k8 100 0.92 10.82
B-n52-k7 100 0.87 6.83
B-n56-k7 100 0.88 6.91
B-n57-k9 100 0.89 7.27
B-n64-k9 100 0.98 9.10
B-n66-k9 100 0.96 6.54
B-n67-k10 100 0.91 7.36
B-n68-k9 100 0.93 7.96
B-n78-k10 100 0.94 7.51

50 customers) and medium-scale (between 51 and
100 customers). All considered problems here are
symmetric with different situations, e.g., uniformly
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Table 1 (Cont.).

Instance Capacity RDCa SDb

P-n16-k8 35 0.88 8.42
P-n19-k2 160 0.97 7.71
P-n20-k2 160 0.97 8.15
P-n21-k2 160 0.93 7.42
P-n22-k2 160 0.96 7.31
P-n22-k8 3000 0.94 630.19
P-n23-k8 40 0.98 7.43
P-n40-k5 140 0.88 8.40
P-n45-k5 150 0.92 8.23
P-n50-k7 150 0.91 7.31
P-n50-k8 120 0.99 7.31
P-n50-k10 100 0.95 7.31
P-n51-k10 80 0.97 8.06
P-n55-k7 170 0.88 7.07
P-n55-k8 160 0.81 7.07
P-n55-k10 115 0.91 7.07
P-n60-k10 120 0.95 7.07
P-n60-k15 80 0.95 7.07
P-n65-k10 130 0.94 7.01
P-n70-k10 135 0.97 7.52
P-n76-k4 350 0.97 7.96
P-n76-k5 280 0.97 7.96
P-n101-k4 400 0.91 8.87

E-n22-k4 6000 0.94 630.19
E-n23-k3 4500 0.75 846.61
E-n30-k3 4500 0.94 610.64
E-n33-k4 8000 0.92 809.21
E-n51-k5 160 0.97 8.06
E-n76-k7 220 0.89 7.96
E-n76-k8 180 0.95 7.96
E-n76-k10 140 0.97 7.96
E-n76-k14 100 0.97 7.96
E-n101-k8 200 0.91 8.87
E-n101-k14 112 0.93 8.87

F-n45-k4 2010 0.90 258.55
F-n72-k4 30 000 0.96 3009.05
F-n135-k7 2210 0.95 187.32

a Ratio of demand to capacity.
b Standard deviation of customer demand.

and not uniformly dispersed customers, clustered and
not clustered, with a centred or not centred depot. One
of our motivations is to understand and develop a new
approach that we can apply to every situation. The
details of each problem are explained next. Augerat
et al8 proposed three datasets (A, B, and P). For
the instances in dataset A, both customer locations
and demands are randomly generated. The customer
locations in dataset B are clustered instances. The
modified version of other instances is dataset P, in
which the problem ranges in size from 16–101 cus-

tomers including the depot. The fourth dataset was
proposed by Christofides and Eilon54. The customers
are randomly distributed in the plane and the depot
is either in the centre or near to it. The problem
ranges in size from 22–101 customers including the
depot. The fifth dataset was proposed by Fisher7.
Each instance represents a day of grocery deliveries
from the Peterboro and Bramalea, Ontario terminals,
respectively, of National Grocers Limited, and the
depot is not centred. The problem ranges in size from
45–135 customers including the depot.

Computational results and the comparison
analysis of ICW

According to the optimal solutions9, 10, 55 that have
appeared in the literature for five well-known datasets
of CVRP, the Euclidean distances, which are the
distances between customers rounded to be the closest
integer value, are used by following the TSPLIB
standard56. Most earlier studies also relied on integer
distance, except Juan et al46 who reported their finding
using real distance in double precision. Moreover,
Battarra et al44 and Corominas et al45 both reported
only the average percentage improvements of their
solutions over CW solutions in each benchmark prob-
lem. In contrast, we do not only consider the improve-
ments of our solutions over CW solutions but also
show the performance of our solutions by comparing
ICW with the algorithms for CVRP (Table 2).

In addition, a few works on integer distance, in
which the problems were solved in all instances, were
presented by AÖ, GN, H, and NJK. This is, therefore,
one of our motivations to show the performance of our
results by fair comparison with those results. In order
to further evaluate our solution quality, several works
on integer distance in which the problems were solved
in some instances presented by AK, GGW, NMP,
XK, ML, CYW, BHK, GPV, and KS, were compared
with our solutions individually. We discuss each
benchmark in a separate section where the percentage
deviation between obtained solution (obt) and com-
pared solution (com) is shown. Here, the percentage
deviation is calculated as (obt − com)/com. As ICW
is a probabilistic algorithm, results can vary from run
to run.

Summary results for CVRP instances

The results in Table 3 show that ICW can find high
quality solutions in reasonable computation times.
Out of the 84 problems, we find the optimal solutions
for 68 problems with up to 135 customers. For
sixteen medium problems with 50–100 customers, the
percentage deviations between our solutions and the
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Table 2 The algorithms used to compare with ICW.

Abbreviation Authors Year Algorithm

CW Clarke and Wright 11 1964 Clarke and Wright savings algorithm
NMP Noon et al 57 1994 TSSP+1 decomposition approach
XK Xu and Kelly 58 1996 Network flow-based tabu search heuristic
ML Mazzeo and Loiseau 59 2004 Ant colony algorithm
AÖ Altınel and Öncan 43 2005 New enhancement of the Clarke and Wright savings heuristic
CYW Chen et al 60 2006 Hybrid discrete particle swarm optimization algorithm
GN Ganesh and Narendran 61 2007 Cluster-and-search heuristic
AK Ai and Kachitvichyanukul 33 2009 Particle swarm optimization and two solution representations
BHK Bouhafs et al 62 2010 Hybrid heuristic approach
GPV Geetha et al 63 2010 Hybrid particle swarm optimization with genetic operators
GGW Groër et al 49 2010 Library of local search heuristic
H Hinton 64 2010 Novel techniques
KS Kim and Son 65 2010 Probability matrix based particle swarm optimization
NJK Na et al 66 2011 Extended sweep algorithm

optimal solutions are very low (0.78% for A-n62-k8,
1.00% for A-n64-k9, 0.51% for A-n80-k10, 0.54%
for B-n52-k7, 0.30% for B-n66-k9, 0.71% for B-n68-
k9, 1.39% for B-n78-k10, 0.43% for P-n55-k10,
0.68% for P-n76-k4, 0.44% for P-n101-k4, 0.59%
for E-n76-k7, 0.95% for E-n76-k8, 1.08% for E-n76-
k10, 0.59% for E-n76-k14, 0.49% for E-n101-k8,
1.21% for E-n101-k14). Nevertheless, in those near
optimal solutions, there are five problems (A-n80-
k10, B-n66-k9, P-n55-k10, E-n76-k10, E-n101-k8)
for which our results are better than the other results.
Moreover, there are also fourteen problems where our
results not only obtained the optimal solutions but also

performed better than the other results. Furthermore,
our solutions outperform CW and ECW solutions in
all directions. These indicate that ICW is extremely
effective and efficient to produce high quality solu-
tions for five well-known datasets of CVRP. The
important details of our improvement are as follows.

The average percentage deviation between CW
solutions and our solutions for benchmark of datasets
A, B, P, E, and F are −4.7%, −2.3%, −10.4%,
−5.6%, and −2.9%. We have found that CW solu-
tions were improved by the average of 5.5%. This
finding shows that dataset P has the highest average
deviation and dataset B has the lowest average devia-

Table 3 Comparisons of five well-known datasets with integer results.

Instance Optimal CW NMP XK ML AÖ CYW GN AK BHK GPV GGW H KS NJK ICW

solution Solution Time (s)

A-n32-k5 784 842 — — — 827 — 784 — — — — 787 — 810 784 1.261
A-n33-k5 661 713 — — — 700 661 661 661 — 661 — 662 661 686 661 1.891
A-n33-k6 742 (775) — — — 743 — 742 — — — — 742 — 743 742 1.732
A-n34-k5 778 (810) — — — 793 — 778 — — — — 780 — 785 778 2.980
A-n36-k5 799 826 — — — 806 — 799 — — — — 802 — 826 799 1.908
A-n37-k5 669 705 — — — 708 — 669 — — — — 672 — 670 669 3.469
A-n37-k6 949 975 — — — 974 — 949 — — — — 951 — 962 949 1.850
A-n38-k5 730 (765) — — — (751) — 730 — — — — 733 — 749 730 5.647
A-n39-k5 822 898 — — — 894 — 822 — — — — 828 — — 822 2.744
A-n39-k6 831 861 — — — 848 — 831 — — — — 835 — 856 831 2.462
A-n44-k6 937 (974) — — — (985) — 937 — — — 941 938 — 957 937 26.148
A-n45-k6 944 (1005) — — — 955 — 944 — — — 948 944 — 991 944 16.501
A-n45-k7 1146 1200 — — — 1178 — 1146 — — — — 1146 — 1173 1146 12.702
A-n46-k7 914 940 — — — 934 914 914 914 — 921 914 917 914 946 914 8.515
A-n48-k7 1073 1110 — — — 1102 — 1073 — — — 1073 1074 — 1113 1073 29.267
A-n53-k7 1010 1098 — — — 1062 — 1017 — — — 1010 1020 — — 1010 34.585
A-n54-k7 1167 1199 — — — 1174 — 1172 — — — — 1171 — — *1167 6.698
A-n55-k9 1073 1098 — — — 1102 — 1073 — — — — 1074 — 1095 1073 26.444
A-n60-k9 1354 1416 — — — 1372 1354 1358 1355 — 1368 — 1367 1354 1420 1354 68.984
A-n61-k9 1034 (1099) — — — (1045) — 1038 — — — — 1040 — 1100 *1034 50.631
A-n62-k8 1288 1346 — — — 1341 — 1288 — — — — 1316 — 1359 1298 14.495
A-n63-k9 1616 (1684) — — — 1648 — 1627 — — — — 1636 — 1712 *1616 12.579
A-n63-k10 1314 1352 — — — 1356 — 1322 — — — — 1322 — 1386 *1314 39.647
A-n64-k9 1401 (1489) — — — 1441 — 1410 — — — — 1424 — 1499 1415 41.513
A-n65-k9 1174 (1230) — — — 1194 — 1177 — — — — 1189 — 1223 *1174 14.670
A-n69-k9 1159 1206 — — — 1179 — 1163 — — — — 1174 — 1207 *1159 95.858
A-n80-k10 1763 1859 — — — 1810 — 1780 — — — — 1794 — 1866 *1772 97.353
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Table 3 (Cont.).

Instance Optimal CW NMP XK ML AÖ CYW GN AK BHK GPV GGW H KS NJK ICW

solution Solution Time (s)

B-n31-k5 672 677 — — — 673 — 672 — — — — 676 — 677 672 1.267
B-n34-k5 788 794 — — — 788 — 788 — — — — 789 — 802 788 2.393
B-n35-k5 955 978 — — — 975 955 955 955 — 955 — 956 955 962 955 3.076
B-n38-k6 805 837 — — — 820 — 805 — — — — 807 — 817 805 10.180
B-n39-k5 549 564 — — — 552 — 549 — — — — 553 — 575 549 2.685
B-n41-k6 829 (896) — — — 869 — 829 — — — 839 834 — 843 829 9.615
B-n43-k6 742 777 — — — 752 — 742 — — — 742 746 — 746 742 6.544
B-n44-k7 909 936 — — — 932 — 909 — — — 909 914 — 942 909 3.182
B-n45-k5 751 754 — — — 751 751 751 751 — 754 — 753 751 797 751 5.207
B-n45-k6 678 (723) — — — (742) — 678 — — — — 681 — 732 678 22.088
B-n50-k7 741 745 — — — 746 — 741 — — — 741 744 — 779 741 3.605
B-n50-k8 1312 1356 — — — 1381 — 1318 — — — — 1317 — 1349 *1312 16.914
B-n52-k7 747 761 — — — 754 — 747 — — — 747 749 — 758 751 19.436
B-n56-k7 707 727 — — — 718 — 710 — — — 707 712 — 726 707 9.141
B-n57-k9 1598 1652 — — — 1616 — 1599 — — — — 1605 — 1642 *1598 16.936
B-n64-k9 861 (915) — — — (924) — 864 — — — 884 870 — 1161 *861 26.186
B-n66-k9 1316 (1419) — — — 1354 — — — — — — 1328 — 1363 *1320 71.090
B-n67-k10 1032 (1095) — — — 1107 — 1037 — — — — 1041 — 1080 *1032 56.309
B-n68-k9 1272 1311 — — — 1309 1272 1275 1274 — 1281 — 1287 1275 1308 1281 22.333
B-n78-k10 1221 1259 — — — 1255 1239 1260 1223 — — — 1227 1223 1268 1238 162.953

P-n16-k8 450 (478) — — — (472) — 450 — — — — 451 — 513 450 0.544
P-n19-k2 212 237 — — — (219) — 212 — — — — 212 — 219 212 0.780
P-n20-k2 216 234 — — — 247 — 216 — 218 — — 217 — 217 216 0.655
P-n21-k2 211 236 — — — 233 — 211 — — — — 212 — 211 211 0.665
P-n22-k2 216 240 — — — 234 — 216 — — — — 217 — 216 216 0.714
P-n22-k8 603 (591) — — — (590) — 603 — — — — (588) — (560) 603 5.417
P-n23-k8 529 (537) — — — (537) — 529 — — — — 531 — 554 529 8.450
P-n40-k5 458 516 — — — 484 — 458 — — — — 461 — 467 458 2.425
P-n45-k5 510 569 — — — 519 — 510 — 510 — — 512 — — 510 18.135
P-n50-k7 554 593 — — — 578 — 554 — — — — 559 — — 554 4.500
P-n50-k8 631 (670) — — — (644) — 643 — — — — 637 — — *631 13.196
P-n50-k10 696 (735) — — — (708) — 696 — — — — 700 — — 696 7.392
P-n51-k10 741 (786) — — — 754 — 741 — 743 — — 749 — — 741 21.023
P-n55-k7 568 617 — — — 586 — 568 — — — — 573 — — 568 10.422
P-n55-k8 576 628 — — — 589 — — — — — — 580 — — *576 8.646
P-n55-k10 694 (734) — — — 709 — 698 — — — — 699 — — *697 7.940
P-n60-k10 744 814 — — — 799 — 744 — — — — 752 — — 744 46.106
P-n60-k15 968 (1013) — — — 1003 — 968 — — — — 980 — — 968 10.809
P-n65-k10 792 848 — — — — — 800 — — — — 805 — — *792 77.789
P-n70-k10 827 (892) — — — 848 — 827 — — — — 845 — — 827 61.272
P-n76-k4 593 684 — — — (638) 602 593 594 — 610 — 608 594 612 597 75.559
P-n76-k5 627 705 — — — 678 — 627 — — — — 639 — — 627 17.570
P-n101-k4 681 754 — — — 708 694 687 683 — — — 697 683 715 684 98.591

E-n22-k4 375 388 — — — 375 — 375 — — — — 375 — 375 375 0.474
E-n23-k3 569 621 — — — 574 — 569 — — — — (568) — 569 569 0.501
E-n30-k3 534 (532) — — — — 534 534 534 — 534 — (505) 534 543 534 5.726
E-n33-k4 835 841 — — — 841 — 835 — — — — 837 — 852 835 1.603
E-n51-k5 521 (582) — — 521 — 528 521 521 — 522 521 524 521 532 521 9.931
E-n76-k7 682 733 690 685 — 703 688 690 682 — — — 696 687 703 686 53.178
E-n76-k8 735 787 739 736 — 772 — 738 — — — — 743 — 746 742 87.349
E-n76-k10 830 903 — — 877 (854) — 867 — — — — 846 — 907 *839 70.115
E-n76-k14 1021 (1048) 1042 1023 — (1038) — 1032 — — — — 1034 — 1072 1027 50.207
E-n101-k8 817 879 — — 845 853 — 830 — — — — 831 — 850 *821 198.335
E-n101-k14 1071 1130 — 1080 — 1120 — 1099 — — — — 1102 — 1152 1084 135.074

F-n45-k4 721 737 — — — — — — — — — — 723 — 750 *721 3.856
F-n72-k4 237 (253) — — — — 244 — 237 — 253 — 241 237 241 237 75.613
F-n135-k7 1162 1201 — — — — 1215 — 1162 — — — 1169 1170 1221 1162 325.277

Bold indicates the optimal solution was obtained.
* indicates the obtained solution beats the others.

(number) indicates the infeasible solution (the number of available vehicles is inadequate).

tion. The greatest improvements of these values are,
respectively, presented in top three instances including
P-n76-k4 (−14.6%), P-n40-k5 (−12.7%), and P-n76-
k5 (−12.4%). We can conclude that the problems
which have the features like clustered customers can
be solved by CW better than the problems which have
the features of uniformly and not uniformly dispersed
customers. In addition, the results show that ICW can
significantly solve both above-mentioned problems to

obtain optimal or near optimal solutions.
Another finding from Table 3 is the infeasible

solutions produced by CW and ECW in which the
number of available vehicles is inadequate. This find-
ing is referred to Vigo39 that CW does not allow for
the control of the number of routes of final solution.
The solution found for a given instance can, in fact,
require more than k routes to serve all the customers,
hence being infeasible.
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Fig. 3 The example of our approach works.
(a) Iteration 1 (Cost=132)
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Initial solution by CW

(b) Iteration 2 (Cost=125)
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Improved solution by ICW

(c) Iteration 7 (Cost=123)
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Final solution by ICW

The advantages and performance analysis of ICW

This paper successfully demonstrates the clear advan-
tages of ICW which can improve the most recent CW
solutions (Gaskell40, Yellow41, Paessens42, Altınel
and Öncan43, Battarra et al44, Corominas et al45)
for five well-known datasets of CVRP. Moreover,
we observe that ICW also obtains optimal solutions
in some instances. We attribute this success to two
key factors. First, the savings list ranking based on
tournament and roulette wheel selections provides a
powerful classification mechanism. Second, the new
savings list replacement, when the solution obtained
from current savings list is better than the previous
one, provides an effective enhancement to locate a
new better solution. In order to illustrate the works
of our algorithm, we give an example in Fig. 3 which
is a case of eight customers with two vehicles and each
vehicle has a capacity of four units. ICW can start with
any feasible or infeasible solution. We use CW to pro-
duce an initial solution as shown in Fig. 3a, and then
our approach inside the ICW mechanism is executed
to improve the solution which occurs in two cases
composed of intra- and inter-route neighbourhoods as
shown in Fig. 3b and 3c. In particular, some vehicles
in 28 problems have more than ten customers as fol-
lows: 11 customers (A-n37-k5, A-n38-k5, A-n53-k7,
B-n39-k5, B-n50-k7, B-n52-k7, B-n56-k7, B-n66-k9,
B-n68-k9, B-n78-k10, P-n21-k2, P-n22-k2, P-n45-k5,
P-n55-k7, E-n51-k5), 13 customers (A-n64-k9), 14
customers (A-n62-k8, A-n80-k10, E-n23-k3, E-n30-
k3, E-n33-k4, E-n76-k7), 16 customers (P-n76-k5),
19 customers (F-n45-k4), 22 customers (P-n76-k4),
24 customers (F-n72-k4), 29 customers (P-n101-k4),
and 41 customers (F-n135-k7). It is shown that our
algorithm exhaustively explored the solution spaces,
and can obtain the optimal or near optimal solutions
alone without any local search method like 2-opt,
3-opt, and others.

In Table 4, we have reported the experiment of our
results by ICW in every 2500-iteration that influences

Table 4 The experiment of our results by ICW.

Instance 2.5 K 5 K 7.5 K 10 K F L

A-n32-k5 3 0 0 0 2 13
A-n33-k5 4 0 0 0 4 31
A-n33-k6 6 0 0 0 2 170
A-n34-k5 9 0 0 0 2 799
A-n36-k5 3 0 0 0 28 169
A-n37-k5 5 0 0 0 12 1053
A-n37-k6 1 0 0 0 7 7
A-n38-k5 8 0 0 0 18 2081
A-n39-k5 7 0 0 0 2 374
A-n39-k6 8 0 0 0 2 270
A-n44-k6 4 2 3 1 4 9490
A-n45-k6 14 1 0 0 101 4820
A-n45-k7 11 2 0 0 3 3360
A-n46-k7 5 0 0 0 87 1878
A-n48-k7 5 1 5 1 17 7602
A-n53-k7 9 2 1 0 2 6787
A-n54-k7 8 0 0 0 2 392
A-n55-k9 4 6 0 0 97 4441
A-n60-k9 7 2 4 2 3 9522
A-n61-k9 10 1 2 0 3 5647
A-n62-k8 11 0 0 0 7 909
A-n63-k9 8 7 0 0 2 4045
A-n63-k10 5 0 0 0 3 630
A-n64-k9 8 8 0 0 4 3995
A-n65-k9 18 0 0 0 10 815
A-n69-k9 12 1 1 2 23 8899
A-n80-k10 15 6 0 0 2 4464

B-n31-k5 1 0 0 0 29 29
B-n34-k5 2 0 0 0 361 643
B-n35-k5 6 0 0 0 6 1038
B-n38-k6 5 11 0 0 10 4475
B-n39-k5 5 0 0 0 26 339
B-n41-k6 10 4 0 0 4 3186
B-n43-k6 6 0 0 0 2 1514
B-n44-k7 4 0 0 0 5 161
B-n45-k5 4 0 0 0 96 925
B-n45-k6 5 5 0 0 37 4961
B-n50-k7 3 0 0 0 6 35
B-n50-k8 12 1 0 0 40 3305
B-n52-k7 9 2 0 0 4 3644
B-n56-k7 4 0 0 0 25 722
B-n57-k9 14 0 0 0 14 1966
B-n64-k9 14 0 0 0 4 490
B-n66-k9 15 6 1 0 2 6778
B-n67-k10 8 1 0 0 4 4966
B-n68-k9 18 0 0 0 10 1151
B-n78-k10 7 0 5 5 85 9547

our approach types of behaviour. In our algorithm,
each iteration is finished in just a few milliseconds.
As expected, the largest number of improvements is
found at the beginning (1–2500 iterations). In some
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Table 4 (Cont.).

Instance 2.5 K 5 K 7.5 K 10 K F L

P-n16-k8 2 0 0 0 6 7
P-n19-k2 4 0 0 0 4 224
P-n20-k2 2 0 0 0 10 16
P-n21-k2 2 0 0 0 4 8
P-n22-k2 5 0 0 0 5 31
P-n22-k8 11 0 0 0 2 12
P-n23-k8 4 0 0 0 17 72
P-n40-k5 7 0 0 0 2 198
P-n45-k5 10 1 1 0 2 5890
P-n50-k7 6 0 0 0 5 285
P-n50-k8 9 0 0 0 3 1866
P-n50-k10 8 0 0 0 2 986
P-n51-k10 8 5 0 0 8 4456
P-n55-k7 13 0 0 0 2 1278
P-n55-k8 7 0 0 0 4 878
P-n55-k10 10 0 0 0 6 701
P-n60-k10 15 4 1 0 2 6572
P-n60-k15 13 0 0 0 2 745
P-n65-k10 9 4 1 2 3 9444
P-n70-k10 9 4 1 0 2 5131
P-n76-k4 8 3 0 0 15 4822
P-n76-k5 10 0 0 0 5 343
P-n101-k4 14 1 0 0 3 3181

E-n22-k4 1 0 0 0 2 2
E-n23-k3 1 0 0 0 2 2
E-n30-k3 20 0 0 0 3 1946
E-n33-k4 4 0 0 0 21 803
E-n51-k5 13 2 0 0 3 2988
E-n76-k7 10 2 1 0 22 5104
E-n76-k8 11 2 3 2 13 9185
E-n76-k10 15 7 3 0 2 6961
E-n76-k14 8 1 0 0 97 4102
E-n101-k8 13 3 1 0 10 7467
E-n101-k14 9 3 0 0 9 4708

F-n45-k4 9 0 0 0 3 401
F-n72-k4 6 2 2 0 110 7269
F-n135-k7 17 2 7 1 5 9833

2.5 K: Number of improvements between 1 and 2500
iterations. 5 K: Number of improvements between 2501
and 5000 iterations. 7.5 K: Number of improvements
between 5001 and 7500 iterations. 10 K: Number of
improvements between 7501 and 10 000 iterations.
F: Iteration number of the first improvement.
L: Iteration number of the last improvement.

problems, improvements are obtained up to 10 000
iterations. Moreover, ICW can provide optimal solu-
tion in just some 10 iterations according to E-n22-k4,
E-n23-k3, A-n37-k6, P-n16-k8, P-n21-k2, P-n22-k8,
A-n32-k5, P-n20-k2, B-n31-k5, A-n33-k5, P-n22-k2,
B-n50-k7, and P-n23-k8 problems (2, 2, 7, 7, 8, 12,

13, 16, 29, 31, 31, 35, and 72 iterations, respectively),
which takes only a few seconds to run.

CONCLUSIONS

In this paper, we presented a new approach called
the improved Clarke and Wright savings algorithm
(ICW) to solve the capacitated vehicle routing prob-
lem (CVRP). It combines the Clarke and Wright
savings algorithm with tournament and roulette wheel
selection operators. We also performed experiments
using five well-known datasets of CVRP (composed
of 84 instances) obtained from literature and com-
pared them with the optimal solutions. Our algorithm
is competitive or outperforms recent heuristics and
metaheuristics on integer distance. Moreover, the
numerical results show that our algorithm also gets
small average percentage deviations when compared
with the optimal one (0.14%). Furthermore, our solu-
tions outperform Clarke and Wright11’s solutions and
Altınel and Öncan43’s solution in all directions and
generate the optimal solutions in 81% of all instances
(68 out of 84).
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