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ABSTRACT: This paper proposes a new wavelet-based shrinkage function for 1D signal noise reduction. This shrinkage
function adopts the intrascale correlations between wavelet coefficients and exploits Stein’s unbiased risk estimator to
achieve the optimal parameter. Unlike the methods based upon Bayes estimators, the proposed method does not use any
prior hypotheses on wavelet coefficients. Experiments performed on simulated signals clearly indicate that our method
outperforms conventional noise reduction methods in the sense of the signal-to-noise ratio.
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INTRODUCTION

Many real-world signals are often corrupted by addi-
tive noise due to imperfect acquisition and transmis-
sion. Hence, noise reduction is an essential step before
signal analysis. The major goal of noise reduction
is to restore the original signals from noisy mea-
surements. The wavelet transform has been shown
to be a powerful tool for noise reduction due to its
capability of sparse representation1. A wavelet-based
scheme via hard shrinkage and soft shrinkage was
pioneered by Donoho and Johnstone2, 3. Indeed, the
wavelet transform concentrates the energies of most
signals of interest in a few coefficients, while the
power of the noise is uniformly spread throughout all
the coefficients4. Wavelet shrinkage is therefore the
most straightforward way to distinguish the signals
of interest from noise. The basic idea of wavelet
shrinkage is to perform wavelet decomposition on
the noisy signal, then estimate the noise-free wavelet
coefficients according to some shrinkage rule, and
finally reconstruct the restored signal by performing
the inverse wavelet transform5.

A great number of wavelet shrinkage methods
based on Bayesian frameworks have been developed
in the literature. Vidakovic presented a nonlin-
ear shrinkage by coherent Bayesian inference in the
wavelet domain6. Chang et al proposed an adaptive
shrinkage method by using a generalized Gaussian

distribution as the prior model7. In Ref. 8, Sendur
and Selesnick developed a bivariate shrinkage method
which adopts a non-Gaussian bivariate distribution
to model wavelet coefficients. A shrinkage method
based on a Gaussian scale mixture model was pro-
posed by Portilla et al9. Cho and Bui exploited
a multivariate generalized Gaussian distribution to
model the dependency between wavelet coefficients10.

The performance of the aforementioned shrinkage
methods greatly depends on the effectiveness of the
prior model of the wavelet coefficients. Recently,
Luisier et al introduced an efficient method for noise
reduction derived by the minimization of Stein’s un-
biased risk estimate (SURE)11. Unlike the methods
based upon Bayes estimators, this method avoids any
prior hypotheses on the noise-free signal. However, it
does not consider the intrascale correlations between
wavelet coefficients. In order to use the intrascale de-
pendencies of wavelet coefficients to improve the per-
formance of the noise reduction algorithm, we present
an effective intrascale wavelet shrinkage method. Ex-
perimental results show that the restored signals by the
proposed method can obtain a higher signal-to-noise
ratio (SNR) than some existing methods.

SHORT REVIEW OF WAVELET SHRINKAGE

Assume the noisy signal y = (yi)i∈[1,N ] is given by

y = x + n (1)
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where x = (xi)i∈[1,N ] is the noise-free signal and
n = (ni)i∈[1,N ] is Gaussian white noise with indepen-
dent identical distributions N(0, σ2

n). In the wavelet
domain, the noisy signal can be represented by

w = u + v (2)

where w = (wi)i∈[1,N ] is the noisy wavelet coef-
ficients vector, and u = (ui)i∈[1,N ] represents the
noise-free wavelet coefficients vector corrupted by the
noise coefficients vector v = (vi)i∈[1,N ]. The goal of
noise reduction is to obtain an estimate û of the noise-
free wavelet coefficients vector u by using a wavelet
shrinkage function θ(·).

Many shrinkage functions have been developed
in the literature. The two most popular functions are
the hard and the soft shrinkage functions3. The hard
shrinkage function (HSF) is defined as

θh(wi) =

{
wi, if |wi| > λ,

0, otherwise,
(3)

and the soft shrinkage function (SSF) is defined as

θs(wi) =

{
sgn(wi)(|wi| − λ), if |wi| > λ,

0 otherwise,
(4)

where λ = σ
√

2 logN . Obviously, as N → +∞, the
threshold λ increases, and as N → 0, the threshold λ
decreases, which is undesirable for the hard and the
soft shrinkage functions. Luisier et al proposed an
SURE-based shrinkage function11 which is defined as

θSURE(wi) =

K∑
k=1

akϕk(wi) (5)

where ak(k ∈ [1,K]) are the unknown parameters
and ϕk(wi) = wi exp(−(k − 1)w2

i /12σ2
n). However,

the shrinkage function θSURE(·) does not consider the
intrascale correlations between wavelet coefficients
which can be used to further improve the performance
of the noise reduction algorithm. Moreover, the
computation time can be reduced by decreasing the
number of parameters ak. In the following section, we
therefore propose a simple and effective SURE-based
intrascale shrinkage method which exploits these cor-
relations and decreases the number of unknown pa-
rameters.

PROPOSED SURE-BASED INTRASCALE
SHRINKAGE

We use the averaged magnitude of the neighbouring
coefficients to quantify the intrascale correlations be-

tween wavelet coefficients which can be expressed by

ci =
1

2M

i+M∑
j=i−M,j 6=i

|wj | (6)

where 2M is the number of neighbouring coefficients.
In practice, it is sufficient to set M = 2. In the fol-
lowing section, the impact of M on the performance
of the proposed method is discussed. In order to use
the intrascale correlation coefficient ci, we introduce
the following shrinkage function

θnew(wi) = wi + aµ(ci)µ(wi)wi (7)

where a is the unknown parameter and µ(x) =
exp(−x2/12σ2

n). This shrinkage function can be
regarded as a modified version of θSURE(·) by de-
creasing the number of parameters ak and using the
intrascale correlations between wavelet coefficients.
The function µ(x) is a simplified version of ϕk(x).

The (7) is our proposed intrascale shrinkage func-
tion which contains two unknown parameters σn and
a. In Ref. 12, a robust estimate of σn is given by

σn =
MAD

0.6745

√
2p

2p+ 1
(8)

where MAD is the median absolute deviation of the
finest wavelet coefficients, and p is the number of
vanishing moments of the wavelet transform. For
fixed σn, we can obtain the optimal estimate of a by
minimizing the mean squared error (MSE), i.e.,

â = arg min
a

1

N

N∑
i=1

|θnew(wi)− ui|2. (9)

In practice, however, we do not have access to the
noise-free wavelet coefficient ui. Fortunately, the
SURE principle proposed by Stein overcomes this
difficulty. This can be expressed by the following
theorem.

Theorem 1 Let θ : R → R be a (weakly) differ-
entiable function that is finite at infinity. Then the
random variable

ε =
1

N

N∑
i=1

(θ(wi)
2 − 2wiθ(wi) + 2σ2

nθ
′
(wi))

+
1

N

N∑
i=1

u2i (10)

is an unbiased estimator of the MSE, i.e.,

E{ε} = E

{
1

N

N∑
i=1

|θ(wi)− ui|2
}

(11)

where E{} is the expectation operator.
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Due to the fact that θnew(x) is differentiable, we
can apply Theorem 1 to estimate a by performing
differentiation over the parameter a in (7) as follows

∂ε

∂a
=

2

N

N∑
i=1

(
θnew(wi)µ(ci)µ(wi)wi

+ σ2
nµ(ci)

(
µ(wi) + wiµ

′(wi)
))

= 0. (12)

It is equivalent to

N∑
i=1

(
aµ2(ci)µ

2(wi)w
2
i

+ σ2
nµ(ci)

(
µ(wi) + wiµ

′(wi)
))

= 0. (13)

So the parameter a can be solved by

a =
−σ2

n

∑N
i=1(µ(ci)µ(wi) + wiµ(ci)µ

′(wi))∑N
i=1 µ

2(ci)µ2(wi)w2
i

.

(14)

EXPERIMENTAL RESULTS

In our simulations, we use the standard test sig-
nals Piece-Polynomial, Blocks, Bumps, and Doppler,
which are generated by WAVELAB available at
www-stat.stanford.edu/wavelab. The noisy signals
are created by adding Gaussian white noise with
different noise levels to the signals. The proposed
method is evaluated by comparing it with some most
commonly used shrinkage functions, namely, HSF
(3), Luisier’s SURE (LSURE) (5), and Han’s SSF
(HSSF)13. For the sake of evaluating the performance
of these methods, the signal-to-noise ratio (SNR) is
used as the quantitative criterion. It is defined by

SNR = 10 log10

( ∑N
i=1 |xi − x̄|2∑N
i=1 |xi − x̂i|2

)
, (15)

where x̄ and x̂i are the mean value and the estimate
of the signal xi, respectively. In all comparisons,
we use the stationary Daubechies wavelet with four
vanishing moments over three decomposition levels,
which means p = 4 in (8). All algorithms are fully
implemented in Matlab 7.0, and in order to facilitate
the reproducibility of our work, the source code of the
proposed method is available on request.

Fig. 1 shows the visual quality of the various algo-
rithms for the 1D signal Piece-Polynomial. As can be
observed, the proposed method exhibits less distortion
than the others. Table 1 displays the SNR results
generated by all algorithms for the test signals. Our

Table 1 Comparison of simulation results on test signals in
terms of SNR (dB).

Signal Noisy HSF HSSF LSURE Ours
34.05 38.11 31.24 38.85 40.68

Piece-Po- 28.03 31.85 28.49 33.06 34.87
lynomial 24.51 28.52 26.45 29.41 31.40

14.05 17.30 18.89 18.97 20.81
8.03 12.72 13.48 13.70 15.32

27.80 29.91 19.57 31.45 33.92
19.84 22.40 17.23 24.11 26.29

Blocks 13.82 17.05 15.51 18.59 20.19
10.30 14.32 14.26 15.44 16.80

7.80 11.42 13.46 13.03 14.73
37.42 40.58 16.50 40.75 43.09

Bumps 31.40 34.09 14.80 35.45 37.49
27.88 31.25 13.82 32.29 34.23
17.42 19.60 10.82 21.83 24.38

7.88 11.50 7.42 12.75 15.37
29.33 33.05 17.34 34.53 36.20

Doppler 23.31 27.92 15.58 28.86 30.12
19.79 24.57 14.72 25.65 26.77
13.77 19.84 13.51 20.83 21.32

9.33 15.97 12.47 17.09 17.20

method clearly outperforms HSF, HSSF and LSURE
in terms of SNR, and the average gains are nearly
3.0 dB, 10.3 dB and 1.7 dB, respectively. In order to
illustrate the impact of the parameter M , we perform
our method with different values of M for the signal
Piece-Polynomial. Fig. 2 shows the SNR curve as the
function of the parameter M . We can see that the
optimal SNR value is achieved in M = 2. Therefore,
to get the best performance, the parameter M is set as
2.

DISCUSSION

In this paper, we propose a new noise reduction
method based on the wavelet transform which exploits
the SURE principle to estimate the noise-free wavelet
coefficients and avoids any prior statistical model of
wavelet coefficients. The proposed method gives
better noise reduction than LSURE. Experimental
results show that our method is superior to conven-
tional methods. Since the proposed shrinkage function
θnew(·) is a point processing operator, its computa-
tional complexity is O(1). Hence the complexity
of the proposed method is dominated by the wavelet
transform. In experiments we use the stationary
wavelet which simply eliminates the down-sampling
process in the filter-bank implementation of a wavelet
transform14. For a length-N signal, the stationary
wavelet transform requires O(N logN) operations15.
Thus the computational complexity of the proposed
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Fig. 1 Experimental results. (a) original signal; (b) noisy signal, SNR = 24.51 dB; (c) HSF, SNR = 28.52 dB; (d) HSSF,
SNR = 26.45 dB; (e) LSURE, SNR = 29.41 dB; (f) the proposed method, SNR = 31.40 dB.
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Fig. 2 SNR value as a function of the number M of
neighbouring coefficients.

method is O(N logN).
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