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ABSTRACT: Two test statistics are proposed for detecting outliers that are not extreme on any of the original variables in
multivariate data. The test statistics are derived via principal component analysis and some normal distribution properties.
Moreover, the last few principal components or minor principal components from principal component analysis have an
important role in these simple test statistics. Finally, the tests are applied to a simulated data and the real data of a financial
institution in Thailand as examples. Moreover, a comparative study was carried out using data on milk from Daudin, Duby,
and Trecourt [Statistics, 19, 241].
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INTRODUCTION

Many researchers have proposed definitions for an
outlier with no universally accepted definition. For
example, according to Grubbs1, “an outlying observa-
tion, or outlier, is one that appears to deviate markedly
from other members of the sample in which it occurs”.
For Barnett and Lewis2, an outlier is “an observation
(or subset of observations) which appears to be incon-
sistent with the remainder of that set of data”. How-
ever, in this study, the definition is slightly different;
multivariate outliers are those that deviate from the
usual correlation structure in the p-dimensional space
defined by the variables. A major problem in detecting
outliers in multivariate data is that an observation that
is not extreme in any of the original variables can still
be an outlier, because it does not conform with the
correlation structure of the remainder of the data3.
Suppose that the weights and heights are collected
from a sample of healthy children of ages between
5 and 15 years old; then an observation with weight
and height of 20 kg and 175 cm, respectively, is
not extreme on either the weight or height variables
individually, as 20 kg is a plausible weight for the
youngest children and 175 cm is a plausible height for
the older children. Nevertheless, the combination of
weight and height is virtually impossible, and will be
a clear outlier because it combines a small weight with
a large height. Thus this violates the general pattern of
a positive correlation between the two variables. This
type of outlier is problematic to detect in multivariate
data.

There are several proposed ideas for detecting
outliers in multivariate data. The traditional method
for detection of outliers is known as the Mahalanobis
distance. A large distance may indicate that the corre-
sponding observation is an outlier, but two problems
occur in practice: masking and swamping4. For other
methods, see, for example, Refs. 4–7.

Several methods for detecting outliers in multi-
variate data have been proposed. Among these, prin-
cipal component analysis is an interesting approach
for detecting such outliers which are rather difficult
and uncommon. But our approach uses the last few
principal components to find new test statistics that
can be used to detect this kind of outlier in multivariate
data.

In the following section, the concept of principal
components analysis is given. Then the test statistics
using the last few principal components are derived.
The example of one simulation and two applications
of these test statistics and conclusions are also in-
cluded in the next section.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis or PCA is one of the
key tools in multivariate statistical analysis and is
often used to reduce the dimension of data for easy
exploration and further analysis, such as regression
analysis, clustering and discriminant analysis. It is
concerned with explaining the variance-covariance
structure of a set of variables through a few new
variables. All principal components are particular
linear combinations of the p random variables with

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.355
http://www.scienceasia.org/2011.html
mailto:g4984008@ku.ac.th
www.scienceasia.org


356 ScienceAsia 37 (2011)

three important properties which are:
1. The principal components are uncorrelated.
2. The first principal component has the highest

variance, the second principal component has the
second highest variance, and so on.

3. The total variation in all the principal compo-
nents combined is equal to the total variation in the
original variables.

The principal components are computed from an
eigenanalysis of the covariance matrix or the corre-
lation matrix, but results from the covariance matrix
and the correlation matrix are usually not the same.
If the variables are measured on scales with widely
different ranges or if the units of measurement are
not commensurate, it is better to perform PCA on the
correlation matrix.

The observations that are outliers with respect
to the first few principal components or the major
principal components usually correspond to outliers
on one or more of the original variables. On the
other hand, the last few principal components or the
minor principal components represent linear functions
of the original variables with the minimal variance.
The minor principal components are sensitive to the
observations that are inconsistent with the correlation
structure of the data, but are not outliers with respect
to the original variables8.

THE NEW TEST STATISTICS

PCA and normal distribution properties have been
applied to the new test statistics. It is assumed that
the data come from a multivariate normal distribution.

Let x =
[
x1 x2 . . . xp

]′
be a random

sample from multivariate normal distribution with
mean vector µ =

[
µ1 µ2 . . . µp

]′
and variance-

covariance matrix

Σ =


σ11 σ12 · · · σ1p
σ21 σ22

...
. . .

...
σp1 σp2 · · · σpp

 .
This p-dimensional normal density is denoted by x ∼
Np(µ,Σ).

In matrix notation, the standardized vector z is

z = (V1/2)−1(x− µ),

where V1/2 is the diagonal standard deviation matrix,
given by

V1/2 =


√
σ11 0 · · · 0
0

√
σ22

...
. . .

...
0 0 · · · √σpp

 .

Clearly, E(z) = 0 and Cov(z) = ρ, where ρ is
the correlation matrix of the standardized vector. That
is to say, z is distributed asNp(0,ρ), or z ∼ Np(0,ρ).

Principal components depend solely on the
variance-covariance matrix or the correlation matrix
of the random vector. Their calculation does not re-
quire a multivariate normal assumption. On the other
hand, principal components derived from multivariate
normal populations are useful for inference.

As ρ is the variance-covariance matrix associated
with the random vector z, and ρ has the eigenvalue-
eigenvector pairs (λ1,α1), (λ2,α2), . . . , (λp,αp),
where λ1 > λ2 > . . . > λp > 0, then the ith principal
component is given by

yi = α′iz = αi1z1 +αi2z2 + . . .+αipzp

i = 1, 2, . . ., p

with these choices:

Var(yi) = α′iραi = λi i = 1, 2, . . . , p

Cov(yi, yk) = α′iραk = 0 i 6= k.

The eigenvectors of ρ are orthogonal if all the
eigenvalues λ1, λ2, . . . , λp are distinct. In practice,
the eigenvalues of the correlation matrix are all dif-
ferent, and thus none of the terms is zero3.

Therefore, for any two eigenvectors αi and αk,
α′iαk = 0, i 6= k.

Since ραk = λkαk, premultiplication by α′i
gives Cov(yi, yk) = α′iραk = α′iλkαk = 0, i 6= k.

In matrix notation,

y = αz,

where y ∼ Np(0,ρ).
Consider

α =


α11 α12 · · · α1p

α21 α22

...
. . .

...
αp1 αp2 · · · αpp

 .
α is a constant p × p matrix of rank p, the p linear
combinations in αz have a multivariate normal distri-
bution.

From properties of multivariate normal random
variables, if z ∼ Np(0,ρ), then αz ∼ Np(0,αρα′)
or y ∼ Np(0,αρα′)9.

But,

Var(y) = λi i = 1, 2, . . . , p

Cov(yi, yk) = 0 i 6= k.
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Substituting,

αρα′ =


λ1 0 · · · 0
0 λ2
...

. . .
...

0 0 · · · λp

 .
The variance-covariance matrix of y is defined as

Σy =


λ1 0 · · · 0
0 λ2
...

. . .
...

0 0 · · · λp

 .
If yi and yk are jointly multivariate normal and if
Cov(yi, yk) = 0, then yi and yk are independent10.

Any subset of the y’s in y has a multivariate
normal distribution, with mean vector consisting of
the corresponding submatrix of Σy .

From normality of marginal distribution: if y ∼
Np(0,Σy), each yi in y has the univariate normal
distribution, then yi ∼ N(0, λi), i = 1, 2, . . . , p.

The last two principal components are yp−1 and
yp, respectively.

A possible method for detecting outliers is to
combine information from the last two principal com-
ponents in order to form a new test statistic.

Since

yi ∼ N(0, λi) i = 1, 2, . . . , p, then
yp−1 ∼ N(0, λp−1) and
yp ∼ N(0, λp).

From the distribution of the sum of two subvec-
tors: if yp−1 and yp are the same size and independent,
then yp−1 + yp is N(0, λp−1 + λp).

Consequently,

R2
2z =

(yp−1 + yp)
2

λp−1 + λp
∼ χ2

(1). (1)

Similarly, the test statistic using the last three
principal components can be shown as

R2
3z =

(yp−2 + yp−1 + yp)
2

λp−2 + λp−1 + λp
∼ χ2

(1). (2)

In conclusion, R2
2z and R2

3z are the test statistics
using minor principal components or the last few prin-
cipal components in detecting multivariate outliers
that are observations which are not extreme on any
of the original variables, but may be outliers as they
do not conform with the correlation structure of the
remainder of the data when the data are multivariate
normal distribution.

-2.5 

-2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

PC2 

PC1 

Fig. 1 Plot of the observations with respect to the first two
principal components of the simulated data.
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Fig. 2 Plot of the observations with respect to the last two
principal components of the simulated data.

EXAMPLES

This section demonstrates three examples which show
that different test statistics may indicate different po-
tential outliers. If the same observations are identified
by most distinct test statistics, they will be classified
as clear outliers. However, for the observations that
are detected to be outliers only by some test statistics,
they may be other types of outliers, for instance they
may be extreme in any variables. Therefore, these
observations should be further considered for their
behaviour. The first example, one data set which is
simulated using SAS program, has 35 observations
consisting of 5 variables and the last 5 observations
are outliers that are not apparent with respect to the
original variables. A scatter plot of pair of the last two
principal components may be useful in identifying this
type of outliers as seen in Fig. 1 and Fig. 2. The values
of R2

2z and R2
3z in Table 1, defined in equations (1)

and (2), respectively, can detect these outliers clearly,
but they cannot be seen by the first two principal
components.

Therefore the simulation result in this example
indicates that R2

2z and R2
3z are efficient as they can

be used to detect the outliers which are normal as a
single variable, as same as observations 31–35.

The next example consists of a set of data for
credit analysis that comes from a financial institution
in Thailand. There are 10 financial variables and 65
observations, where x1 = total assets turnover (time),
x2 = quick ratio, x3 = current ratio, x4 = equity
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Table 1 The values of R2
2z and R2

3z of the potential outliers
of the simulated data.

2 minor principal 3 minor principal
components components

Obs. No. R2
2z Obs. No. R2

3z

31 5.18 31 54.03
32 4.25 32 20.27
33 10.62 33 25.78
34 18.52 34 21.36
35 9.85 35 8.39

Table 2 The values of R2
2z and R2

3z of the potential outliers
of the financial data.

2 minor principal 3 minor principal
components components

Obs. No. R2
2z Obs. No. R2

3z

2 5.61 2 5.55
8 6.27 3 9.51

38 12.30 38 18.81
53 8.12 53 4.34

ratio (time), x5 = gross profit margin (%), x6 = net
profit margin (%), x7 = return on asset ratio (%),
x8 = return on equity ratio (%), x9 = inventory
turnover, and x10 = fixed assets turnover (time). Note
that some variables do not have units. Table 2 gives
the values of R2

2z and R2
3z for the potential outliers on

each statistic.
By examining values of R2

2z and R2
3z for each

observation, it is found that some observations that
may be possible outliers, or the potential outliers of
R2

2z and R2
3z are the same as seen in Table 2 and also

in Fig. 4. Therefore, observations 2, 8, 38, and 53
become extreme by the last few principal components.
The observations contradict the correlation structure
among all ten variables. However, different analyses
may be capable of identifying different potential out-
liers.

Table 3 The observation number of the potential outliers of
the data on milk.

2 minor principal 3 minor principal
components components

R2
2z d22i R2

3z d22i

1 1 1 1
2 2 2 2

41 41 41 41
44 44 44 44

74

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

-5 -3 -1 1 3 5 

PC2 

PC1 

53 

28 

61 

Fig. 3 Plot of the observations with respect to the first two
principal components of the financial data.
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Fig. 4 Plot of the observations with respect to the last two
principal components of the financial data.

Note that when the observations with respect to
the first two principal components are plotted (Fig. 3)
the extreme observations are not the same as in Fig. 4,
except observation 53.

The last example comes from Daudin, Duby, and
Trecourt11 who give data on the composition of 85
containers of milk, on each of which 8 measurements
were made. The variables are y1 = density, y2 = fat
content (g/l), y3 = protein content (g/l), y4 = casein
content (g/l), y5 = cheese dry substance measured in
the factory (g/l), y6 = cheese dry substance measured
in the laboratory (g/l), y7 = milk dry substance
(g/l), and y8 = cheese produced (g/l)12. In order to
compare results of the test statistics from this study
with other test statistics to identify potential outliers
of multivariate outliers using only minor principal
components, the test statistic13 d22i is compared in the
following example. The test statistic is declared by 2
and 3 minor principal components in this case.

d22i =

p∑
k=p−q+1

z2ik
lk
∼ χ2

(q) (3)

where zik is the value of the kth principal component
for the ith observation, lk is the variance of the kth
principal component, q is the number of minor princi-
pal components, and p is the total number of principal
components. Table 3 shows observations which are
detected to be possible outliers in each of the test
statistics with 2 and 3 minor principal components.

Although the set of the four potential outliers are
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the same for R2
2z , R2

3z , and d22i, there is also observa-
tion 74 that can be found to be a possible outlier for d22i
in 3 minor principal components case. This example
demonstrates that the potential outliers from each test
statistics may indicate different observations. It may
be difficult to decide which observations are in fact
the outliers. However, this comparison of the results
of all test statistics shows minor differences. Note
that, according to Ref. 11, there is only one outlier
from the forward plot12, which is observation 69. This
result is not apparent from R2

2z , R2
3z , and d22i, because

observation 69 clearly shows to be the outlier in a
scatter plot between y5 and y6. The set of the potential
outliers from R2

2z , R2
3z , and d22i cannot be obviously

seen by each variable because it is not apparent on a
plot of one or two variables but it does not conform
with the correlation structure of the data. Therefore,
outliers detected by the forward search are different
from those concerned in this study.

Certainly, it is possible that the outliers which
are detectable from a plot of the first few principal
components are those which inflate variances and
covariances14. Similarly, an observation that inflates
a covariance or correlation between two variables
will often be extreme with respect to one or both
of these variables looked at individually. It is not
an outlier with respect to the correlation structure.
This observation would appear as an outlier on one
of the first few principal components. Besides, one
obvious question which is raised in this example is
how many outliers are there? The answer is, surely,
unknown because nobody can know previously which
observations are the outliers. As a result, our test
statistics can be used to identify the potential outliers
with respect to the correlation structure as well, as
we cannot detect these outliers from other methods,
such as calculating a statistical distance and graphical
methods.

CONCLUSIONS

In this paper, the new test statistics that can be used to
detect outliers using minor principal components are
proposed. The test statistics are formed based on PCA
and basic normal distribution properties. The outliers
that do not conform with the correlation structure of
the remainder of the data will be detected by using the
last few principal component. Furthermore, the test
statistics from this study are slightly different from the
test statistic d22i, which also comes from Chi-square
distribution, but has different degrees of freedom.
Thus R2

2z and R2
3z can be used easily for detecting

outliers in multivariate data. They can be alternative
test statistics to detect outlier in multivariate data

for statisticians. However, R2
2z and R2

3z cannot be
used to tell which outliers have a large effect or are
“influential”, because not every outlier needs to be
influential. A recommendation for further study is to
use other approaches to find test statistics which can
deal with outliers that are different from the normal
correlation structure of the data.
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