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ABSTRACT: Features inside living cells are complex and crowded, and in such complex environments diffusion processes
exhibit three different behaviours; Fickian diffusion, subdiffusion, and superdiffusion. This study aims to investigate the
phenomenon of subdiffusion, which occurs when there is molecular crowding, by proposing a new continuous spatial
model involving fractional differential equations. The anomalous diffusion parameter is introduced to represent the
spatial crowdedness in the media. The equations are solved numerically using an implicit fractional trapezoidal method.
Simulations applied to the particular case of the Michaelis-Menten reaction demonstrate that, as a result of anomalous
diffusion or a crowded situation in low dimensional biological media, kinetics are of the fractal type. The model also predicts

that increasing obstacle density results in reactant segregation, which is similar to that observed in in vivo conditions in cells.
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INTRODUCTION

An important subject of interest is how we can under-
stand the dynamics of cellular processes taking place
on the cell membrane or within the cell. The inside
of living cells can be characterized as disordered and
‘crowded’ and, as a consequence of the fractal kinetic
type of behaviour of its molecules, it fails to obey the
concepts of classical behaviour!. For instance, the
high molecular crowding exhibited inside living cells
has been shown to have significant impact on reaction
rates and the thermodynamic properties of molecules
within the cell?. It also results in the diffusion at the
cell membrane being not only highly anomalous but
occurring at a slower rate >*.

Modelling cellular processes based on the Law
of Mass Action has proved to be excellent in simple,
homogeneous, in vitro conditions. However, this law
comes into question when used to describe the dynam-
ics of molecules in more complex situations, such as in
vivo conditions. This is because the law requires free
diffusion and a homogeneous reaction environment,
together with the ability to average together reactant
densities over a large spatial domain in order to form
a predictable picture of the system behaviour .

Two significant extensions to the deterministic
approach model have been made. In the power law
approach’ reactant concentrations are raised to non-

integer powers. However, it fails to describe many
important biochemical effects such as saturation and
sigmoidicity®. Another issue is that this approach has
been proven analytically only for the simplest reac-
tions, and no empirical results based on this approach
extend to more complex systems.

The fractal kinetics approach’ introduces time
dependence to the rate constants. This approach
can be used in fractal environments and non-classical
simulations. However, these fractal-like kinetics have
the problem of a singularity at ¢ = 0, which raises
issues of its validity as a deterministic approach®.

The limitations of these approaches in implemen-
tation, especially in continuous spatial modelling, mo-
tivates this current study into an approach using frac-
tional differential equations (FDEs) and Michaelis-
Menten enzyme kinetics to model the behaviour
of macromolecules in a two-dimensional disordered
medium. It is assumed that the reaction environments
are within the cell membrane because chemical reac-
tions in membrane pores exhibit fractal-like kinetics.
FDEs are used because they have properties that char-
acterize obstacle density parameters. By using these
properties, we can control the presence of obstacles
within the reaction environment by either pure or
anomalous diffusion. We also introduce a numerical
method to solve the FDEs which we refer to as the
implicit fractional trapezoidal method.
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FRACTIONAL REACTION DIFFUSION
EQUATIONS

In the last few decades, the theory of fractional
derivatives has attracted significant attention in vari-
ous areas, such as viscoelasticity®, signal processing®,
biology '>!". In biology, one of its most prominent
uses is in modelling diffusion processes® !, and the
fractional model has been used to describe anomalous
diffusion in complex environments ' 1!,

Traditionally, in order to represent complex pro-
cess at cell membranes, reaction diffusion equations
have been used. The equations can be written as
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in which K is the diffusion coefficient, which is
assumed to be constant, but could be a diagonal matrix
and S is the concentration of species. In the case of
Michaelis-Menten reactions S = (51, S2,.53) where
S1, So, and S5 are the concentrations of enzyme, sub-
strate, and enzyme-substrate complex, respectively.

In a heterogenous medium or medium with
anomalous diffusion, spatial crowding needs to be
taken into account. Thus equation (1) needs to be
modified by adding obstacle parameter densities. In
order to do this, the reaction-diffusion problem is
generalized to a reaction-subdiffusion problem'*. We
have used a fractional dynamic approach and replaced
equation (1) with reaction-subdiffusion equations
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where D, is the Riemann-Liouville derivative op-

erator

11—« _ 1 a K f(S)
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In this reaction-subdiffusion equation, the parameter
« is a measure of the density of obstacles, assumed
to be randomly scattered in the cell membrane. With
increasing obstacles within the system, o approaches
zero, and approaches 1 in the limit of no obstacles in
which case (1) is recovered.

Consider the Michaelis-Menten reaction system
with three molecular species and three reaction chan-
nels

A+Bruc, oA+ B, ot AP

where ki1, ko, k3 are the rate coefficients. If these
reactions take place in a region of size L x L and
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there are obstacles present which inhibit diffusion,
the reaction-diffusion equations are described by the
fractional differential equations

0A

5 = D} *(KV?A — ki AB) + (k2 + k3)C,
oB l—a 2

oC 11—« 2

o =D, (KV C+ k1AB) — (ko + k3)C,

where A, B,C denote concentrations, and K is the
generalized diffusion coefficient. Note that the bi-
molecular reaction is inside the fractional operator,
as bimolecular reactions are inhibited by obstacles
whereas unimolecular reactions are not.

NUMERICAL METHOD

Consider the fractional differential equation of the
form

dijiit) =D} f(y(t)) + g(y(t)), t € [0,T7],
y(0) =yo, yo €R™, @)

where 0 < o < 1. The Caputo fractional derivative is
given by

Lo
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If f(t) is continuous and f’(t) is integrable in the
interval [0, T'], then for every 0 < o < 1 the Riemann-
Liouville and the Caputo fractional derivatives sat-
isfy?

Dief(t) = (5)

il
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A number of authors, e.g., Diethelm et a and
Ford et al'®, consider the numerical solution of so-
called Caputo FDEs that take the form Dyy(t) =
f(y(t)), but here the preferred form is (4), as it is
more naturally allied to problems discussed in this
paper. This form also appears in solving problems in
systems biology arising from the anomalous diffusion
and chemical kinetics of molecular species in crowded
environments %11,

To solve problem (4), we introduce the implicit
fractional trapezoidal method

DI f(t) = D{~“f(t) + = f(0), t>0. (6)
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where h is the time step size. In order to imple-
ment such a method, numerical approximations to the
fractional derivative operator are required. Here, the
approximation by Diethelm et al'” when approximat-
ing the Caputo fractional derivative operator is used.
Hence

ho—1 n

mzcjnf(yj),

Jj=0

D}~ fyn) ~ ®)

where h = T'/n is the integration stepsize, ¢; = jh,
Yn, 1s an approximation to exact solution y(t,,), and

an® ! —n% 4+ (n—1)%, ifj=0,

(n—j+1)% —2(n— )" + (n—j - 1)°,
ifj=1.2,....n—1,

1, if j =n.

Cjn =

We use the method of lines to discretize equations
(3). Space is discretized with mesh points z; =
iAz,y; = jAz,0 < i < m, 0 < j < m, and
Az = L/m. Then
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where A;;, B;;, C;; are approximations to

A(zi,y;,t), B(xi,y;,t), Clzi,y;,t), respectively.
Periodic boundary conditions were used. Values of
K =105, ky = 0.01, ks = 0.02, k3 = 0.03, L =1,
m = 10 and T' = 600 were chosen. The initial values
were chosen randomly from a uniform distribution
U(0,1) and we used h = 0.6.

NUMERICAL RESULTS

The concentrations of enzyme molecules A vary
depending on the level of heterogeneity within the
system (Fig. 1). A significant difference in the con-
centration distribution for o = 0.25 and o = 0.95 can
be seen. The concentration at o = 0.25, 0.5 and 0.75
varies a lot between 0 and 2. At this stage, molecular
diffusion is significantly slowed. The presence of
immobile obstacles or crowding agents may also trap
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Fig. 1 Concentrations of A, B, and C at T = 600 for
various values of a.

the molecules for the some period, producing a longer
diffusion time. As can be seen with @ = 0.95,
in which the system is close to pure diffusion, the
concentration at most points has already reached the
equilibrium value of 1.

As the level of crowdedness in the system in-
creases, particularly for o between 0.25 and 0.75,
it can be seen that concentrations of molecule B
(the substrate) vary a lot between O and 1. At this
stage, molecular diffusion is obstructed by immobile
crowding agents and structures that cause molecules
to become trapped or require them to travel longer
distances before reaching other molecules. For a =
0.95, the concentration distribution is much smoother
and close to zero.

In pure diffusion, the concentration of C (the
complex) will eventually decay to zero. For a = 0.25,
the level of heterogeneity in the system is very high
and the diffusion process is slowed. The concentration
levels fluctuate between 0 and 0.005. For larger «, the
concentrations of C' increase and fluctuate between 0
and 0.01. We also see that concentrations fluctuate
rapidly for o = 0.25,0.5,0.75. It should be pointed
out that a value of @« = 0.25 is not biologically
reasonable, as usually a > 0.5 1.4 but these results are
included to demonstrate the strong crowding effects at
this value.

Fig. 2a shows that as we reduce «, the con-
centration at a given point takes longer to diffuse
away. Fig. 2b and Fig. 2¢ show that the diffusion of
concentration at a point slows as the system becomes
more crowded. On decreasing the heterogeneity in
the system, particularly from o = 0.5 to o« = 0.95,
the concentration at a point nearly reach zero which is
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Fig. 2 Variation of A, B, and C concentrations at (x5, ys)
over time for various values of a.

close to pure diffusion.
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