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ABSTRACT: This study is based on a new approach for an advanced microproduction system or highly flexible production
systems where all necessary production and assembly processes are connected in a very flexible way using autonomous
mobile transport and handling robots. Each robot has to follow its planned paths while avoiding collisions with other robots.
In addition, problem-specific constraints for a defined microproduction system, such as limitations of the velocity and
accelerations of the robots, have to be fulfilled. This paper focuses on a two-level model predictive optimizing approach.
On a global long-term level, simple dynamic models of the robots are used to compute optimal paths under differential
constraints where a safety distance between all robots is achieved. Since many uncertainties and unforeseen events could
occur, all robots also use a nonlinear model predictive control approach on a local real-time level. This control approach
solves the path following and the collision avoidance problems in parallel, while also taking into account differential
constraints of the single robots.
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INTRODUCTION

In a multi-robot system, several mobile autonomous
robots are used to act together to achieve overall com-
mon goals. Possible areas of application are flexible
manufacturing environments, and here, an industrial
example of a flexible microproduction system has
been introduced1. The production of microsystems
such as micromotors, micropumps, microgears, and
microscale optical devices needs special methods,
due to their special requirements and characteristics.
These products most often are produced only in small
quantities with special customer needs. Hence the
entire manufacturing process for miniaturized and
micro-structured parts must be optimized in order to
develop opportunities for cost-effective and flexible
microproduction. During the last few years there has
been considerable progress in new manufacturing or
assembly processes for single microcomponents such
as shafts, toothed wheels, and lenses. However, there
is hardly any solution for the automated production of
overall microproducts from these components. One

Fig. 1 Structure of the proposed microproduction system.

main reason is that microproducts require their own
specialized sequence of manufacturing and assembly
steps and humans still play an important role in the
processes.

This paper focuses on the development of such
a highly flexible automated microproduction system.
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It is assumed that the system includes all necessary
manufacturing and assembly processes in the form of
suitable stationary machine tools as shown in Fig. 1.
In order to form a highly adaptable and reconfigurable
overall microproduction process, these machine tools
will be interconnected by autonomous mobile robots.
The multi-robot transport infrastructure allows for
very flexible and even parallel interconnection of the
different stationary microproduction machine tools. It
is assumed that in the first solution the workpieces
are fixed on palette systems for transport in order to
avoid the handling of extremely small workpieces by
the robots. The autonomous mobile robots have one
main important task which is the transportation of the
palettes in the right sequence between the different
machine tools without any collision, and thus forming
an adaptable and reconfigurable interconnection of
single processes.

Motion planning for mobile robots is one of the
fundamental and most intensively studied robotics
tasks (see, e.g., Refs. 2–6 for overviews). In this
paper, the main contribution is on motion planning
for multiple robots7–11, and the considered obstacles
are dynamic (namely the other robots). An adapted
version of prioritized planning on a global long-term
level, for planning rough collision free paths defined
by waypoints for all the robots, will be applied. This
approach fits well to the underlying transportation
problem: if any robot starts its transportation task, it
can be assumed that the already moving robots have
a higher priority. Therefore, the considered robot
computes its own collision free path with the help
of a model predictive approach taking the already
determined paths of the other prioritized robots as
fixed.

This approach then has to be extended to in-
clude differential constraints. In order to simplify
the algorithms, this approach only considers velocity
constraints on the global long-term planning level
and more detailed differential constraints on the local
real-time control level. For global motion planning,
the velocities of the robots are considered as being
constant but limited between two waypoints. Planning
under differential constraints also has been intensively
studied2. One useful approach is the discretization
of the constraints by using a simplified discrete-time
model of the robotic motion. In this paper, the
result of the global long-term decoupled planning
under simplified differential constraints is a priority
relationship between the robots and a set of collision-
free waypoints for all robots, from the start to the
goal location, with a fixed limited velocity for each
way-segment between two waypoints. However, in

reality, uncertainties and unforeseen events during the
execution of the plans can have a strong influence on
the overall resulting motion of the robots. Problems
of this type are also intensively studied in the litera-
ture2, and solutions are obtained using probabilistic
planning or dynamic re-planning on the global long-
term level. In this contribution, those problems are
not solved on the global long-term planning level, but
are combined with the solution of the path following
problem, and therefore solved on a local, real-time
motion control level. Here, the solution of the long-
term motion planning can be interpreted as a set of
paths that must be followed by the robots with a
‘desired’ velocity on the respective path segments.
If these conditions are perfectly fulfilled, this would
result in collision free paths.

Therefore, all robots are continuously combining
the task of path following with collision avoidance
under detailed differential constraints on the local
real-time motion control level. The main task for each
robot is to follow the specified path with the desired
velocity, while continuously checking for any possible
collision. This is done with the help of the blackboard
and the knowledge about all current locations of
the robots, and therefore, in a collaborative fashion.
The problem of motion control, like path following,
has also been investigated. One promising approach
which motivates the proposed solution is based on
model predictive control12–16 for the path following
or tracking problem17, 18, since it offers a natural way
to include differential constraints. In addition, this
contribution extends a nonlinear model predictive path
following algorithm with collision avoidance to a very
efficient overall approach.

MATERIALS AND METHODS

The multi-robot system and experimental testbed

The proposed microproduction system has some spe-
cial characteristics with respect to the group of mobile
autonomous robots. As a manufacturing facility, it
will be an indoor environment with a defined struc-
ture, i.e., the machine tools and any other objects
are stationary at fixed positions with free flat space
in between for the navigation of the mobile robots.
Since this manufacturing infrastructure is fixed, it is
assumed that a Cartesian map of the environment is
defined and available to each single robot. The only
moving objects within this environment then are the
robots and any human workers.

For the localization of robots and human workers,
a global vision-based positioning system is assumed.
That leads to the advantage that the single robots must
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Fig. 2 The experimental testbed with global positioning
system.

not each be equipped with their own localization sys-
tem like in the simultaneous localization and mapping
problem, based on visual information provided by
camera or laser-scanning systems. In addition, the
moving human workers can be detected outside of
any sensorial range of the robots. For the design of
the positioning system, a network of camera systems
mounted at the top of the manufacturing facility is
assumed, where the single cameras are distributed in
a way that the full environment is covered by the
field of view of these visual sensors. Each camera
is equipped with an image processing system that is
able to detect the actual position and orientation of any
mobile robot and human worker in the respective field
of view (Fig. 2).

In order to uniquely identify the mobile robots,
these are equipped with a distinct visual pattern fixed
on the robot chassis. Each distinct pattern is associ-
ated with a unique ID-number for the identification
of the respective mobile robot. The position and
orientation of each robot, clearly identified by the ID-
number, is posted at an electronic blackboard. In
addition, the position and orientation of any human
workers are also posted at the blackboard without a
unique ID since it would be unrealistic to assume
any fixed identifiable pattern for the human workers.

Each robot is able to access the blackboard and to
read the information of all currently available mov-
ing objects. This access to the blackboard will be
realized using wireless communication. The robots
are also equipped with a camera system which is
mainly intended for the control of the manipulation
task. During transportation this camera system with
a limited field of view in the direction of movement
is used for a local emergency stop mechanism. This
independent mechanism leads to an increased level
of safety in case of any malfunction of the global
positioning or the communication system.

Distributed Navigation

Within the multi-robot system, one main task is the
fulfilment of the transportation orders assigned to the
single robots. As mentioned before, these orders
are defined by the start position and the destination
position of the respective robots.

The overall navigation problem is structured as
follows. First, each robot plans its individual optimal
path according to its given transportation task. How-
ever, looking at the multi-robot system, this individual
optimal planning might lead to paths that include col-
lision points of two or even several robots, which leads
to a non-optimal solution from an overall perspec-
tive. One possible solution would be a coordinated
detailed path planning algorithm on the multi-robot
level which would lead to optimal individual paths
under the constraints that collision points are avoided.

This paper proposes a two-level distributed ap-
proach. First, all robots use a local long term planning
algorithm for the calculation of individual optimal
paths. This algorithm is based on a grid-map of the
environment and a computation of the shortest path
on the grid using efficient algorithms. It also does
not include any velocity or acceleration constraints
on the robots. The single robots then publish their
individual optimal paths on a blackboard. All robots
can access this blackboard and are looking for any
points where more than two robots can meet. In those
cases, the involved robots form a group and solve
their problems in a way that priorities are given to
the robots. The path of the robot with highest priority
remains unchanged. The robots with lower priority
have their local paths recalculated while the former
collision grid point is blocked for them within the next
shortest path calculation.

After this recalculation, the result would be a set
of rough grid map based paths of the robots, where
only collision points of a maximum of two robots
occur. These situations are then resolved on a local
level using a model-predictive approach as described
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Fig. 3 Model of a mobile robot with differential drive.

in the following section.

Mathematical problem description

Mobile transport robots are robots with two
differential-drive wheels on one common axis and one
caster wheel (Fig. 3). Robots with this configuration
have a restricted mobility in the sideways direction
and thus have an underlying nonholonomic property.
The posture, i.e., position and orientation of the robot
in a Cartesian x-y-coordinate system is described by
the kinematic equations:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (1)

where v is the heading velocity, θ is the heading angle,
i.e., the angle between the x-axis and the axis of the
robot, and ω is the angular velocity of the robot. Using
a differential drive, the two input variables v and ω are
generated via the two wheel velocities vR and vL of
the right and the left wheel, respectively. If slippage
can be neglected(

v
ω

)
=
(

0.5 0.5
1/b −1/b

)(
vR
vL

)
. (2)

The length b is the wheel base of the robot. However,
if the desired values of v and ω are computed, the
corresponding values of vR and vL can be calculated.
Therefore, this equation can be inverted.

It is assumed that each robot has to follow the
previously calculated path, given by straight path
segments between waypoints on the grid map. The
path following problem of a single robot under con-
sideration (which will be called Robot 1) is depicted
in Fig. 4 and describes the task of following the given
path while the forward velocity vR1 of the robot is not
part of the control problem. It is more suitable to work
with a path coordinate system where d is the current
orthogonal distance between the robot and the path,
and s is the distance travelled along the path direction
starting from the last waypoint. The waypoint i
is defined by its position vector ri = (xi, yi) in
Cartesian space and rR1 = (xR1, yR1) is the current

R1
R1xR1R1y

r

r

Fig. 4 The path following problem of a single robot.

position vector of Robot 1. The orientation of the path
segment between the neighbouring waypoints ri and
rj is given by the angle ϕij (Fig. 4).

The vector rij is the vector that points along the
current path segment and is given by rij = rj − ri.
Using this vector and the current position of the robot,
the orthogonal distance between robot and current
path segment can be calculated from

d =
|rij × (rR1 − ri)|

|rij |
. (3)

For the description of the path following problem,
it is more suitable to describe the movement of the
considered Robot 1 with regard to the path coordinate
system in the form

ṡR1 = vR1 cos(θR1 − ϕij),

ḋR1 = vR1 sin(θR1 − ϕij).
(4)

However, while following the desired path from way-
point to waypoint, the robots also have to avoid colli-
sions. As previously described, the distributed global
path planning algorithm results in situations where the
considered Robot 1 can only meet a second robot,
called Robot 2. When two robots are in a collision
situation, the ‘right-before-left’ rule is followed, i.e.,
the robot that comes from the right side relative to the
current orientation of the two robots has priority and
the other robot (coming from the left) is responsible
for the collision avoidance (Fig. 5).

The distance R between the two robots with
current local position vectors rR1 = (xR1, yR1) and
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Fig. 5 The engagement geometry of two mobile robots.

rR2 = (xR2, yR2) is defined as:

R = |rR1 − rR2|
=
√

(xR1 − xR2)2 + (yR1 − yR2)2. (5)

Collision avoidance means that the distance R must
never be smaller than a defined security threshold Rs

defining the constraint

R > Rs, ∀t. (6)

The security threshold must be defined with respect
to the geometry of the involved robots. The mi-
croproduction environment results in some additional
application-specific constraints. Since the robots have
to transport extremely small parts in palette systems,
which should not be shaken too much, the accelera-
tions in the travel direction (aR1x ) and perpendicular
to the travel direction (aR1y ) must be limited, as well
as the velocities and turning rates:

− aR1y,max < aR1y = vR1ωR1 < aR1y,max,

− aR1x ,max < aR1x = v̇R1 < aR1x ,max,

− ωR1,max < ωR1 < ωR1,max,

− vR1,max < vR1 < vR1,max.

(7)

The task of Robot 1 now consists in following the de-
sired path defined by (4) while keeping the constraints
given by the kinematic equations (1), the constraints
added by the collision-avoidance problem (5), (6)

and the problem-specific constraints (7). Therefore,
this approach directly combines these three different
and partially contradicting tasks of path following
and collision avoidance under the problem-specific
constraints in contrast to other existing solutions.
The problem is solved by a model-predictive control
approach as described in the following section.

Model-predictive path following and collision
avoidance

In order to derive the model-predictive approach,
a discrete-time version of the underlying dynamic
model will be developed. The dynamic equations that
describe the kinematics of any robot n, n ∈ {1, 2} as
well as the dynamics with respect to the desired path
are obtained from (1) and (4):

ẋRn = vRn cos θRn,

ẏRn = vRn sin θRn,

θ̇Rn = ωRn,

ṡRn = vRn cos(θRn − ϕij),

ḋRn = vRn sin(θRn − ϕij).

(8)

The vector of state variables xRn =
[xRn, yRn, θRn, sRn, dRn], and the vector
uRn = [vRn, ωRn] are defined as the vector of
input variables with respect to robot n.

From (7) the problem-specific constraints can
therefore be written as

− aRny,max < u1,Rnu2,Rn < aRny,max,

− aRnx,max < u̇1,Rn < aRnx,max,

− ωRn,max < u2,Rn < ωRn,max,

− vRn,max < u1,Rn < vRn,max,

(9)

where ui,Rn is component i of the vector uRn. The
collision avoidance constraint between Robot 1 and
Robot 2 is given by (6).

By applying the Euler approximation to the dif-
ferential quotient with time interval ∆T , the set of
differential equations (8) is converted into a set of
algebraic equations (using the notation of the input
and state variables). The conversion of the first
differential equation in (8) is

x1,Rn(k + 1)− x1,Rn(k)
−∆T (u1,Rn(k) cosx3,Rn(k)) = 0, (10)

where k denotes a discrete time step, and xRn(k) and
uRn(k) denote the discrete-time vectors of state and
input variables.

Assume that at t = 0 (and hence k = 0)
Robot 1 and Robot 2 have the initial vectors of state
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variables xR1(0) and xR2(0) and both robots have
to follow a path with given current path angles ϕij,1

and ϕij,2, respectively. The proposed algorithm then
works as follows. For a given time horizon of K
time steps, those trajectories of input and state vectors,
XRn = [xRn(1), . . . ,xRn(K + 1)] and URn =
[uRn(0), . . . ,uRn(K)], have to be calculated in a
way that the two robots travel along their paths while
keeping all constraints. This can be done via the
minimization of the objective function

JRn(URn,XRn) =
K+1∑
k=1

(dRn(k))2 − (sRn(k))2

=
K+1∑
k=1

(x5,Rn(k))2 − (x4,Rn(k))2.

(11)

The first term is included to minimize the distance
to the path while the second term is included in
order to move the robot forward along the path. The
set of constraints with respect to the dynamics of
the robot (8) after discrete-time formulation (10) can
generally be formulated as a set of equality constraints
with the vector function gRn(URn,XRn) = 0. The
problem-specific constraints (9) can be given as a
set of inequality constraints with the vector function
hRn(URn) < 0. The constraints describing the col-
lision avoidance problem (5), (6) between Robot 1
and Robot 2 can finally be formulated as a set of
inequality constraints defined by the vector function
cR1,R2(xR1,xR2) < 0. It has to be taken into account
that this set of inequality constraints depends on the
state variables of both robots. However, since Robot 2
has priority, it can optimize its own path following
problem over the horizon of K time steps without
taking into account the collision avoidance problem
by solving the nonlinear static optimization problem,

min
{UR2,xR2}

JR2(UR2,xR2)

s.t. gR2(UR2,xR2) = 0,hR2(UR2) < 0. (12)

The results are the sets of optimal input and corre-
sponding vectors of state variables over the horizon
denoted by U∗R2 and x∗R2. Robot 1 now has to follow
its path while avoiding collisions with Robot 2, which
is assumed to be on its optimal path defined by x∗R2. In
the collaborative approach as proposed in this paper,
it is assumed that Robot 2 communicates this planned
optimal path to Robot 1. With the information about
the future behaviour of Robot 2 given by x∗R2, Robot 1
now solves the following nonlinear static optimization

problem:

min
{UR1,xR1}

JR1(UR1,xR1)

s.t. gR1(UR1,xR1) = 0,hR1(UR1) < 0,

cR1,R2(xR1,x∗R2) < 0. (13)

After the calculation of the trajectories of optimal
vectors of input variables U∗R1 and U∗R2, only the
optimal steering commands u∗R1(0) and u∗R2(0) for
the current time step are realized, and the overall
procedure starts again in the next time step. This
means that the steering commands of the two robots
are always calculated from model-based predictions
of the future trajectories, but the calculated future
trajectories are not fully implemented. The reason for
that approach is the possibility of disturbances of the
state variables that can occur in the next time step.
Thus the overall scheme is a model-predictive control
algorithm, but realized by communicating robots. The
full procedure can be summarized as follows:

1. The current discrete time is set to k = 0.
Both robots receive the current posture
vectors (xR1(0), yR1(0), θR1(0)) and
(xR2(0), yR2(0), θR2(0)) from the global
localization system.

2. Both robots determine the current distance
dR1(0), dR2(0) to the respective paths with the
help of (3) and the internally stored global paths
given by waypoints. The initial value of s is set
to sR1(0) = sR2(0) = 0.

3. Robot 2 solves (12) with the initial values and
obtains the optimal trajectories U∗R2 and x∗R2 for
the time horizon of K time steps.

4. Robot 2 communicates the optimal trajectory of
the state variables x∗R2 to Robot 1.

5. Robot 1 receives x∗R2 and solves the combined
path following/collision avoidance problem (13)
to obtain the optimal trajectories U∗R1 and x∗R1

for the time horizon of K time steps.

6. Both robots realize the optimal steering com-
mands u∗R1(0) and u∗R2(0) for the current time
step. Then they proceed with Step 1 again.

This model predictive motion control approach
was implemented in both simulation environments, as
well as in the previously described testbed. For the
implementation of the model predictive approach, the
special multiple shooting based dynamic optimization
package MUSCOD-II19 was applied.
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Fig. 6 Local real-time motion control.

RESULTS

The results of the model predictive approach as de-
picted in Fig. 6 are promising and underline its effi-
ciency. Robot 1 first tries to minimize the deviation
from the desired path. Then, it has to start avoiding
the approaching Robot 2. That results in a devia-
tion from the desired path of Robot 1 again. After
Robot 2 has passed, Robot 1 is again approaching
the desired path. Fig. 6 also shows that the collision
avoidance constraints are always fulfilled. Also, the
security threshold has been limited. The result can
be interpreted as the best compromise between path
following and collision avoidance while additionally
keeping the differential constraints. In addition,
for microproduction-specific constraints, the accelera-
tions both in travel direction (aR1x ) and perpendicular
to the travel direction (aR1y ), have been limited, as
well as the velocities and turning rates.
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Fig. 7 Global long-term motion planning. S: start; E: goal
location; markers: calculated waypoints.

Moreover, the concept of the global long-term
motion planning has been simulated as well (Fig. 7).
Three robots are considered in an x-y-coordinate
system. The robots start at the same time after pri-
oritization where Robot 1 has the highest priority, and
Robot 3 has the lowest. The result of the decoupled
prioritized planning is demonstrated.

It is clear that Robot 1 with the highest priority
travels directly from start to the goal location, keeping
the velocity constraints. Robot 2 then has to take this
path of Robot 1 into account and to plan a path where
the distance between these two robots is always larger
than 3 m. Finally, Robot 3 has the lowest priority and
has to adapt its path to the two other already computed
paths of Robots 1 and 2. Also in this case, the obtained
path of Robot 3 keeps a distance of a least 3 m between
itself and the other two robots. Additional results are
shown in Figs. 8 and 9.

DISCUSSION

While tremendous progress in the area of nonlinear
model predictive control (NMPC) has been made in
the recent years, there is the concern that only a small
number of the existing NMPC schemes can be applied
in real applications. This concern is mostly based
on the high computational demand often related to
NMPC. Hence computation speed issues have been
addressed in this approach as well. In this proposed
microproduction system, the transport robots are sup-
posed to move with low acceleration and deceleration
during the transportation because they have to carry
microproducts which are very sensitive. There are also
a lot of study groups (e.g., Refs. 19, 20) investigating
this area to improve the performance of the NMPC for
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Fig. 9 Another result with lower safety distance.

other applications.
This two-level approach works properly for the

proposed microproduction system, because the Mi-
crosystems fabrication laboratory is mostly a big clean
room, and there are no constraints from the envi-
ronment such as tables, chairs or others obstacles.
In other applications, some practical problems could
occur, for example, a dead-lock situation in the case
of a narrow path, and so on. Then, these well-
known problems require an extra approach21, e.g.,
robot coordination and simultaneous scheduling.

From Figs. 6, 8 and 9, instead of applying the
traffic rule (right before left), Robot 1 has to deviate
from its desired path in order to avoid hard breaking,
and keep the acceleration constraints at the same time.
Hence Robot 1 always moves with the maximum
speed. The safety distance always has to be under the
setpoint value as well.

The location and orientation of human workers is
known by all robots because a global vision based
positioning system has been used in the proposed
system. Hence the possible movement and trajectories
of the human workers can be estimated. As mentioned
before, the limited speed of transport robots is quite
low during the handling tasks, so the proposed algo-
rithm will have enough time.

There are a lot of possibilities to use a team of
mobile robots within industries in the future. Future
work comprises the integration of the algorithms in the
robots using embedded solutions for higher accuracy
and efficiency to enable them to run in real time.
While the implemented solution always converged in
the simulation and experimental tests, proof of the
stability of the described approach is currently being
investigated. Aspects of stability are also discussed in
Ref. 15.
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