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ABSTRACT: This paper discusses the asymptotic covariance and outlier detection procedure in a linear functional
relationship model for an extended circular model proposed by Caires and Wyatt. We derive the asymptotic covariance
matrix of the model via the Fisher information and use the results to detect influential observations in the model.
Consequently, an influential observation detection procedure is developed based on the COVRATIO statistic which has
been widely used for similar purposes in ordinary linear regression models. We show via simulation that the above procedure
performs well in detecting influential observations. As an illustration, the procedure is applied to the real data of the wind
direction measured by two different instruments.
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INTRODUCTION AND THE MODEL

Caires and Wyatt1 suggested and derived a consis-
tent parameter estimator for a linear functional re-
lationship model for the case when both variables
are circular. As an analogy to the linear functional
relationship model for real data, we assume both sets
of observations for circular variables X and Y are
observed with errors2. Suppose xi and yi are the
observed values of the circular variables X and Y ,
respectively, 0 6 xi, yi < 2π, for i = 1, . . . , n. For
any fixed Xi we assume that the observations xi and
yi are measured with errors δi and εi, respectively. We
use the same notation here as in the linear functional
relationship model (for continuous or real variables)
and thus the full model as proposed by Caires and
Wyatt1 can be written as

xi = Xi + δi, yi = Yi + εi,

Yi = α+Xi (mod 2π), i = 1, 2, . . ., n. (1)

We also assume δi and εi are independently dis-
tributed with von Mises distributions, that is δi ∼
VM(0, k) and εi ∼ VM(0, v). There are n + 3
parameters to be estimated. These are α, κ, v and the
incidental parameters X1, . . . , Xn. The parameters
are estimated by using the maximum likelihood esti-

mation method. Assuming that the ratio of the error
concentration parameters, i.e., v/κ = λ, is known,
then the log likelihood function is given by

logL(α, κ,Xi;λ, xi, yi)=−2n log(2π)− n log I0(κ)

− n log I0(λκ) + κ
∑

cos ηi + λκ
∑

cos τi,

where ηi = xi − Xi and τi = yi − α − Xi. Differ-
entiating the log likelihood function with respect to α,
κ, and Xi, we obtain the likelihood equations for the
parameters which may be solved iteratively. It can be
shown that the estimates of α andXi, which are α̂ and
X̂i, respectively, are given by

α̂ = tan−1

{∑
sin(yi − X̂i)∑
cos(yi − X̂i)

}
, (2)

X̂i1 ≈ X̂i0 +
sin η̂i0 + λ sin τ̂i0
cos η̂i0 + λ cos τ̂i0

(3)

where η̂i0 = xi − X̂i0, τ̂i0 = yi − α̂ − X̂i0 and X̂i1

is an improvement of X̂i0 by taking Xi as an initial
value. We then can find an estimate of κ for any value
of λ from the equation

A(κ)+λA(λκ) = w ≡ 1
n

{∑
cos η̂i + λ

∑
cos τ̂i

}
(4)
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where

A(r) =
I1(r)
I0(r)

= 1− 1
2r
− 1

8r2
− 1

8r3
+ . . . , (5)

and η̂i = xi − X̂i, τ̂i = yi − α̂ − X̂i, and I0(r) and
I1(r) are the asymptotic power series for the Bessel
functions3. Simplifying (4) using (5), we have the
approximate result

8(1+λ−w)κ3−8κ2−
(

1 +
1
λ

)
κ−
(

1 +
1
λ2

)
= 0.

(6)
Eq. (6) has one positive real root and two complex
roots. The positive real root is taken as the estimate of
κ, denoted by κ̂. For λ = 1, κ̂ = A−1(w) where the
inverse function of A is defined by Fisher4 as follows:

A−1(w) =


2w + w3 + 5w5

6 , w < p,

−0.4 + 1.39w + 0.43
1−w , p 6 w < q,

(w3 − 4w2 + 3w)−1, w > q,

where p = 0.53 and q = 0.85. Caires and Wyatt1

applied the model to the problem of assessing radar
measurements of wave data. The radar measurements
were compared with wave model predictions and buoy
measurements. The combined results gave a fairly
good picture of the quality of the radar data. This
model can be applied in many other areas of applied
sciences whenever the objective is to look at the
underlying relationship between two sets of circular
data rather than to predict one variable from other.

It is of interest to derive the asymptotic covariance
matrix of the parameters of the above model. The
results can then be used in the identification of influen-
tial observations in the model. Influential observations
are observations that are subjected to contamination
by some unexpected events. The existence of influen-
tial observations in a data set may affect the parameter
estimates and consequently lead to a wrong conclu-
sion. Many procedures are available to identify influ-
ential observations in linear regression models5, 6 but
fewer in functional relationship models7. Recently,
Abuzaid et al8 discussed the identification of single
outliers which can be influential in simple circular
regression models based on the circular residuals via
graphical tools and numerical procedures. In this
paper, the proposed influential observation detection
procedure is based on the determinant of the asymp-
totic covariance matrix of the parameters of model
(1). In the following section, we derive the asymptotic
covariance matrix of the parameters of the model. The
next two sections describe the proposed influential
observation detection procedure in detail. Simulation

studies are carried out to obtain the percentage points
of the procedure and to investigate the performance
of the procedure. We will then apply the procedure
to wind direction data measured by two different
instruments.

ASYMPTOTIC COVARIANCE OF
PARAMETERS

In this section we derive the asymptotic covariance of
parameters for a linear functional relationship model
for circular data. We assume that the ratio of the error
concentration parameters, denoted by κ, is known via
the Fisher information matrix. By considering the
first partial derivative and minus the expected value
of the second partial derivative of the log likelihood
function, we obtain the estimated Fisher information
matrix, F , for X̂i, . . ., X̂n, κ̂ and α̂ given by

F =

 R 0 W
0 S 0
WT 0 U


where R is an n×n diagonal matrix with all diagonal
elements equal to κ̂A(κ̂) + λκ̂A(λκ̂), W is an n × 1
column vector with all elements equal to λκ̂A(λκ̂),
S = nλ2A′(λκ̂)+nA′(κ̂) whereA′(κ) = 1−A2(κ)−
A(κ)/κ, and U = λκ̂nA(λκ̂).

We are primarily interested in the bottom right
minor of the inverse of F of order 2× 2, which forms
the asymptotic covariance matrix of κ̂ and α̂. From the
theory of partitioned matrices9, the covariance matrix
is given by

Var
[
κ̂
α̂

]
=
[
S−1 0
0 (U −WTR−1W )−1

]
.

It can be shown that

(U −WTR−1W )−1 =
A(κ̂) + λA(λκ̂)
λκ̂A(κ̂)A(λκ̂)

.

In particular, we have the following results:

Var(κ̂) =
1

nλ2A′(λκ̂) + nA′(κ̂)
,

Var(α̂) =
[A(κ̂) + λA(λκ̂)]
λκ̂A(κ̂)A(λκ̂)

,

and Cov(κ̂, α̂) = 0. For λ = 1, Var(κ̂) = 1/2nA′(κ̂)
and Var(α̂) = 2/κ̂A(κ̂), where

A(κ) =
1
2n

{∑
cos η̂i +

∑
cos τ̂i

}
A′(κ) = 1−A2(κ)− A(κ)

κ
.

These results will be used in the influential observa-
tion detection procedure discussed in the following
section.
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INFLUENTIAL OBSERVATION DETECTION

The COVRATIO statistic has long been used to
identify influential observations in linear regression
models via a row deletion approach5. In this section,
we extend the usage of the statistic to detect influen-
tial observations in functional relationship models for
circular data. The statistic is the ratio of the estimated
covariance matrix of an estimated parameter using the
full data and the estimated covariance matrix of the
reduced data set when the ith observation is deleted.
Belsely et al5 suggested using the statistic to measure
the effect of removing the observation based on the
determinantal ratio given by

COVRATIO(−i) =
|COV(−i)|
|COV|

,

where |COV| is the determinant of covariance matrix
for the full data set and |COV(−i)| is for the reduced
data set by excluding the ith row. If the ratio is close to
unity then the ith observation is not an influential ob-
servation. For convenience, the |COVRATIO(−i)−1|
statistic is usually used in linear regression cases.

Using the same idea, the COVRATIO statistic
for the functional relationship model for circular data
(1) can be shown to be

COVRATIO(−i) =
n(n− 1)−1κ̂A(κ̂)A′(κ̂)
κ̂(−i)A(κ̂(−i))A′(κ̂(−i))

, (7)

where κ̂(−i), A(κ̂(−i)), and A′(κ̂(−i)) are, respec-
tively, the estimated concentration parameter, the ratio
of the modified Bessel function for the first kind of
order one and first kind of order zero, and its first
derivative, for the reduced data set. The following
subsections discuses the percentage points and the
power of performance for the COVRATIO statistic
(7).

The percentage points of the COVRATIO statistic

The Monte Carlo simulation method is used to obtain
the percentage points of the COVRATIO statistic
by considering five different sample sizes n = 20,
30, 50, 100, and 200. By assuming that the ratio
of the error concentration parameters λ = 1, six
values of the error concentration parameter κ = 10,
15, 30, 50, 70, and 100 are considered. For each
combination of sample size n and error concentration
parameter κ, two sets of random errors δ and ε
are generated from the von Mises distribution with
mean 0 and concentration κ, VM(0, κ). We gen-
erate X of size n from VM(π/4, 1.5) and fix the
intercept parameter, α at 0. The response variable

Table 1 Cut-off points for the null distribution of
|COVRATIO(−i) − 1| statistic and its standard error.

n 90% 95% 99%

20 0.568(0.008) 0.690(0.024) 1.024(0.058)
30 0.368(0.004) 0.432(0.006) 0.589(0.036)
50 0.223(0.006) 0.260(0.008) 0.346(0.018)

100 0.119(0.003) 0.136(0.004) 0.171(0.003)
200 0.064(0.001) 0.072(0.002) 0.090(0.003)

Y is obtained based on model (1). Subsequently,
the generated data is fitted using model (1) and the
|COV| is calculated. Then we exclude the ith row
from the generated data, i = 1, . . . , n, to obtain
the |COV(−i)| and |COVRATIO(−i) − 1| statistics.
The process is repeated 2000 times and the 10th, 5th
and 1st upper percentiles of the maximum values of
|COVRATIO(−i) − 1| are calculated.

Simulation results show that the percentage points
vary only slightly for each level of the concentration
parameter, κ, and are not shown here. Thus the
arithmetic mean of the simulated percentage points
for each sample size n are considered as the cut-off
points and are given in Table 1. The corresponding
standard deviations of the percentage points are given
in parentheses. Results show that the cut-off points are
a decreasing function of the sample size n. The values
of standard deviation are very small which indicates
that the error concentration parameter κ does not vary
much around the arithmetic mean.

Power of performance of the COVRATIO statistic

Simulation studies are carried out to examine the
performance of the COVRATIO statistic for model
(1). A similar procedure to that described in the
previous subsection is used to generate the data. In
addition, we contaminate an observation at position
[d] as follows:

Y ∗[d] = Y[d] + ζπ (mod 2π),

where Y ∗[d] is the value of Y[d] after contamination and
ζ is the degree of contamination in the range 0 6 ζ 6
1. The generated data are then fitted by model (1) and
the maximum of the COVRATIO(−i) − 1 statistic is
specified. The process is repeated 2000 times and the
power of performance is examined by computing the
percentage of correct detection of the contaminated
observation at position [d].

Fig. 1(a) gives the plot of power of performances
of the procedure for n=50 and various values κ. It
can be seen that the performance is an increasing
function of the level of contamination ζ and the
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Fig. 1 The |COVRATIO(−i)−1| statistic of wind direction
data for (a) n = 50, (b) κ = 15.

error concentration parameter κ. On the other hand,
Fig. 1(b) gives the plot for κ=15 and different sample
sizes. The power of performance decreases slightly as
the sample size increases. For all cases, the power of
performance is almost 100% for ζ > 0.6.

NUMERICAL EXAMPLE

As an illustration, we consider 129 measurements of
wind directions (in radians) recorded over the period
of 22.7 days along the Holderness coastline (the Hum-
berside coast of the North Sea, UK) by using two
different instruments (HF radar system and anchored
wave buoy10). Fig. 2 shows the scatter plot of wind
direction data with the scale broken artificially at 0 =
2π. Two points seem to be far from others at the left
top of the plot. However, they are actually consistent
with the rest of observations as they are close to other
observation at the right top or left bottom due to the
closed range property of the circular variable.
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Fig. 2 Scatter plot of wind data measured by HF radar
system and anchored wave buoy.
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Fig. 3 Power of performance for |COVRATIO(−i) − 1|
statistic with cut-off point denoted by dashed line.

We fit the full data using model (1) giving

Y = 0.086 +X (mod 2π).

The estimates of α and κ are 0.0857 and 22.8584
with standard error 0.4280 and 1.0064, respectively.
The determinant of the covariance matrix of model
(1) based on the full data set is 0.1855. Since the
sample size is 129, the cut-off point considered is
0.11 at 0.05 significance level as given in Table 1.
The values of the |COVRATIO(−i) − 1| statistic are
plotted in Fig. 3. It is obvious that there are two points
that exceed the cut-off points (dashed line). Thus
observations 38 and 111 are identified as influential
observations. The results agree with the findings in
Abuzaid et al8. After removing these two points and
reanalysing the reduced data set, the new estimates
of α and κ are 0.0575 and 41.1326 with standard
errors of 0.3157 and 1.8250, respectively. Compared
to results before the removal of the two points, we
note that the value of α̂ of the reduced data is closer
to 0 and κ has almost doubled. This suggests that
both observations are influential. Since the purpose
of this model is to look at the underlying relationship
between two circular variables, it is very important to
identify influential observations in the data set. This
can be achieved through the proposed procedure.

CONCLUSIONS

In this paper, we derive the asymptotic covariance
matrix of the parameters of the linear functional re-
lationship model for circular data. The determinant
of the covariance matrix is used to identify possible
influential observations via the COVRATIO statistic
based on the row deletion approach. This procedure
allows us to detect possible influential observations
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in a given bivariate circular data set. Based on
a simulation study, we obtain the cut-off points of
the procedure for different sample sizes and three
significance levels. The procedure has been shown
to perform well in detecting influential observations.
As an illustration, this procedure has been applied to
the wind direction data and the results agree with the
previous studies.
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