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Double bubbles outside a disc
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ABSTRACT: We show that the least-perimeter way to enclose and separate two regions of prescribed area outside a disc is
a truncated standard double bubble.
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INTRODUCTION

The soap bubble problem is a generalization of the
classical isoperimetric problem. Specifically, the pla-
nar soap bubble problem is the search for the least-
perimeter way to enclose and separate m regions on
the plane of a given m areas. More precisely, for
given A1, · · · , Am > 0, we expect to find mini-
mizing enclosures of regions R1, · · · , Rm of areas
A1, · · · , Am, respectively. Existence and regularity
of minimizing enclosures on the plane is provided
by Ref. 1. Enclosures with this nice regularity are
called bubbles. In higher dimensions, the existence
is shown in Ref. 3. It is natural to believe that all
regions of a minimizer must be connected. But this
turns out to be the most difficult part of this problem.
Therefore the main conjecture of the bubble problem
is that a minimizing bubble has connected regions. For
simplicity, we say a bubble is standard if its regions
including the exterior region are connected.

On the plane, the case of 4 areas (m = 4) is still
open. For a single area, a circle is the unique shortest
enclosure. For two areas, Foisy et al concluded that
the standard double bubble (see Fig. 1) is uniquely
minimizing4. For three areas, Wichiramala settled the
conjecture that the standard triple bubble (Fig. 1) is the
shortest uniquely5, 6.

In higher dimensions, in Rn for n > 3, we just
have results for double bubbles where we look for the
least (n−1)-dimensional measure way to enclose and
separate 2 regions of 2 given n-dimensional volumes.
Hutchings et al7 proved the double bubble conjecture
in R3. Reichardt et al8 showed this for n = 4, and
finally, Reichardt9 showed this for n > 4.

Many variants of the problem are studied in many

Fig. 1 A standard double bubble (left) and triple bubble
(right).

domains. Studies have been done for cases of the
double bubble on a half plane10, on a cone10, on a
flat 2-torus11, on a flat 3-torus12, in a disc13, in Gauss
space and spheres14, in the spherical space and the
hyperbolic space15–17.

In this work, we study minimizing enclosures of
2 given areas on the complement DC of a closed disc
D. An enclosure E separates DC into regions. Each
region is a union of connected and open components
of DC \ E. We say E enclosures regions of areas
A1, · · · , Am if DC \ E has regions R1, · · · , Rm of
areas A1, · · · , Am. The exterior region DC \ ∪iRi is
denoted by R0. It is clear that part of the boundary
∂D of D is not needed as a part of an enclosure.

We expect to prove that the truncated standard
double bubble (Fig. 2) is the shortest enclosure for 2
given areas. In the process, we use the weak approach
from Refs. 4–6, 18. For the three-dimensional case,
we intuitively believe that the bubbles in Fig. 3 are
optimal.

BASIC RESULTS

In this section, we list all basic results for minimizing
enclosures on DC . We start with the existence and
regularity of the minimizers and then their basic prop-
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Fig. 2 A truncated standard double bubble (left) and a
truncated circle (right) outside a disc.

Fig. 3 Efficient double bubbles on a plane (left) and on a
sphere (right).

erties.
For minimizing enclosures on the plane, the ex-

istence and regularity are completed in Ref. 1. From
the argument in Refs. 1, 2, 13, we obtain the following
existence and regularity theorem.

Theorem 1 For given A1, · · · , Am > 0, there exists
a minimizing enclosure on DC of areas A1, · · · , Am.
Each minimizer is composed of finitely many circular
or straight edges separating pairs of different regions.
These edges meet in threes at 120° angles or one edge
meets ∂D perpendicularly. There are real numbers
p1, · · · , pm, called pressures, such that each edge
between Ri and Rj has curvature |pi−pj | and curves
into the lower pressure region where p0 is set to be 0.

In the following figures, the numbers 1,2,. . . ,m,0
in each component will indicate the region this com-
ponent contributes area to. We also relabel regions so
that p1 > p2 > · · · > pm.

Lemma 1 A minimizing enclosure on DC is attached
to D and is a connected graph.

Proof : Let B be a minimizing enclosure. If B
is not attached to D or not a connected graph, we
can translate or slide some part of B around D to
create an illegal meeting of edges and hence create
a nonminimizing enclosure with the same length and
areas. This contradicts the minimality of B. �

We now can conclude easily that the following
theorem holds.

Fig. 4 A double bubble with connected regions completely
surrounding the disc.

Theorem 2 A minimizing enclosure of a single area
on DC is a truncated circle as illustrated in Fig. 2.

From Ref. 19, we may conclude directly that the
following lemma holds.

Lemma 2 For a minimizing enclosure on DC , any 2
components may meet at most once.

We then can conclude, as a corollary, the next
lemma which similar to the one from Ref. 4.

Lemma 3 For a minimizing enclosure of many areas
on DC , there is no 2-sided component.

By the same argument as in Ref. 19 we obtain the
following lemma.

Lemma 4 The enclosure in Fig. 4 is not minimizing.

Proof : As the 2 internal edges are on a circle, D
can be moved along the circle to create an illegal
meeting. �

We define a bubble to be an enclosure with prop-
erties in Theorem 1, Lemma 1 and Lemma 2. Hence a
bubble of many areas has no 2-sided component.

By the argument from Ref. 2, we have the follow-
ing result.

Lemma 5 Let Bt be a variation of a bubble B on DC .
Then

d
dt

l(Bt)|t=0 =
∑

i

pi
d
dt

At
i|t=0.

In Lemma 5.9 of Ref. 6 (Lemma 5.11 of Ref. 5),
we show that a 3-sided component of a bubble on the
plane can be ‘reduced’ to get another bubble. By a
similar argument, the following lemma shows that we
may reduce a 3-sided component attached to D (see
Fig. 5) to get another bubble.

Lemma 6 Let C be a 3-sided component of a bubble
attached to D. Then we can prolong the incident edge
of C into C so that it is perpendicular to ∂D.
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Fig. 5 The incident edge of a 3-sided component can be
prolonged inside.

Lemma 7 A truncated standard double bubble on
DC has positive pressures.

Proof : From the previous lemma, the external edge of
R2 can be prolonged into R1 and meet ∂D perpen-
dicularly. Hence the edge is on a circle bounding R2

inside. Therefore p1 > p2 > 0 as desired. �

WEAK APPROACH

The weak approach helps making R0 connected by
simply allowing a bubble to enclose areas greater
than A1, · · · , Am. The idea was originated in Ref. 4
and then completed in Refs. 5, 6. We define a weak
enclosure for areas A1, · · · , Am to be an enclosure
of area a1, · · · , am where ai > Ai. We will show
existence of minimizing weak enclosures and list their
properties later.

Let L(A1, · · · , Am) be the length of a mini-
mizing bubble on DC of areas A1, . . . , Am. Since
L(A1, · · · , Am) is continuous and tends to infin-
ity as each Ai approaches infinity, we have that
minai>Ai L(A1, · · · , Am) exists. Equivalently, a
minimizing weak enclosure exists and is a minimizing
enclosure of areas it encloses. Hence these minimizers
are also bubbles. Consequently, we may call them
minimizing weak bubbles or weakly minimizing bub-
bles.

By the argument in Proposition 3.5 of Ref. 6
(Proposition 3.6 of Ref. 5), we may obtain the fol-
lowing lemma.

Lemma 8 A weak minimizer on DC has connected
R0 and non-negative pressures. Moreover, if pi > 0,
then Ri has area Ai.

The advantage of using the weak approach is that
mainly we just have to show that a weak minimizer has
the property we desire. Then we can conclude easily

Fig. 6 All possible components of weak minimizers.

that a minimizer has that desired property too. As
weakly minimizing is a stronger condition than being
minimizing, we have to get rid of a smaller class of
candidative bubbles. Moreover, in order to get rid of
unwanted bubbles, we may find a shorter enclosure
that is allowed to enclose greater areas.

SHAPES OF WEAKLY MINIMIZING DOUBLE
BUBBLES ON DC

In this section, we will list crucial properties of weak
minimizers that will be used in the next section.
Note again that R0 is connected and all pressures are
nonnegative. For convenience, we suppose that D is
centred at the origin.

From Lemma 2 and the fact that R0 is connected,
a component of R1 and R2 may meet R0 at most once
and it may not be 2-sided. Hence it must be attached
to D and has at most 4 sides as listed in Fig. 6. We
say a 4-sided component of R1 is circular if it has 2
(opposite) edges on a circle. It is clear that every 4-
sided component of R2 is symmetric.

Lemma 9 Let B be a weakly minimizing double bub-
ble on DC . Suppose that D meets R0. Then (1) every
external edge is on a circle meeting ∂D perpendic-
ularly, (2) every 4-sided component is symmetric,
(3) all 4-sided components of R2 are isometric, and
(4) for R2, a 4-sided component can be fit tightly in a
3-sided component, if it exists. In other words, we can
trim a 3-sided component to get a 4-sided component.

Proof : Since D meets R0, B is composed of con-
secutive components such that the first and the last
components are 3-sided with possible some 4-sided
components in between. By Lemma 6, we have (1).
Then (2) and (3) are clear. Now consider components
of R2. Due to its symmetry, a 4-sided component
may be obtained by cutting off a 3-sided component.
Hence we have (4). �

Lemma 10 For a weakly minimizing double bubble
on DC , every external edge of R2 is not centred at the
origin.

Proof : According to Fig. 7, a circular arc centred at
the origin would make an acute angle with the edge
between R1 and R2. Hence we are done. �
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Fig. 7 An external edge of R2.

Fig. 8 A rotating variation of the bold part.

Lemma 11 A weakly minimizing double bubble on
DC may not have 2 isometric 4-sided components of
R2.

Proof : Suppose there exist 2 such isometric compo-
nents. Consider the rotating variation on the bold part
around the origin in Fig. 8. This variation preserves
areas of R1 and R2. By the variation argument from
Ref. 13 and using the argument from Lemma 4.11 in
Ref. 6 (Lemma 4.19 in Ref. 5), the 2 external edges
of R2 are centred at the origin, a contradiction to
Lemma 9. �

Proposition 1 Let B be a weak minimizing double
bubble on DC . If D meets R0, then B is standard.

Proof : Suppose D meets R0 and B is not standard.
From Lemma 9, components of R2 have the following
properties: (1) 4-sided components are isometric, and
(2) a 4-sided component is a part of a 3-sided compo-
nent. By Lemma 11, there is at most one component
of R2. If R2 is 3-sided, then B is standard. Hence

Fig. 9 A bubble with 3 components (left); a rotated variation
on this bubble (right).

Fig. 10 A 4-sided component of R2 between 2 circular
components of R1.

R2 is 4-sided and B is illustrated by Fig. 9. Consider
the rotated variation on the bold part around the centre
of the external edge of R2 in Fig. 9. This variation
preserves areas of R1 and R2. By the same variation
argument as used in the proof of Lemma 11, the 4
edges of R1 are concentric, a contradiction. Therefore
B must be standard. �

Proposition 2 A weak minimizing double bubble on
DC is standard.

Proof : Suppose to get a contradiction that B is not
standard. From the previous lemma, D is completely
surrounded by R1 ∪ R2. Hence every component of
R1 and R2 is 4-sided and R1 and R2 have the same
numbers of components surrounding D alternately.
First suppose that there is a symmetric 4-sided com-
ponent C of R1. From Lemma 4, R2 has at least 2
components. Consider the 2 components D1 and D2

of R2 next to C. Note that every 4-sided component of
R2 is symmetric. By Lemma 10, their external edges
are not centred at the origin. By Lemma 5.3 of Ref.
6 (Lemma 5.5 of Ref. 5), D1 and D2 are isometric.
By Lemma 11, B is not minimizing. Hence every
component of R1 is circular. We will divide into cases
according to the number of components of R2.

Case R2 has at least 3 components. In Fig. 10 the
2 circular components of R1 are isometric. Consider
the left component D1 and the right component D2 of
R2. Again, as they are symmetric and their external
edges are not centred at the origin, they are isometric.
Thus B is not minimizing by Lemma 11.

Case R2 has 2 components. Here B is illustrated
by Fig. 11. By Lemma 5.19 of Ref. 6 (Lemma 5.35
of Ref. 5), the 2 external edges of R2 are on a circle.
By the same argument as in Lemma 5.22 of Ref. 6
(Lemma 5.38 of Ref. 5), we can create a bubble of the
same length and area by moving the 2 components of
R1 towards each other and eventually create an illegal
meeting. Therefore B is not minimizing.

In both cases, we encounter contradictions. Thus
B must be standard. �
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Fig. 11 R1 has 2 components and they are circular.

MAIN RESULT

Now we conclude with the main theorem.

Theorem 3 Every minimizing double bubble on DC

is standard.

Proof : Let B be a minimizing double bubble of areas
A1 and A2. Let W be a weakly minimizing double
bubble for areas A1 and A2. From the previous
theorem, W is standard. By Lemma 7, both regions of
W have positive pressures. By Lemma 8, the regions
of W have areas A1 and A2. Hence W is a minimizer.
Since l(B) = l(W ), B is also a weak minimizer.
Therefore B is standard by the previous theorem. �

We may apply our method to get the same result
for a flat cover of the complement of the disc as
follows.

Theorem 4 In any flat cover of the complement of
the disc, the minimizing enclosure of 2 given areas
remains the truncated standard double bubble.

Proof : For a bubble in this domain, the boundary
always meets R0. Hence we may conclude easily
that the truncated standard double bubble is minimiz-
ing. �
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