@ESEARCH ARTICLE ScienceAsi&6 (2010) 59-67

doi: 10.2306/scienceasial513-1874.2010.36.059

Application of the multi-resolution viscous alignment
technique to hourly radar rainfall estimation

Sudajai Lowanichchat*, Uruya Weesakul, Virat Chatdarong P, Siriluk Chumchean®*

a Department of Civil Engineering, Thammasat University, Pathumthani 12121, Thailand
b Department of Civil Engineering, Chulalongkorn University, Bangkok 10330, Thailand
¢ Department of Civil Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand

*Corresponding author, e-madiriluk@mut.ac.th
Received 19 Jan 2009
Accepted 10 Jul 2009

ABSTRACT: The main objective of this paper is to improve the accuracy of radar rainfall estimation by accounting for a
storm movement into a radar rainfall accumulation process. The multi-resolution viscous alignment (MVA) technique was
used to estimate the velocity of a rain field from two consecutively measured radar images. The analysis used the 10-min
radar reflectivity of the Pasicharoen radar and the corresponding 47 rain gauges measurements of 41 rainfall events that
occurred in Bangkok during 2005-2007. The 28 rainfall events occurring during 2005-2006 were used for calibration, and
the 13 rainfall events recorded in 2007 were used for validation. Finer temporal resolutions of radar reflectivity data, taken
at 1-9 min intervals, were generated using the MVA technique in order to investigate the optimal temporal resolution of the
Pasicharoen radar when the MVA technique was integrated into an hourly radar rainfall estimation algorithm to account for
a storm movement within a sampling interval. The results showed that using the generated 5-min MVA reflectivity data for
estimating hourly radar rainfall gave the smallest root mean square error (RMSE) between hourly radar rainfall estimates
and corresponding rain gauge data when compared to other temporal resolutions of generated MVA reflectivity. Hourly
radar rainfall obtained from the proposed algorithm, which integrates the MVA technique into the accumulation approach,
was compared with the traditional simple linear interpolation (SLI) technique and conventional method. Using the 5-min
generated MVA reflectivity data to estimate hourly radar rainfall can reduce RMSEs between hourly radar and rain gauge
rainfall by 10% and 17% for the calibration period, and by 27% and 29% for the validation period when compared to the
SLI and conventional methods, respectively.

KEYWORDS: effect of storm movement, storm tracking, radar rainfall accumulation

INTRODUCTION while tilting the antenna vertically so as to sample
the atmosphere as a series of cones. The rate at
The space-time resolution requirements for areal rainvhich a radar rotates about its axis, and the number of
fall estimations vary depending on the applicationglevation angles used in one volume scan cycle fix the
catchment area, type of rainfall event, and type dime between successive scans of the same position in
model used. Accurate hourly areal rainfall with fine space by the radar. This time difference represents the
temporal resolution is an essential prerequisite fdemporal resolution of the radt Conventional radar
successful flood estimation and forecasts. Weatheaginfall accumulation algorithm is normally derived
radar covering a large area provides spatially anbly multiplying instantaneous radar rainfall intensity
temporally continuous measurements that can be usgéelds by the measured time interval between sam-
almost simultaneously as the storm occurs. Howeveples and then accumulating into a required temporal
radar rainfall measurement suffers from various type®solution. Consequently, there is an error in the
of errors and uncertaintiés. Methods to improve derived areal radar rainfall particularly for a fast-
the accuracy of radar rainfall estimates have beeanoving storm.
proposed by many researchers. These include the Rainfall events occurring in the Bangkok area
algorithm to remove errors due to reflectivity measuredsually arise from convective cloutls This is
ment8, Z—R conversion errct™*?, and residual error because Bangkok is located in the central part of
in radar rainfall estimation when compared to rainrhailand which is influenced by southwest monsoons,
gauge dat®'%. Radar usually operates a scheduletropical cyclones, and depressions. Convective rain-
with volume scan by rotating the antenna in azimutifall is produced by adiabatic (constant heat) cooling of
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vertically rising columns of air which have high tem-proposed to derive information on the movement and
poral and spatial variabilities. Flooding in Bangkok isdevelopment of rainfall. This information has been
a serious problem since it causes enormous economised to simulate the rainfall development system be-
losses and also environmental impacts. The BangkaWween two consecutive radar samples. Thereafter, the
Municipal Administration (BMA) has called for a measured and simulated rainfall fields are added to
flood forecasting system integrating information fromobtain accumulated radar rainfall data at a specified
rain gauges, hydrometric stations, radar measurgeemporal resolution.

ments, satellite measurements, and numerical weather The tracking techniques can be classified into
prediction results. The Pasicharoen radar data hatleree main groups. The first group is the cell centroid
been used in this project for providing hourly radatracking techniqu&=%. This technique must first
rainfall measurement and forecasts over the Bangka#tentify a rainfall cell by considering an exceeded
vicinity. This radar operates every 10 min, and mosntensity threshold. Then, the centre position, shape,
of the rainfall events that lead to flooding in Bangkokand size of each rain cell are calculated. The identified
are convective storms. Hence, there will be errorsells of consecutive radar data samples are compared
in hourly radar rainfall estimates and, consequentlyp the previous sample. If the corresponding move-
rainfall forecasts. This is because the movement amdent vector and rate of change in size of a considered
development of the rainfall field often occur at arain cell are within the allowed limits, the history of
shorter time scale than the sampling interval. rain cell development is taken into account. Although

The objective of this paper is to propose arthis concept is simple, it is difficult to simulate an
hourly radar rainfall estimation process that accounutomatic model to identify the rain cell boundary,
for a storm movement within the sampling intervalespecially for joined or split cells. Moreover, each
The multi-resolution viscous alignment (MVA) tech-centroid velocity vector is not easy to derffe All
nique® was used to estimate the velocity of a reflecexisting centroid-type techniques use the storm cen-
tivity field between two consecutive measured radaroid displacement to forecast the storm motion. This
images and provide finer temporal reflectivity datanay result in large errors if the shape or sizes of the
between the sampling intervals. Radar reflectivity datstorm change rapidf/.
from the Pasicharoen radar located in Bangkok and The second group is the cross-correlation tracking
corresponding rain gauges data were used in this angééchniqué®3L. This technique divides Cartesian radar
ysis. To investigate the optimal temporal resolutiomlata into equally-spaced grid cells. A movement
of the generated reflectivity data of the Pasicharoerector of each grid cell is derived by finding positions
radar when the MVA technique was integrated intof cells from the Cartesian data array of the previous
an hourly radar rainfall estimation algorithm, finerand the next radar data samples which have the highest
temporal resolution of radar reflectivity data taken asimilarity. The strength of this technique is that it pro-
1-min to 9-min intervals were produced. Thereaftelyides more accurate velocity and position information
the RMSEs between rain gauge data and radar rainfall reflectivity echoe%'. However, Ravela and Chat-
obtained from different data sets were compared.  darong?® suggest that there are several disadvantages
of this method.

The third group is the variational technigife
Many studies have investigated the effect of samplingihe basic idea of the variational technique is to guess
interval on the radar rainfall accumulation processa trial function for the problem and then adjust the
They found that the error on radar rainfall estimatiorfunction until the velocity field of the trial func-
increased with increased space resolution and time ki@sn is minimized. In this technique, an arithmetic
tween sample$21. The temporal resolution of radar equation or function represents an event or pattern
rainfall measurement of most operational meteorologf observation and its constrained function must be
ical radars is 5-10 min. To obtain radar rainfall datalefined. The variational technique can be performed
at a required temporal resolution, these instantaneohy following a model such as optical flow modg|
radar rainfall maps are simply added by neglectinfeature calibration alignmefft, data assimilation by
the fact that the storm moved and evolved durindield alignmeng®, and MVA'8, Frequently, all of
the sampling period. This leads to error on derivethese models provide intensive details of velocity field
accumulated radar rainfall, especially for the case ofmore accurately than the cell-centroid tracking and
fast-moving storm such as convective rainfall. cross-correlation methods The MVA method was

To reduce the sampling problem on radar rainfaltlirectly developed from the field alignméfitand the
estimation, different tracking techniques have beealgorithm was extended into a multi-resolution pro-

Effect of storm movement on radar rainfall
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8 ' .
ceduré _Whlch is used to find d|splacem_ent vectors X(I‘) X(r_q)
more quickly than those procedures mentioned above —

This technigue derives a vector field from two images:
continuously by following the image flow approa€h
The displacement fields produced by MVA are dens
the spatial consistency of the displacement vector fielfk
is implicit, and high-order and small scale deforma
tions can be handled easily. Unlike an optical-flo
algorithm, it can calculate the displacement vectof:
field from mesoscale features as a result of large
time-steps or rapid deformation. In addition, the
MVA algorithm produces displacement fields quickly.
Therefore, in this study, the effect of storm move-
ment within the sampling interval was accounted for
in an hourly radar rainfall estimation algorithm by
using the MVA technique to derive the reflectivity
field velocity from two consecutive measured radar
images. Thereafter, new reflectivity images between
each sampling interval were generated and the hourly
radar rainfall was derived by adding up the subsequeﬁlg- 1 Graphical illustration of field alignmenfX (r) is the

rainfall intensities within an hour. image on the normal gridy is a displacement vector, and
] ] ] . X (r — q) represents displacement &f by g. Az andAy
Multi-resolution viscous alignment are the difference in displacementsanand y directions,

The MVA algorithm uses a Bayesian formulation torespectively.

solve the motion estimation problem and imposes

smoothness constraints to provide a consistent veloc-

ity field. It is a position adjustment technigt?e’’.  the first and second images, respectively,is the

It iteratively solves for the position error problem bycovariance matrixg; is the vector of displacements,

minimizing an adjustment function based on gradierdndw, andw, are weight factors. Because the state

and divergence terms. This algorithm is practicabf interest to be interpolated and the measurement are

for data without well-defined features and more roin dBZ units, the measurement is also performed at all

bust than the correlation-based approaches where thigels.

displacement is given by the maximum correlation  Eq. (1) is nonlinear and can be solved numerically

between two patches of images within a searchingy an iterative procedure similar to that used to solve

distancé®®. In addition, the MVA technique uses the Poisson equation. An estimate of displacement

local constraints for relating displacements and reean then be obtained. During each iteratigp,is

resents the displacement as smooth flow fields. Thi®mputed and used to deform the original image-)

could be useful when working on a large region of théo X (» — ¢). The process is repeated using bi-cubic

atmosphere where characteristics and features varyinterpolation until the misfit between the deformation
The concept of field alignment is demonstrate@f the first image, X (r — ¢), and the second image

in Fig. 1. A state vector on a discrete grid is movedy (r) does notimprove, or an iteration limit is reached.

by deforming its grid £) by a displacementg]. The The vector of displacement in (1) can be split into

displacement field is real-valued, s (r — ¢) must two velocity field equations; the velocity fields in

be evaluated by interpolation. This displacement andy axes are,,; = Az; andg,; = Ay;, respectively.

represents a warping of the underlying grid, which irFinally, we have an aligned imag¥,(r — ¢), with de-

effect is able to move structures in the image aroundformation and a displacement velocity field that is the

To calculate the field alignment we USe sum of the displacement vector at each iteratjon
Zf;l g; for individual displacementg at iterations
w1 V2q; + w2 V(V;) i =1,..., N. Since the process to obtajnis time

=0, (1) consuming, the multi-resolution concept is applied to

speed up the algorithm. It starts by coarsening the
whereH is transformation matrix which is an identity resolution of the two images to obtain the coarse-scale
matrix, X and Y are the intensity scalar fields of displacement. At the coarser resolution, the alignment

+ [VX|,H"R™(HX (p) - Y)],

3
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will converge faster because the displacement will b&able 1 Rainfall events used in the analysis.
small relative to the coarser resolution. Then, thig -

. . . . tart time
coarse displacement velocity field is rescaled to the
finer resolution and used to initially deform the finer
resolution of X. Finally, the algorithm solves for 18:20 23/06/05 120 28 11.14  132.00

Duration Number of Rave  Rmax
(min) gauges  (mm/h) (mm/h)

another displacement field at the finer resolution anﬁ7fi8 ég;g?;gg 1632)0 ig’ 181'1395 gg'gg
repeats the_ coarse-to-fine process u_ntll the re_soluU%lS:ZO 10/07/05 200 24 2044  93.00
of mterest_ is reachgd. When |t<.arat.|vely solving for16:20 28/07/05 70 23 656  63.80
(1), the unit of the displacement fielfdis equal to the  145.51 12/10/05 90 9 1839  77.00
resolution of the underlying images and X (r — q).  02:41 14/10/05 280 33 17.58  105.60
Therefore, it is essential to rescale the displacememt:o1 14/10/05 150 11 11.03 105.60
field velocity when it is used at a different resolution,19:41 15/10/05 120 17 571  46.20
or when using the multi-resolution approaéh 15:31 19/10/05 230 37 24.7  94.60
17:01 26/10/05 170 20 8.65 85.40

DATA COLLECTION 17:01 04/11/05 80 12 12.14 103.40
. 11:31 08/11/05 170 20 19.32 114.20

Radar reflectivity data 13:2111/11/05 120 14 2435  99.00
The polar plan position indicator (PPI) reflectivity 12:3112/11/05 110 10 9.78  90.20
data of rainfall events recorded from the C-band®:1118/11/05 100 23 9.28  73.20
Pasicharoen radar were used in the analysis. THé:31 20/02/06 70 21 18.54  52.80
Pasicharoen radar is located in the western part é f51 01/07/06 390 43 637 1540
Bangkok, and belongs to the BMA. The radar :01 02/07/06 180 39 570 23.10
L .. . 0:01 30/08/06 270 32 7.44 17.05
transmitted radiation Wlth Wavelength of 5.42cmand .51 97/009/06 200 29 801 3227
produced a beam with a 40 dB width of 2.2°. |t11:31 26/09/06 130 13 2.92 16.50
was operated in a volume scan mode by measuring:31 26/09/06 260 32 12.39  28.05
reflectivity data from 3 elevation angles (0.5°, 1.5°19:11 27/09/09 130 20 561 24.20
3.5°) every 10 min. To avoid the effects of the brightl1:11 05/10/06 200 15 3.31 28.05
band, the PPI reflectivity data used in this study wer@0:41 10/10/06 170 21 4.05 1470
extracted from the raw polar data at the lowest eled0:0118/10/06 150 27 452 20.35
vation where the height of radar beam was below th&2:21 18/10/06 220 12 5.44  22.00
freezing level of the study area. These polar data wef:01 19/03/07 100 17 1.20  59.46
converted to lie on a 120 km 120 km Cartesian grid 03511 20/03/07 150 26 15.73 = 79.47
with 0.5 kmx 0.5 km spatial resolution and 10 min 11:01 09/05/07- 140 25 34.26 85.33
. . . 09:31 10/05/07 230 27 7.88 100.93

temporal resolution. To avoid the gffects of nois€g.41 14/05/07 160 37 14.84  68.40
and hail, the measured radar reflectivity, values thak.qo1 16/06/07 350 46 2420 115.06
were less than 15 dBZ were assumed to represent:01 20/07/07 250 28 528  64.00
zero reflectivity of and the reflectivity values that were11:21 23/07/07 150 29 8.39 106.66
greater than 53 dBZ were assumed to be 53 #8Z 11:51 25/07/07 260 37 28.64 121.60
Additionally, the errors due to the effect of ground19:31 10/09/07 110 41 18.86  64.80
clutter were also removed from the reflectivity datal8:1111/09/07 90 44 15.80  83.60
by using a map of known ground clutter locations, an§0:01 19/09/07 180 37 17.97  54.13
the radar measurement was discarded and interpola@i21 20/09/07 80 38 1144  45.06

in these areas. In this study, 41 rainfall events which Accumulated rain gauge rainfall were averaged from
occurred in Bangkok during June 2005 to September rainfall > 0.5 mm/h;
2007 were used.Table 1. Rumax is the maximum rain gauge rainfall.

Gauge rainfall data

Rain gauge data used in this study were obtained frooontrol of these data was performed by considering
a network of 47 tipping bucket rain gauge stationsainfall data from adjacent gauges and the plots of
located 5-50 km from the radar sitBi§. 2). These time series. If unusual rainfall data were found, these
rain gauge stations are owned and operated by BMAlata were excluded from the analysis. Note that rain
All of these stations have a tipping bucket size of 0.g5auge stations less than 5 km from the radar site were
mm and record rainfall data every 15 min. Qualitynot used as the radar could not provide reflectivity data
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Fig. 3 Comparison between observed radar images mea-
METHOD sured on 26 September 2009 and generated radar images
Application of MVA technique for temporal based on MVA and SLI methods: (a—c) Measured radar
downscaling of reflectivity data images at 17:21, 17:31, and 17:41, respectively. Generated

images for 17:31 using (d) MVA estimation (e) SLI estima-
The MVA technique is applied to reflectivity fields, tiong a(d) ()

not rainfall rates, because the power law relationship

between reflectivity and rainfall rate will have an

effect on spatial interpolation that is used to generaterpolation (SLI) is illustrated irFig. 3 The RM-
intermediate data fields. The following procedureSEs of the generated reflectivity, image obtained by
were followed to generate new radar images betweesing the MVA and SLI methods were 12.72 dBZ
two consecutive reflectivity measurements. and 13.25 dBZ, respectively, when compared to the
Step 1. Assign time interval, t; < t < t, where observed reflectivity image. It is evident that the
t1 andt, represent times of the first and the secondenerated radar reflectivity image based on the MVA
images, respectively. technique is closer to the observed reflectivity image
Step 2. For each time interval, the forward andhan thatgenerated based on the SLI method. It should
backward weight factors are calculated fromto be noted that the radar image generated from SLI
wy = (t—1t1)/(t2 — t1) andwy = (t2 — t)/(t2 — t1), method was calculated by using A + w, B.
respectively. o . )

Step 3. Read reflectivity from row and column datd"Vestigation of the optimum temporal resolution

files to matrix. LetA = the firstimage = the second °f 9enerated reflectivity data

image,C = new generated image, aht= velocity. To investigate the optimum temporal resolution of
Step 4. Produce new forwards and backwardgenerated reflectivity data when the MVA technique is
images by using’;, = w1 AV, andCy; = weBV;,  integrated into radar rainfall estimation process, new

respectively. reflectivity images between two consecutive measured
Step 5. Produce a new image using = reflectivity data were generated with different tempo-

waCh2 + w1 Coy. ral resolutions. Since the 10-min reflectivity data were

Step 6. Repeat steps 1 to 5 by changirgl, 2, 3, 4, available in this study, MVA reflectivity data with 1-

5, 6,7, 8,and 9 min. min to 9-min temporal resolutions were generated.

The generated reflectivity data were divided into 9
An example of a comparison between generatedata sets. The number of generated reflectivity images
radar images based on MVA and simple linear inbetween two consecutive reflectivity measurements
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were 8, 4, 3, and 1 for the 1-, 2-, 3-, and 4 to 9-R relationship was retrieved by calibration using the
min temporal resolutions, respectively. Note that th&0-min reflectivity data, hereafter referred as conven-
calculation time for generating one reflectivity imageional calibratedZ—R. Secondly, the SLI technique
is about 42 s (based on core2DUO 1.8 GHz). The cliwas used to generate 5-min reflectivity data. These
matological MVA Z—R parameters of the 9 data setsb-min SLI generated reflectivity data were used for
were calculated, and estimated radar rainfall obtainezhlibration of the SLLZ—R relationship. Thirdly, the
from the 9 data sets were compared. The optimumlVVA algorithm presented in the earlier section was
temporal resolution was examined by considering thesed for temporal downscaling of radar reflectivity in
smallest RMSE between rain gauge and radar rainfadrder to increase the frequency of the reflectivity data.
of each data set. The RMSEs of the radar rainfallhe 5-min MVA reflectivity data were generated and
estimates at the rain gauge locations were used tsed for calibrating the MVAZ—R relationship. The
evaluate the quality of radar rainfall. The RMSEs caralibrations of the above three cases were performed
be estimated from hourly. The reflectivity data settings of the three cases
and the corresponding rain gauge rainfall of 28 rainfall
1 9 events that occurred from June 2005 to October 2006
RMSE= N Z Z (i = Gie)"s were used for calibration of the thre&-R relation-
t=ti=t ships. These three derived relationships were used for
where R; , is the radar-rainfall accumulations at theconverting their corresponding reflectivity data sets
pixel corresponding to théh rain gauge for hout, into rainfall intensities. Then an accumulation algo-
G+ is the corresponding rain gauge rainfall for heur rithm was used to accumulate radar rainfall intensities
Ng is the number of rain gauges that measure nonzeli®o an hourly time-step. In addition, the uncalibrated
rainfall, N, is the number of time periods (in hours),Z—R relationship £ = 200R'°®)* was also used
andN is the total number of radar-gauge pairs used itp convert the three reflectivity data settings into rain
the computation. rates for comparison.

To confirm the utility of the estimated—R pa-
rameters obtained from the three cases, a validation
Radar rainfall is derived by converting measured radavas performed using 13 rainfall events that occurred
reflectivity (7) into rainfall intensity ®) using an during 2007. The effectiveness of applying the MVA
appropriateZ—R relationshig that can be expressed technique to radar rainfall estimation was evaluated by
asZ = aR’, wherea andb are model parameters comparing RMSEs between hourly rainfall and hourly
which depend on the rainfall drop size distributionsadar rainfall obtained from the above cases.
that have been sampled, assuming that the terminal
velocity of the raindrops is a function of their di- RESULTS
ameter, and that they are falling at terminal velocity )
through still aif®. Parameters of climatologic&i— PtUmum temporal resolution of generated MVA
R relationship are usually calibrated using reflectivity €fl€ctivity data
and a rain gauge network data over a period. Estim&dine finer temporal resolutions (1 min to 9 min) of
tion of the coefficients: and b in the Z—R relation radar reflectivity data settings of the 28 calibrated rain-
involves minimization of a measure of error betweeffiall events were generated using the MVA technique as
the estimated radar rainfall and corresponding rairexplained in the previous section. Theparameters
gauge data. Doelling et &, Steiner and Smittf and  of the MVA Z—R relationships of these 9 data sets are
Hagen and Yuteé¥ studied parameters of th8—R presented irFig. 4@). It should be noted that high
relationship using several years of disdrometer datsariability in a for the calibratedZ—R relationships
They found that the most suitable valuebofvas 1.5. illustrates that these parameters were sensitive to the
In the same way, the results from the study by See@flectivity data settings used for the calibration. Since
et al*> showed that variation of did not affect the this paper aims to investigate the effectiveness of
RMSE between radar and rain gauge rainfall muctapplying of the MVA technique to hourly radar rainfall
Therefore, in this study we uséd= 1.5 and the value estimation, variability of the: vaalues obtained from
of a was estimated by minimizing the RMSE betweerifferent data settings should not affect the result of
rain gauge and radar-rainfall estimates. this study because they have been applied to their

To study the effectiveness of the MVA algorithmcorresponding data sets. These derived MYAR
to radar rainfall estimation, three different climatolog+elationships were used to estimate the corresponding
ical Z—R relationships were estimated. Firstly, tHe radar rainfall intensity. Then, the hourly radar rainfall

Ny Ng

Calibration of climatological Z—R relationship
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200 @ Table 2 ClimatologicalZ—R relationships of the ensemble
180 of 28 calibrated events.
a 160 . . . ‘ Reflectivity data ~ Z—R relationship RMSE
140 | . . settings (mm/h)
120 | ¢ Measured 10-min  Z = 200R'® 3.66
00 reflectivity Z = 45R"® (calibrated) 3.61
1 R 5-min Z = 200R*® 3.45
80 1 SLI reflectivity Z = 86R*® (calibrated) 3.32
% 5-min Z = 200R"° 3.29
40 ‘ ‘ ‘ ‘ ‘ ‘ ‘ MVA reflectivity ~ Z = 130R"® (calibrated) 2.99
1 2 3 4 5 6 7 8 9 " : :
MVA temporal frequency of reflectivity data (min) RMSE between hourly radar rainfall estimates and cor-
4 ©) responding rain gauge data.
~ 35
‘; . . R . respectively. The calibrations were performed at
E 3 ¢ - o M ¢ hourly time steps and the results are presefitinie 2
g It was found that the climatological conventional cal-
~ 25 ibratedZ—R, climatological calibrated 5-min SLY—
R, and climatological calibrated 5-min MVA(—R
2 : : : : : : : relationships wereZ = 45R!5, Z = 86R!, and
o2 3 4 s 6 17 8 9 7Z=130R">, respectively. Hourly radar rainfall of
Temporal resolution (min) the above three data settings was estimated using their

Fig. 4 (a) Variation ofa of the calibrated MVAZ—R  correspondingZ—R relationships. RMSEs between

relationships; (b) RMSE between radar rainfall estimatefin gauge data and hourly radar rainfall of the en-
from different frequencies of MVA reflectivity data and rain S€mble of the 28_ events that were Calcu_lated by using
gauge measurement. the three reflectivity data sets and their correspond-

ing calibratedZ—R relationships were 3.61 mm/h,

3.32 mm/h, and 2.99 mm/h, respectively. Based
was obtained by adding up the subsequent rainfadn the 28 calibrated rainfall events, we found that
intensity within an hour. The RMSEs between hourlyapplying the MVA technique to hourly radar rainfall
radar rainfall and the corresponding rain gauge datsstimation could reduce RMSEs between hourly radar
of these 9 data sets were calculated and plotted gsinfall and rain gauge data when compared to the
illustrated inFig. 4(b). The results showed that the 5-calibrated 5-min SLV—R and conventional methods.
min temporal resolution of generated MVA reflectivity The improvement in the accuracy of radar rainfall
data gave the smallest RMSE. Moreover, the compwvas the result of accounting for the effect of storm
tation time used to generate 5-min temporal resolutiomovement within the sampling interval into radar
of MVA reflectivity data was less than the temporakainfall accumulation by increasing reflectivity data
resolutions at 1- to 4-min and it was equal to the 6-, 7setween two consecutive reflectivity images using the
, 8- and 9-min temporal resolutions. Based on the dafVA technique. Nevertheless, a validation process
used in this study, we can consider that the optimumeeds to be performed to confirm the effectiveness
temporal resolution of the generated reflectivity dataf applying the MVA technique into radar rainfall
using the MVA technique is 5 min. estimation. Different rainfall events that had not

been used in the calibration process were used for

Effectiveness of applying MVA technique into validation purposes.

hourly radar rainfall estimates Calibration result

Three reflectivity data settings, i.e., measured 10-mij2/idation result

reflectivity, 5-min SLI reflectivity, and 5-min MVA The validation was performed to confirm whether
reflectivity of the ensemble of 28 rainfall events whiclhthe calibration results presented earlier hold true in
occurred during June 2005 to October 2006 wera generic situation. The assessment was performed
used to calibrate the climatologicd—R (conven- based on the rainfall events that were not used for
tional calibratedZ—R), climatological 5-min SLIZ— estimating theZ—R relationship, and hence provide
R and climatological 5-min MVAZ—R relationships, a good indication of how either approach performs.
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Table 3 RMSEs between radar rainfall estimates and raitimation by using the MVA technique to calculate the
gauge data of the validation events. velocity of reflectivity field and generating reflectivity
data between two consecutive measured radar images
Event RMSE /h .
ven . (m.m ) . can reduce RMSEs between hourly radar and rain
Measured 10-min ~ 5-min SLI 5-min MVA  gayge rainfall by 0.33 mm/h and 0.62 mm/h for the
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a 200 45 200 86 200 130 for the validation period when compared to the SLI
b 1.6 1.5 16 15 1.6 15 andconventional methods, respectively.
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