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ABSTRACT : The main objective of this paper is to improve the accuracy of radar rainfall estimation by accounting for a
storm movement into a radar rainfall accumulation process. The multi-resolution viscous alignment (MVA) technique was
used to estimate the velocity of a rain field from two consecutively measured radar images. The analysis used the 10-min
radar reflectivity of the Pasicharoen radar and the corresponding 47 rain gauges measurements of 41 rainfall events that
occurred in Bangkok during 2005–2007. The 28 rainfall events occurring during 2005–2006 were used for calibration, and
the 13 rainfall events recorded in 2007 were used for validation. Finer temporal resolutions of radar reflectivity data, taken
at 1–9 min intervals, were generated using the MVA technique in order to investigate the optimal temporal resolution of the
Pasicharoen radar when the MVA technique was integrated into an hourly radar rainfall estimation algorithm to account for
a storm movement within a sampling interval. The results showed that using the generated 5-min MVA reflectivity data for
estimating hourly radar rainfall gave the smallest root mean square error (RMSE) between hourly radar rainfall estimates
and corresponding rain gauge data when compared to other temporal resolutions of generated MVA reflectivity. Hourly
radar rainfall obtained from the proposed algorithm, which integrates the MVA technique into the accumulation approach,
was compared with the traditional simple linear interpolation (SLI) technique and conventional method. Using the 5-min
generated MVA reflectivity data to estimate hourly radar rainfall can reduce RMSEs between hourly radar and rain gauge
rainfall by 10% and 17% for the calibration period, and by 27% and 29% for the validation period when compared to the
SLI and conventional methods, respectively.
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INTRODUCTION

The space-time resolution requirements for areal rain-
fall estimations vary depending on the application,
catchment area, type of rainfall event, and type of
model used1. Accurate hourly areal rainfall with fine
temporal resolution is an essential prerequisite for
successful flood estimation and forecasts. Weather
radar covering a large area provides spatially and
temporally continuous measurements that can be used
almost simultaneously as the storm occurs. However,
radar rainfall measurement suffers from various types
of errors and uncertainties2–5. Methods to improve
the accuracy of radar rainfall estimates have been
proposed by many researchers. These include the
algorithm to remove errors due to reflectivity measure-
ment6–8, Z–R conversion error9–12, and residual error
in radar rainfall estimation when compared to rain
gauge data13–15. Radar usually operates a scheduler
with volume scan by rotating the antenna in azimuth

while tilting the antenna vertically so as to sample
the atmosphere as a series of cones. The rate at
which a radar rotates about its axis, and the number of
elevation angles used in one volume scan cycle fix the
time between successive scans of the same position in
space by the radar. This time difference represents the
temporal resolution of the radar16. Conventional radar
rainfall accumulation algorithm is normally derived
by multiplying instantaneous radar rainfall intensity
fields by the measured time interval between sam-
ples and then accumulating into a required temporal
resolution. Consequently, there is an error in the
derived areal radar rainfall particularly for a fast-
moving storm.

Rainfall events occurring in the Bangkok area
usually arise from convective clouds17. This is
because Bangkok is located in the central part of
Thailand which is influenced by southwest monsoons,
tropical cyclones, and depressions. Convective rain-
fall is produced by adiabatic (constant heat) cooling of

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2010.36.059
http://www.scienceasia.org/2010.html
mailto:siriluk@mut.ac.th
www.scienceasia.org


60 ScienceAsia36 (2010)

vertically rising columns of air which have high tem-
poral and spatial variabilities. Flooding in Bangkok is
a serious problem since it causes enormous economic
losses and also environmental impacts. The Bangkok
Municipal Administration (BMA) has called for a
flood forecasting system integrating information from
rain gauges, hydrometric stations, radar measure-
ments, satellite measurements, and numerical weather
prediction results. The Pasicharoen radar data have
been used in this project for providing hourly radar
rainfall measurement and forecasts over the Bangkok
vicinity. This radar operates every 10 min, and most
of the rainfall events that lead to flooding in Bangkok
are convective storms. Hence, there will be errors
in hourly radar rainfall estimates and, consequently,
rainfall forecasts. This is because the movement and
development of the rainfall field often occur at a
shorter time scale than the sampling interval.

The objective of this paper is to propose an
hourly radar rainfall estimation process that accounts
for a storm movement within the sampling interval.
The multi-resolution viscous alignment (MVA) tech-
nique18 was used to estimate the velocity of a reflec-
tivity field between two consecutive measured radar
images and provide finer temporal reflectivity data
between the sampling intervals. Radar reflectivity data
from the Pasicharoen radar located in Bangkok and
corresponding rain gauges data were used in this anal-
ysis. To investigate the optimal temporal resolution
of the generated reflectivity data of the Pasicharoen
radar when the MVA technique was integrated into
an hourly radar rainfall estimation algorithm, finer
temporal resolution of radar reflectivity data taken at
1-min to 9-min intervals were produced. Thereafter,
the RMSEs between rain gauge data and radar rainfall
obtained from different data sets were compared.

Effect of storm movement on radar rainfall

Many studies have investigated the effect of sampling
interval on the radar rainfall accumulation process.
They found that the error on radar rainfall estimation
increased with increased space resolution and time be-
tween samples19–21. The temporal resolution of radar
rainfall measurement of most operational meteorolog-
ical radars is 5–10 min. To obtain radar rainfall data
at a required temporal resolution, these instantaneous
radar rainfall maps are simply added by neglecting
the fact that the storm moved and evolved during
the sampling period. This leads to error on derived
accumulated radar rainfall, especially for the case of a
fast-moving storm such as convective rainfall.

To reduce the sampling problem on radar rainfall
estimation, different tracking techniques have been

proposed to derive information on the movement and
development of rainfall. This information has been
used to simulate the rainfall development system be-
tween two consecutive radar samples. Thereafter, the
measured and simulated rainfall fields are added to
obtain accumulated radar rainfall data at a specified
temporal resolution.

The tracking techniques can be classified into
three main groups. The first group is the cell centroid
tracking technique22–25. This technique must first
identify a rainfall cell by considering an exceeded
intensity threshold. Then, the centre position, shape,
and size of each rain cell are calculated. The identified
cells of consecutive radar data samples are compared
to the previous sample. If the corresponding move-
ment vector and rate of change in size of a considered
rain cell are within the allowed limits, the history of
rain cell development is taken into account. Although
this concept is simple, it is difficult to simulate an
automatic model to identify the rain cell boundary,
especially for joined or split cells. Moreover, each
centroid velocity vector is not easy to derive26. All
existing centroid-type techniques use the storm cen-
troid displacement to forecast the storm motion. This
may result in large errors if the shape or sizes of the
storm change rapidly27.

The second group is the cross-correlation tracking
technique28–31. This technique divides Cartesian radar
data into equally-spaced grid cells. A movement
vector of each grid cell is derived by finding positions
of cells from the Cartesian data array of the previous
and the next radar data samples which have the highest
similarity. The strength of this technique is that it pro-
vides more accurate velocity and position information
of reflectivity echoes24. However, Ravela and Chat-
darong18 suggest that there are several disadvantages
of this method.

The third group is the variational technique32.
The basic idea of the variational technique is to guess
a trial function for the problem and then adjust the
function until the velocity field of the trial func-
tion is minimized. In this technique, an arithmetic
equation or function represents an event or pattern
of observation and its constrained function must be
defined. The variational technique can be performed
by following a model such as optical flow model33,
feature calibration alignment34, data assimilation by
field alignment35, and MVA18. Frequently, all of
these models provide intensive details of velocity field
more accurately than the cell-centroid tracking and
cross-correlation methods34. The MVA method was
directly developed from the field alignment34 and the
algorithm was extended into a multi-resolution pro-
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cedure18 which is used to find displacement vectors
more quickly than those procedures mentioned above.
This technique derives a vector field from two images
continuously by following the image flow approach36.
The displacement fields produced by MVA are dense,
the spatial consistency of the displacement vector field
is implicit, and high-order and small scale deforma-
tions can be handled easily. Unlike an optical-flow
algorithm, it can calculate the displacement vector
field from mesoscale features as a result of large
time-steps or rapid deformation. In addition, the
MVA algorithm produces displacement fields quickly.
Therefore, in this study, the effect of storm move-
ment within the sampling interval was accounted for
in an hourly radar rainfall estimation algorithm by
using the MVA technique to derive the reflectivity
field velocity from two consecutive measured radar
images. Thereafter, new reflectivity images between
each sampling interval were generated and the hourly
radar rainfall was derived by adding up the subsequent
rainfall intensities within an hour.

Multi-resolution viscous alignment

The MVA algorithm uses a Bayesian formulation to
solve the motion estimation problem and imposes
smoothness constraints to provide a consistent veloc-
ity field. It is a position adjustment technique35,37.
It iteratively solves for the position error problem by
minimizing an adjustment function based on gradient
and divergence terms. This algorithm is practical
for data without well-defined features and more ro-
bust than the correlation-based approaches where the
displacement is given by the maximum correlation
between two patches of images within a searching
distance38,39. In addition, the MVA technique uses
local constraints for relating displacements and rep-
resents the displacement as smooth flow fields. This
could be useful when working on a large region of the
atmosphere where characteristics and features vary.

The concept of field alignment is demonstrated
in Fig. 1. A state vector on a discrete grid is moved
by deforming its grid (r) by a displacement (q). The
displacement fieldq is real-valued, soX(r − q) must
be evaluated by interpolation. This displacementq
represents a warping of the underlying grid, which in
effect is able to move structures in the image around.

To calculate the field alignment we use18

w1∇2qi + w2∇(∇qi)

+
[
∇X|pHTR−1(HX(p)− Y )

]
i
= 0, (1)

whereH is transformation matrix which is an identity
matrix, X and Y are the intensity scalar fields of

X( )r X(     )r- q

q  =  (   x ,  y )

Fig. 1 Graphical illustration of field alignment.X(r) is the
image on the normal grid,q is a displacement vector, and
X(r − q) represents displacement ofX by q. ∆x and∆y

are the difference in displacements inx and y directions,
respectively.

the first and second images, respectively,R is the
covariance matrix,qi is the vector of displacements,
andw1 andw2 are weight factors. Because the state
of interest to be interpolated and the measurement are
in dBZ units, the measurement is also performed at all
pixels.

Eq. (1) is nonlinear and can be solved numerically
by an iterative procedure similar to that used to solve
the Poisson equation. An estimate of displacement
can then be obtained. During each iteration,qi is
computed and used to deform the original imageX(r)
to X(r − q). The process is repeated using bi-cubic
interpolation until the misfit between the deformation
of the first image,X(r − q), and the second image
Y (r) does not improve, or an iteration limit is reached.
The vector of displacementqi in (1) can be split into
two velocity field equations; the velocity fields inx
andy axes areqxi = ∆xi andqyi = ∆yi, respectively.
Finally, we have an aligned image,X(r − q), with de-
formation and a displacement velocity field that is the
sum of the displacement vector at each iterationq̂ =∑N

i=1 qi for individual displacementŝq at iterations
i = 1, . . ., N . Since the process to obtain̂q is time
consuming, the multi-resolution concept is applied to
speed up the algorithm. It starts by coarsening the
resolution of the two images to obtain the coarse-scale
displacement. At the coarser resolution, the alignment
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will converge faster because the displacement will be
small relative to the coarser resolution. Then, this
coarse displacement velocity field is rescaled to the
finer resolution and used to initially deform the finer
resolution ofX. Finally, the algorithm solves for
another displacement field at the finer resolution and
repeats the coarse-to-fine process until the resolution
of interest is reached. When iteratively solving for
(1), the unit of the displacement field̂q is equal to the
resolution of the underlying imagesX andX(r − q).
Therefore, it is essential to rescale the displacement
field velocity when it is used at a different resolution,
or when using the multi-resolution approach18.

DATA COLLECTION

Radar reflectivity data

The polar plan position indicator (PPI) reflectivity
data of rainfall events recorded from the C-band
Pasicharoen radar were used in the analysis. The
Pasicharoen radar is located in the western part of
Bangkok, and belongs to the BMA. The radar
transmitted radiation with wavelength of 5.42 cm and
produced a beam with a 40 dB width of 2.2°. It
was operated in a volume scan mode by measuring
reflectivity data from 3 elevation angles (0.5°, 1.5°,
3.5°) every 10 min. To avoid the effects of the bright
band, the PPI reflectivity data used in this study were
extracted from the raw polar data at the lowest ele-
vation where the height of radar beam was below the
freezing level of the study area. These polar data were
converted to lie on a 120 km×120 km Cartesian grid
with 0.5 km×0.5 km spatial resolution and 10 min
temporal resolution. To avoid the effects of noise
and hail, the measured radar reflectivity, values that
were less than 15 dBZ were assumed to represent
zero reflectivity of and the reflectivity values that were
greater than 53 dBZ were assumed to be 53 dBZ40.
Additionally, the errors due to the effect of ground
clutter were also removed from the reflectivity data
by using a map of known ground clutter locations, and
the radar measurement was discarded and interpolated
in these areas. In this study, 41 rainfall events which
occurred in Bangkok during June 2005 to September
2007 were used. (Table 1).

Gauge rainfall data

Rain gauge data used in this study were obtained from
a network of 47 tipping bucket rain gauge stations
located 5–50 km from the radar site (Fig. 2). These
rain gauge stations are owned and operated by BMA.
All of these stations have a tipping bucket size of 0.5
mm and record rainfall data every 15 min. Quality

Table 1 Rainfall events used in the analysis.

Start time Duration Number of Ravg Rmax

(min) gauges (mm/h) (mm/h)

18:20 23/06/05 120 28 11.14 132.00
17:20 29/06/05 130 26 11.35 84.00
16:10 03/07/05 60 10 8.19 52.80
08:20 10/07/05 200 34 29.44 98.00
16:20 28/07/05 70 23 6.56 63.80
16:51 12/10/05 90 9 18.39 77.00
02:41 14/10/05 280 33 17.58 105.60
14:01 14/10/05 150 11 11.03 105.60
19:41 15/10/05 120 17 5.71 46.20
15:31 19/10/05 230 37 24.7 94.60
17:01 26/10/05 170 20 8.65 85.40
17:01 04/11/05 80 12 12.14 103.40
11:31 08/11/05 170 20 19.32 114.20
13:21 11/11/05 120 14 24.35 99.00
12:31 12/11/05 110 10 9.78 90.20
16:11 18/11/05 100 23 9.28 73.20
11:31 20/02/06 70 21 18.54 52.80
14:51 01/07/06 390 43 6.37 15.40
17:01 02/07/06 180 39 5.70 23.10
20:01 30/08/06 270 32 7.44 17.05
21:51 07/09/06 200 29 8.01 32.27
11:31 26/09/06 130 13 2.92 16.50
15:31 26/09/06 260 32 12.39 28.05
19:11 27/09/09 130 20 5.61 24.20
11:11 05/10/06 200 15 3.31 28.05
00:41 10/10/06 170 21 4.05 14.70
00:01 18/10/06 150 27 4.52 20.35
12:21 18/10/06 220 12 5.44 22.00
06:01 19/03/07 100 17 1.20 59.46
03:11 20/03/07 150 26 15.73 79.47
11:01 09/05/07 140 25 34.26 85.33
09:31 10/05/07 230 27 7.88 100.93
16:41 14/05/07 160 37 14.84 68.40
15:01 16/06/07 350 46 24.20 115.06
17:01 20/07/07 250 28 5.28 64.00
11:21 23/07/07 150 29 8.39 106.66
11:51 25/07/07 260 37 28.64 121.60
19:31 10/09/07 110 41 18.86 64.80
18:11 11/09/07 90 44 15.80 83.60
00:01 19/09/07 180 37 17.97 54.13
20:21 20/09/07 80 38 11.44 45.06

Accumulated rain gauge rainfall were averaged from
rainfall > 0.5 mm/h;
Rmax is the maximum rain gauge rainfall.

control of these data was performed by considering
rainfall data from adjacent gauges and the plots of
time series. If unusual rainfall data were found, these
data were excluded from the analysis. Note that rain
gauge stations less than 5 km from the radar site were
not used as the radar could not provide reflectivity data
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Fig. 2 Map of Bangkok area showing rain gauges (small
circles) and the Pasicharoen radar (radar symbol).

for them.

METHOD

Application of MVA technique for temporal
downscaling of reflectivity data

The MVA technique is applied to reflectivity fields,
not rainfall rates, because the power law relationship
between reflectivity and rainfall rate will have an
effect on spatial interpolation that is used to generate
intermediate data fields. The following procedures
were followed to generate new radar images between
two consecutive reflectivity measurements.
Step 1. Assign time intervalt, t1 < t < t2 where
t1 and t2 represent times of the first and the second
images, respectively.
Step 2. For each time interval, the forward and
backward weight factors are calculated from
w1 = (t− t1)/(t2 − t1) andw2 = (t2 − t)/(t2 − t1),
respectively.
Step 3. Read reflectivity from row and column data
files to matrix. LetA = the first image,B = the second
image,C = new generated image, andV = velocity.
Step 4. Produce new forwards and backwards
images by usingC12 = w1AV1 andC21 = w2BV2,
respectively.
Step 5. Produce a new image usingC =
w2C12 + w1C21.
Step 6. Repeat steps 1 to 5 by changingt = 1, 2, 3, 4,
5, 6, 7, 8, and 9 min.

An example of a comparison between generated
radar images based on MVA and simple linear in-

Fig. 3 Comparison between observed radar images mea-
sured on 26 September 2009 and generated radar images
based on MVA and SLI methods: (a–c) Measured radar
images at 17:21, 17:31, and 17:41, respectively. Generated
images for 17:31 using (d) MVA estimation (e) SLI estima-
tion.

terpolation (SLI) is illustrated inFig. 3. The RM-
SEs of the generated reflectivity, image obtained by
using the MVA and SLI methods were 12.72 dBZ
and 13.25 dBZ, respectively, when compared to the
observed reflectivity image. It is evident that the
generated radar reflectivity image based on the MVA
technique is closer to the observed reflectivity image
than that generated based on the SLI method. It should
to be noted that the radar image generated from SLI
method was calculated by usingw2A + w1B.

Investigation of the optimum temporal resolution
of generated reflectivity data

To investigate the optimum temporal resolution of
generated reflectivity data when the MVA technique is
integrated into radar rainfall estimation process, new
reflectivity images between two consecutive measured
reflectivity data were generated with different tempo-
ral resolutions. Since the 10-min reflectivity data were
available in this study, MVA reflectivity data with 1-
min to 9-min temporal resolutions were generated.
The generated reflectivity data were divided into 9
data sets. The number of generated reflectivity images
between two consecutive reflectivity measurements
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were 8, 4, 3, and 1 for the 1-, 2-, 3-, and 4 to 9-
min temporal resolutions, respectively. Note that the
calculation time for generating one reflectivity image
is about 42 s (based on core2DUO 1.8 GHz). The cli-
matological MVAZ–R parameters of the 9 data sets
were calculated, and estimated radar rainfall obtained
from the 9 data sets were compared. The optimum
temporal resolution was examined by considering the
smallest RMSE between rain gauge and radar rainfall
of each data set. The RMSEs of the radar rainfall
estimates at the rain gauge locations were used to
evaluate the quality of radar rainfall. The RMSEs can
be estimated from

RMSE=

√√√√ 1
N

Nt∑
t=1

NG∑
i=1

(Ri,t −Gi,t)
2
,

whereRi,t is the radar-rainfall accumulations at the
pixel corresponding to theith rain gauge for hourt,
Gi,t is the corresponding rain gauge rainfall for hourt,
NG is the number of rain gauges that measure nonzero
rainfall, Nt is the number of time periods (in hours),
andN is the total number of radar-gauge pairs used in
the computation.

Calibration of climatological Z–R relationship

Radar rainfall is derived by converting measured radar
reflectivity (Z) into rainfall intensity (R) using an
appropriateZ–R relationship41 that can be expressed
as Z = aRb, wherea and b are model parameters
which depend on the rainfall drop size distributions
that have been sampled, assuming that the terminal
velocity of the raindrops is a function of their di-
ameter, and that they are falling at terminal velocity
through still air13. Parameters of climatologicalZ–
R relationship are usually calibrated using reflectivity
and a rain gauge network data over a period. Estima-
tion of the coefficientsa and b in the Z–R relation
involves minimization of a measure of error between
the estimated radar rainfall and corresponding rain-
gauge data. Doelling et al42, Steiner and Smith43 and
Hagen and Yuter44 studied parameters of theZ–R
relationship using several years of disdrometer data.
They found that the most suitable value ofb was 1.5.
In the same way, the results from the study by Seed
et al45 showed that variation ofb did not affect the
RMSE between radar and rain gauge rainfall much.
Therefore, in this study we usedb = 1.5 and the value
of a was estimated by minimizing the RMSE between
rain gauge and radar-rainfall estimates.

To study the effectiveness of the MVA algorithm
to radar rainfall estimation, three different climatolog-
ical Z–R relationships were estimated. Firstly, theZ–

R relationship was retrieved by calibration using the
10-min reflectivity data, hereafter referred as conven-
tional calibratedZ–R. Secondly, the SLI technique
was used to generate 5-min reflectivity data. These
5-min SLI generated reflectivity data were used for
calibration of the SLIZ–R relationship. Thirdly, the
MVA algorithm presented in the earlier section was
used for temporal downscaling of radar reflectivity in
order to increase the frequency of the reflectivity data.
The 5-min MVA reflectivity data were generated and
used for calibrating the MVAZ–R relationship. The
calibrations of the above three cases were performed
hourly. The reflectivity data settings of the three cases
and the corresponding rain gauge rainfall of 28 rainfall
events that occurred from June 2005 to October 2006
were used for calibration of the threeZ–R relation-
ships. These three derived relationships were used for
converting their corresponding reflectivity data sets
into rainfall intensities. Then an accumulation algo-
rithm was used to accumulate radar rainfall intensities
into an hourly time-step. In addition, the uncalibrated
Z–R relationship (Z = 200R1.6)41 was also used
to convert the three reflectivity data settings into rain
rates for comparison.

To confirm the utility of the estimatedZ–R pa-
rameters obtained from the three cases, a validation
was performed using 13 rainfall events that occurred
during 2007. The effectiveness of applying the MVA
technique to radar rainfall estimation was evaluated by
comparing RMSEs between hourly rainfall and hourly
radar rainfall obtained from the above cases.

RESULTS

Optimum temporal resolution of generated MVA
reflectivity data

Nine finer temporal resolutions (1 min to 9 min) of
radar reflectivity data settings of the 28 calibrated rain-
fall events were generated using the MVA technique as
explained in the previous section. Thea parameters
of the MVA Z–R relationships of these 9 data sets are
presented inFig. 4(a). It should be noted that high
variability in a for the calibratedZ–R relationships
illustrates that these parameters were sensitive to the
reflectivity data settings used for the calibration. Since
this paper aims to investigate the effectiveness of
applying of the MVA technique to hourly radar rainfall
estimation, variability of thea vaalues obtained from
different data settings should not affect the result of
this study because they have been applied to their
corresponding data sets. These derived MVAZ–R
relationships were used to estimate the corresponding
radar rainfall intensity. Then, the hourly radar rainfall
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Fig. 4 (a) Variation of a of the calibrated MVAZ–R

relationships; (b) RMSE between radar rainfall estimates
from different frequencies of MVA reflectivity data and rain
gauge measurement.

was obtained by adding up the subsequent rainfall
intensity within an hour. The RMSEs between hourly
radar rainfall and the corresponding rain gauge data
of these 9 data sets were calculated and plotted as
illustrated inFig. 4(b). The results showed that the 5-
min temporal resolution of generated MVA reflectivity
data gave the smallest RMSE. Moreover, the compu-
tation time used to generate 5-min temporal resolution
of MVA reflectivity data was less than the temporal
resolutions at 1- to 4-min and it was equal to the 6-, 7-
, 8- and 9-min temporal resolutions. Based on the data
used in this study, we can consider that the optimum
temporal resolution of the generated reflectivity data
using the MVA technique is 5 min.

Effectiveness of applying MVA technique into
hourly radar rainfall estimates Calibration result

Three reflectivity data settings, i.e., measured 10-min
reflectivity, 5-min SLI reflectivity, and 5-min MVA
reflectivity of the ensemble of 28 rainfall events which
occurred during June 2005 to October 2006 were
used to calibrate the climatologicalZ–R (conven-
tional calibratedZ–R), climatological 5-min SLIZ–
R and climatological 5-min MVAZ–R relationships,

Table 2 ClimatologicalZ–R relationships of the ensemble
of 28 calibrated events.

Reflectivity data Z–R relationship RMSE*

settings (mm/h)

Measured 10-min Z = 200R1.6 3.66
reflectivity Z = 45R1.5 (calibrated) 3.61

5-min Z = 200R1.6 3.45
SLI reflectivity Z = 86R1.5 (calibrated) 3.32

5-min Z = 200R1.6 3.29
MVA reflectivity Z = 130R1.5 (calibrated) 2.99

* RMSE between hourly radar rainfall estimates and cor-
responding rain gauge data.

respectively. The calibrations were performed at
hourly time steps and the results are present inTable 2.
It was found that the climatological conventional cal-
ibratedZ–R, climatological calibrated 5-min SLIZ–
R, and climatological calibrated 5-min MVAZ–R
relationships wereZ = 45R1.5, Z = 86R1.5, and
Z = 130R1.5, respectively. Hourly radar rainfall of
the above three data settings was estimated using their
correspondingZ–R relationships. RMSEs between
rain gauge data and hourly radar rainfall of the en-
semble of the 28 events that were calculated by using
the three reflectivity data sets and their correspond-
ing calibratedZ–R relationships were 3.61 mm/h,
3.32 mm/h, and 2.99 mm/h, respectively. Based
on the 28 calibrated rainfall events, we found that
applying the MVA technique to hourly radar rainfall
estimation could reduce RMSEs between hourly radar
rainfall and rain gauge data when compared to the
calibrated 5-min SLIZ–R and conventional methods.
The improvement in the accuracy of radar rainfall
was the result of accounting for the effect of storm
movement within the sampling interval into radar
rainfall accumulation by increasing reflectivity data
between two consecutive reflectivity images using the
MVA technique. Nevertheless, a validation process
needs to be performed to confirm the effectiveness
of applying the MVA technique into radar rainfall
estimation. Different rainfall events that had not
been used in the calibration process were used for
validation purposes.

Validation result

The validation was performed to confirm whether
the calibration results presented earlier hold true in
a generic situation. The assessment was performed
based on the rainfall events that were not used for
estimating theZ–R relationship, and hence provide
a good indication of how either approach performs.
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Table 3 RMSEs between radar rainfall estimates and rain
gauge data of the validation events.

Event RMSE (mm/h)

Measured 10-min 5-min SLI 5-min MVA
reflectivity reflectivity reflectivity

a 200 45 200 86 200 130
b 1.6 1.5 1.6 1.5 1.6 1.5

19 Mar 2.36 2.19 2.29 2.13 2.09 0.59
20 Mar 4.54 3.54 4.03 3.42 3.99 2.39
9 May 4.36 3.96 3.97 3.87 4.17 3.37
10 May 3.89 3.75 3.43 3.25 3.19 1.96
14 May 4.32 3.52 4.25 3.15 2.84 2.97
16 May 5.12 4.84 5.08 4.80 4.78 4.80
20 July 4.24 4.11 4.36 3.94 5.26 1.10
23 July 3.88 3.64 3.76 3.17 3.78 1.85
25 July 5.28 5.01 5.52 5.33 6.3 5.07
10 Sep 3.43 3.03 3.18 3.01 2.97 2.84
11 Sep 3.89 3.49 3.79 3.26 3.66 2.24
17 Sep 4.23 3.26 4.19 3.34 4.17 2.88
20 Sep 3.94 3.24 3.73 3.56 2.04 1.88

Mean 4.11 3.66 3.96 3.56 3.79 2.61

13 rainfall events which occurred during March–
September 2007 were used for validation. These
rainfall events had not been used for calibration.
Accuracies of radar rainfall estimates were compared
for six different cases (Table 3).

FromTable 3, we found that accounting for storm
movement by applying MVA technique to increase
temporal frequency of reflectivity data (rightmost col-
umn in Table 3) gave the smallest RMSEs for all
of the validation rainfall events. The validation re-
sults showed that, on average, integrating the MVA
technique into the hourly radar rainfall estimation
process could reduce RMSEs between hourly radar
rainfall and rain gauge measurement by 0.95 mm/h
and 1.05 mm/h when compared to using the SLI and
conventional methods, respectively. This confirmed
the effectiveness of the MVAZ–R relationship and
the efficiency of the MVA technique for taking into
account the effect of storm movement on hourly radar
rainfall estimates.

CONCLUSIONS

The main conclusions of this study are as follows.
(1) The optimum temporal resolution of generated
reflectivity data of the Pasicharoen radar based on the
MVA technique is 5 min. (2) The climatologicalZ–R
relationship of the Pasicharoen radar based on 5-min
MVA reflectivity data isZ = 130R1.5. (3) Account-
ing for the storm movement in hourly radar rainfall es-

timation by using the MVA technique to calculate the
velocity of reflectivity field and generating reflectivity
data between two consecutive measured radar images
can reduce RMSEs between hourly radar and rain
gauge rainfall by 0.33 mm/h and 0.62 mm/h for the
calibration period and by 0.95 mm/h and 1.05 mm/h
for the validation period when compared to the SLI
and conventional methods, respectively.
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8. Öztürk K, Yilmazer AU (2007) Improving the accuracy
of the radar rainfall estimates using gage adjustment
techniques: Case study for West Anatolia, Turkey.
Atmos Res86, 139–48.

9. Joss J, Waldvogel A (1990) Precipitation measurement
and hydrology. In: Atlas D (ed)Radar in Meteorology:
Battan Memorial and 40th Anniversary Radar Meteo-
rology, Amer Meteor Soc, Boston, pp 577–606.

10. Liu C (1995) Numerical analysis of error quantification
and propagation in radar remote sensing for rainfall
estimation. PhD thesis, Univ of Iowa.

11. Collier CG (1996)Applications of Weather Radar Sys-
tems: A Gauge to Uses of Radar in Meteorology and
Hydrology, Wiley, New York.

12. Chumchean S, Sharma A, Seed A (2008) An opera-
tional approach for classifying storms in real-time radar
rainfall estimation.J Hydrol363, 1–17.

13. Chumchean S, Sharma A, Seed A (2006) Correcting

www.scienceasia.org

http://www.scienceasia.org/2010.html
http://dx.doi.org/10.1016/j.jhydrol.2008.05.025
http://dx.doi.org/10.1016/j.jhydrol.2008.05.025
http://dx.doi.org/10.1016/j.jhydrol.2008.05.025
http://dx.doi.org/10.1016/0022-1694(94)90138-4
http://dx.doi.org/10.1016/0022-1694(94)90138-4
http://dx.doi.org/10.1016/0022-1694(94)90138-4
http://dx.doi.org/10.1016/0022-1694(94)90138-4
http://dx.doi.org/10.1016/S0309-1708(02)00062-3
http://dx.doi.org/10.1016/S0309-1708(02)00062-3
http://dx.doi.org/10.1175/JTECH1832.1
http://dx.doi.org/10.1175/JTECH1832.1
http://dx.doi.org/10.1175/JTECH1832.1
http://dx.doi.org/10.1029/2001JD000377
http://dx.doi.org/10.1029/2001JD000377
http://dx.doi.org/10.1029/2001JD000377
http://dx.doi.org/10.1175/1520-0426(2004)021<1545:AOSIRR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2004)021<1545:AOSIRR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2004)021<1545:AOSIRR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2004)021<1545:AOSIRR>2.0.CO;2
http://dx.doi.org/10.1016/j.atmosres.2007.03.009
http://dx.doi.org/10.1016/j.atmosres.2007.03.009
http://dx.doi.org/10.1016/j.atmosres.2007.03.009
http://dx.doi.org/10.1016/j.atmosres.2007.03.009
http://dx.doi.org/10.1016/j.jhydrol.2008.09.005
http://dx.doi.org/10.1016/j.jhydrol.2008.09.005
http://dx.doi.org/10.1016/j.jhydrol.2008.09.005
http://dx.doi.org/10.1016/j.jhydrol.2005.05.013
http://dx.doi.org/10.1016/j.jhydrol.2005.05.013
www.scienceasia.org


ScienceAsia36 (2010) 67

of real-time radar rainfall bias using a Kalman filtering
approach.J Hydrol317, 123–37.

14. Ciach GJ, Krajewski WF, Villarini G (2007) Product-
error-driven uncertainty model for probabilistic precip-
itation estimation with NEXRAD data.J Hydrometeo-
rol 8, 1325–47.

15. Germann U, Berenguer M, Sempere-Torres D, Zappa
M (2009) REAL - Ensemble radar precipitation esti-
mation for hydrology in a mountainous region.Q J Roy
Meteorol Soc135, 445–56.

16. Smith JA, Krajewski WF (1991) Estimation of mean
field bias of radar rainfall estimates.J Appl Meteorol
30, 397–412.

17. Talumassawatdi R (2006) Radar rainfall estimates.
Technical Notes, Royal Rainmaking and Agricultural
Aviation, April 2006, Bangkok.

18. Ravela S, Chatdarong V (2006) Rainfall advection us-
ing velocimetry by multiresolution viscous alignment.
arXiv:physics/0604158.

19. Harrold TW, English EL, Nicholass CA (1974) The ac-
curacy of radar-derived rainfall measurements in hilly
terrain.Q J Roy Meteorol Soc100, 331–50.

20. Wilson JW, Brandes EA (1979) Radar measurement
of rainfall—a summary.Bull Am Meteorol Soc60,
1048–58.

21. Anagnostou EN, Krajewski WF, Smith JA (1999) Un-
certainty quantification of mean areal radar-rainfall
estimates.J Atmos Ocean Tech16, 206–15.

22. Rosenfeld D (1987) Objective method for analysis and
tracking of convective cells as seen by radar.J Atmos
Ocean Tech4, 422–34.

23. Dixon M, Weiner G (1993) TITAN: Thunderstorm
identification, tracking, analysis and nowcasting – A
radar based methodology.J Atmos Ocean Tech10,
785–97.

24. Johnson JT, MacKeen PL, Witt A, Mitchell ED, Stumpf
GJ, Eilts MD, Thomas KW (1998) The Storm Cell
Identification and Tracking (SCIT) algorithm: An
enhanced WSR-88D algorithm.Weather Forecast13,
263–76.

25. Handwerker J (2002) Cell tracking with TRACE3D—a
new algorithm.Atmos Res61, 15–34.

26. Hannesen R (2002) An enhanced surface rainfall algo-
rithm for radar data. Deliverable 4.4, Multiple-Sensor
Precipitation Measurements, Integration, Calibration
and Flood Forecasting (MUSIC).

27. Han L, Fu S, Yang G, Wang H, Zheng Y, Lin Y
(2008) A stochastic method for convective storm iden-
tification, tracking and nowcasting.Progr Nat Sci18,
1557–63.

28. Hilst GR, Russo JA Jr (1960) An objective extrapola-
tion technique for semiconservative fields with an ap-
plication to radar patterns. Tech Memo No 3, Travelers
Weather Research Center, Hartford, CT.

29. Rinehart RE, Gravy ET (1978) Three-dimension storm
motion detect by conventional weather radar.Nature
273, 287–9.

30. Tuttle JD, Foote GB (1990) Determination of the
boundary layer airflow from a single Doppler radar.
J Atmos Ocean Tech7, 218–32.

31. Li L, Schmid W, Joss J (1995) Nowcasting of motion
and growth of precipitation with radar over a complex
orography.J Appl Meteorol34, 1286–300.

32. Euler L (1744) Methodus Inveniendi Lineas Curvas
Maximi Minimive Proprietate Gaudentes (A method
for finding curves processing maximal and minimal
properties), Laussanne and Geneva, Springer-Verlag,
New York.

33. Bowler NE, Pierce CE, Seed A (2004) Development
of a precipitation nowcasting algorithm based upon
optical flow techniques.J Hydrol288, 74–91.

34. Chatdarong V (2006) Multi-sensor rainfall data assim-
ilation using ensemble approaches. PhD thesis, MIT.

35. Ravela S, Emanuel SK, McLaughlin D (2006) Data As-
similation by Field Alignment.Physica D230, 127–45.

36. Subbarao M (1989) Interpretation of image flow: a
spatio-temporal approach.IEEE Trans Pattern Anal
Mach Intell11, 266–78.

37. Ravela S (2006) Amplitude-position formulation of
data assimilation. In: Computational Science - ICCS
2006, Proceedings Part III, Springer-Verlag, Berlin,
pp 497–505.

38. Junck L, Moen JG, Hutchins GD, Brown MB, Kuhl DE
(1990) Correlation methods for the centering, rotation,
and alignment of functional brain images.J Nucl Med
31, 1220–6.

39. Dong L, Boyer AL (1996) A portal image alignment
and patient setup verification procedure using moments
and correlation technique.Phys Med Biol41, 697–723.

40. Fulton RA, Breidenbach JP, Seo D-J, Miller DA,
Brannon TO (1998) The WSR-88D rainfall algorithm.
Weather Forecast13, 377–95.

41. Marshall JS, Palmer WM (1948) The distribution of
raindrops with size.J Meteorol5, 165–6.

42. Doelling IG, Joss J, Riedel J (1998) Systematic vari-
ations ofZ − R-relationships from drop size distri-
butions measured in northern Germany during seven
years.Atmos Res47–48, 635–49.

43. Steiner M, Smith JA (2000) Reflectivity, rain rate,
and kinetic energy flux relationships based on raindrop
spectra.J Appl Meteorol39, 1923–40.

44. Hagen M, Yuter SE (2003) Relations between radar re-
flectivity, liquid water content, and rainfall rate during
the MAP-SOP.Q J Roy Meteorol Soc128, 477–93.

45. Seed A, Siriwardena L, Sun X, Jordan P, Elliott J (2002)
On the calibration of Australian weather radars, Tech
Rep 02/7 Cooperative Research Centre for Catchment
Hydrology, Melbourne, p 40.

www.scienceasia.org

http://www.scienceasia.org/2010.html
http://dx.doi.org/10.1016/j.jhydrol.2005.05.013
http://dx.doi.org/10.1016/j.jhydrol.2005.05.013
http://dx.doi.org/10.1175/2007JHM814.1
http://dx.doi.org/10.1175/2007JHM814.1
http://dx.doi.org/10.1175/2007JHM814.1
http://dx.doi.org/10.1175/2007JHM814.1
http://dx.doi.org/10.1002/qj.375
http://dx.doi.org/10.1002/qj.375
http://dx.doi.org/10.1002/qj.375
http://dx.doi.org/10.1002/qj.375
http://dx.doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
http://dx.doi.org/10.1002/qj.49710042506
http://dx.doi.org/10.1002/qj.49710042506
http://dx.doi.org/10.1002/qj.49710042506
http://dx.doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
http://dx.doi.org/10.1016/S0169-8095(01)00100-4
http://dx.doi.org/10.1016/S0169-8095(01)00100-4
http://dx.doi.org/10.1016/j.pnsc.2008.06.006
http://dx.doi.org/10.1016/j.pnsc.2008.06.006
http://dx.doi.org/10.1016/j.pnsc.2008.06.006
http://dx.doi.org/10.1016/j.pnsc.2008.06.006
http://dx.doi.org/10.1038/273287a0
http://dx.doi.org/10.1038/273287a0
http://dx.doi.org/10.1038/273287a0
http://dx.doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
http://dx.doi.org/10.1016/j.jhydrol.2003.11.011
http://dx.doi.org/10.1016/j.jhydrol.2003.11.011
http://dx.doi.org/10.1016/j.jhydrol.2003.11.011
http://dx.doi.org/10.1016/j.physd.2006.09.035
http://dx.doi.org/10.1016/j.physd.2006.09.035
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1007/11758532_66
http://dx.doi.org/10.1007/11758532_66
http://dx.doi.org/10.1007/11758532_66
http://dx.doi.org/10.1007/11758532_66
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1109/34.21796
http://dx.doi.org/10.1088/0031-9155/41/4/008
http://dx.doi.org/10.1088/0031-9155/41/4/008
http://dx.doi.org/10.1088/0031-9155/41/4/008
http://dx.doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
http://dx.doi.org/10.1016/S0169-8095(98)00043-X
http://dx.doi.org/10.1016/S0169-8095(98)00043-X
http://dx.doi.org/10.1016/S0169-8095(98)00043-X
http://dx.doi.org/10.1016/S0169-8095(98)00043-X
http://dx.doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2
http://dx.doi.org/10.1256/qj.02.23
http://dx.doi.org/10.1256/qj.02.23
http://dx.doi.org/10.1256/qj.02.23
www.scienceasia.org

