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ABSTRACT: We examine the role of the replacement axiom and the power set axiom in proving the existence of the
integers Z) and the rationals(). We show that without the power set axiom, the replacement axiom is sufficient for the
existence ofZ andQ but if both axioms are removed from Zermelo-Fraenkel set theory, then no infinite Cartesian products
can be proved to exist and thus the existencg ahdQ cannot be proved.
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INTRODUCTION Table 1 The axioms of Zermelo-Fraenkel set theory.

The earliest axiom system for set theory was invented. . :
by Zermelo in 1908. The Power Set Axiofaple 1), elgmstence There exists a set.
which asserts the existence of the power set of any s@xtensionality If two sets have exactly the same
is one of Zermelo's axioms?. members, then they are equal.
The Replacement Axiom was not part of Zer-
melo’s system. It was independently discovered bffoundation Every nonempty set has ag-minimal
Fraenkel and Skolem in 1922 in order to develop ordi- ~ €lement.
nal arithmetic and transfinite inducti®i. Actually, it
is an axiom schema which states that'ifs a function
class whose domain is a set, then its range is also a set.
It has been shown that (1) the Power Set Ax-
iom is independent from Replacement, Extensionality,
Union, and Choice and (2) the Replacement Axiom ifairing For any setsr and y, there is a set that
independent from Power Set, Extensionality, Union,  contains both: andy.
and Choicé.
It is also well known that the Power Set AxiomUnion For any setF, there is a set which contains alll
is needed for the existence of uncountable Satsd members of some members &f
the Replacement Axiom is not necessary for ordinar,
mathematics. Therefore the existencelbfcannot
be proved without the Power Set Axiom while the

ComprehensionFor each formulap(z, wy,. .., w,)
and any setg,wy, ..., w,, there exists a seaf
which contains exactly all those setén =z which
satisfyp(z, w1, ..., wy,).

ﬁeplacementFor each formulap(z,y, w1, ..., w,)
and any setsA,wi,...,w,, If for each

. . . € A, there exists a uniqug such that
Replacement Axiom is not needed for the existence (2, y,wi, ..., w,), then there exists a set con-
of Z, Q, andR. _ taining all y such thate(z, y, wr, ..., w,) for
In this paper, we show that without the Power somer € A.

Set Axiom, the Replacement Axiom is sufficient for

the existence ofZ and Q but if both axioms are Infinity There exists an inductive set.

removed from Zermelo-Fraenkel (ZF) set theory, then

no infinite Cartesian products can be proved to exi§tower SetFor any set:, there is a set containing all

and thus the existence @fandQ cannot be proved. subsets of.

PRELIMINARIES

This section gives some background in the wellpaper are defined in the usual ways. We
founded sets, absoluteness, and consistency proofse a,b,c,...,A,B,C,...,A,B,C,... for sets,
which are needed for proving the main resulta, 3,7, ... for ordinals, andp, x, 1, ... for formulae
All basic concepts in set theory used in thidn the language of set theory. We sometimes wyite
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asy(zy,...,x,) if the free variables of are among M. SinceVx € N(z ¢ 1) andVz € N(z ¢ {2}), ¢
z1,...,T,. We writeON for the class of all ordinals, is not true inN. Since0 is the unique set satisfying
a™ for the successor of (i.e.,aU{a}), (z,y) forthe Vz(z ¢ 0), ¢ is true. Hencep is absolute folM but
ordered pair ofr andy, andP(z) for the power set not forN.
of z. If T is a set of formulae, we writé - o for T The concept of absoluteness of formulae can be
provesp. extended to absoluteness of some defined notions. A
Z is ZF withoutReplacementlf T is a subtheory defined setd is absolutefor M if it exists uniquely in
of ZF, the subtheoriesJP, T, and T-Inf consist of M, denoted byA™, and is exactly4 i.e., A = AM.
every axiom in T excepPower SetFoundation and Hence, from the above exampleis0in M i.e.,1 =
Infinity, respectively. 0M. But 0 in N is not defined since both members
A brief explanation of the notions used here willof N satisfy the condition, so the uniqueness of the
be given in an informal way. Full definitions of the concept fails ifN. Thus we can conclude th@is not
concepts and proofs of all lemmas in this section caabsolute for eitheM or N. It is easy to see thatis
be found in Ref5. absolute fo{0, 2}.
A classM is transitiveif every member oM is
also a subset dM. The relativizationof a formula Lemma 5 Absolute notions are closed under compo-
¢ to a classM, denoted byy™, meansy is true in  sition.
M. For example(Vy3z(z # y))M is the formula
Vy € M3x € M(z # y) which means “for everyin  Lemma 6 The following are absolute for any tran-
M, there exists am in M which is distinct fromy”.  sitive model for Z—P—Inf: (i) = € y, (i) (z,y),
In this case(Vy3z(x # y))™ if and only if M does (i) domain of f, (iv) range of f, (v) f is a one-to-
not contain exactly one element. one function.
A sentencas a formula which has no free vari-
ables. We saM is amodelfor T, whereT is a set of Lemma 7 w is absolute for any transitive model for
sentences, ip is true inM for all ¢ in T. Z-P.

The well-founded sets The following corollary easily follows from Lem-
The definition of the clas3WF of well-founded sets mas5-7.

is given below.

Corollary 1 LetM be a transitive model for ZP. If
Definition 1 By transfinite recursion, we defif&(a)  every finite subset a¥1 is in M, then “z is finite” is
by (i) R(0) = 0, (i) R(a™) = P(R(w)), (iii) R(a) =  absolute foiM. If Ax B € M, thenA x B is absolute
Ue<o B(§) whena is a limit ordinal. LetWF = for M.
UQGON R(Oé)

Consistency proofs

Lemma 1 Every member oR(w) is finite. . . .
A set of formula€eT” is consistenif we cannot derive

Lemma 2 The Axiom of Foundation is true in anya contradiction fron¥'.

classM C WF.
Lemma 8 LetT andT” be sets of sentences aivd

Lemma 3 If M is transitive, Extensionality holds in be a class. Suppose we can prove fiBrthat M # ()

M. andM is a model forI”. Then ifT is consistent, so is
/

Lemma4 If M is a transitive model for Z—P—Inf

andw € M, then the Axiom of Infinity is true INI. The following lemma can be found in any elemen-

Absoluteness tary mathematical logic textbook.

We sayy is absolutefor M wheny is true inM if  Lemma 9 For any set of formula& and any formula

and only if ¢ is true. To be precisep is absolute ¢, T'U {—p} is consistent if and only if’ ¥ .

for M if Vay,...,2, € M(eM(2q,...,2,) <

(1, ..., Tn))- SupposeT’ is a subtheory of ZF. Under the
For example, le be the formuladlyvz(x ¢ y), assumption that ZF is consistent, the above lemmas

M = {1,{1}}, andN = {1,{2}}. Sincel is the only tell us that we can show thdt ¥ ¢ by constructing a

member inM such thatvxz € M(z ¢ 1), g is true in  nonempty model fof” U {—¢} under ZF.
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7 AND Q WITHOUT THE POWER SET AXIOM
With the Replacement Axiom
First, let us recall the definitions @ andQ.

Definition 2 The setZ of all integers is the quotient
set(w x w)/~ where~ is defined by

(m,n) ~ (p,q) = m+q=p+n.

Definition 3 Addition +z and multiplication-z onZ
are defined by

[(m,n)]~ +z [(p, @)~ = [(m +p,n + q)]~

[(m, )]~ -z [(p, @)~
=[{(m-p)+(n-q),(m-q) + (n-p)l~.

Definition 4 The setQ of all rationals is the quotient
setZ x (Z — {0})/~ where- is defined by

(m,n) <~ (p,q) < m-zq=pzn.

In general, all the notions used in the above deé-)

initions are defined in Z (see Ref.6). The only use

of the Power Set Axiom is in showing the existenc
Actuall
they can be shown to exist by using the Replaceme

of Cartesian products and quotient sets.
Axiom instead of the Power Set AxioinAs a result,
it follows thatZ and@Q exist in ZF —P.

Without the Replacement Axiom

From the above definitions, we can see tHats
constructed fronv x w andQ is constructed fronZ..

ScienceAsid5 (2009)

Lemma 1l ¥n € w, K (n) is transitive.

Proof: The proof is by induction. For the base step,
use the fact thaR(w) andP(w) are transitive. [

Corollary 2 K is transitive.
Lemma 12 X C WF.

Proof: Claim thatvn € w, K(n) C R(w +n + 1).
The proof proceeds by induction. Clearli;(0) =
Rw)UPw) € Rlw+1). Ifn = m+1, by
LemmaslO (i) and 11 and the induction hypothesis,
K(n) = G(K(m)) € P(K(m)) € P(R(w+ m +
1)) = Rw+m+2) = Rlw+n+1). Thusk =
Unew K(n) € Upep Rw+n+1) = Rw+w) C
WF. O

Lemmal3Ifb e I, b — wis finite.

Proof: We will prove the lemma by induction on.
Letb € K(n) for somen € w such thab is infinite.
f n = 0, since every member d®(w) is finite, b €
(w) and sob — w = (. Assumen = m + 1. It
follows from the induction hypothesis if € K(m).

he remaining case is the cdse- | J a for somea €
¥ (m). SinceK (m) is transitive,a C K (m). By the

Mduction hypothesisy — w andz — w are finite for
allz € a. SincelJa—w C Yz —w |z € a—w},
Ua — wis finite. O

Corollary 3 K does not contain any infinite Carte-
sian product.

In order to show that without both the Replacemenproof: Since every natural number is not an ordered
Axiom and the Power Set Axiom, the existenceZdf pajr, for any4 andB, A x B = (A x B) —w. Hence

and Q cannot be proved, we will construct a modelf 4 x B € K, thenA x B is finite byLemma 13 O
for Z—P underZF which containsw but notw x

w. In fact, our model contains no infinite CartesiarCorollary 4 If = € K andy C z, theny € K.
products.

Proof: Letz € K andy C 2. By Lemma 13
z — w is a finite subset ofC, and so isy — w. By
Lemma 1Q(iv), y —w € K. SinceyNw € P(w) C K,
by Lemma 1Q(ii), y = (y —w) U (yNw) e K. O

Definition 5 Define
G(A)={Uzx:ze Ay U{x C A: zisfinite} U A.

Definition 6 By recursion, defind{(n) for n € w by
K(0) = R(w)UP(w)andK (n+ 1) = G(K(n)) for
alln € w. Let =, K(n).

Theorem 1 K is a model for Z-P.

Proof: Since X # (), Existenceholds in K. By
Lemmas?2, 3, 10 (i), and 12, and Corollary 2
Extensionality Foundation Pairing, andUnion hold
in K. By Corollary 4 Comprehensiorholds in .
Finally, K satisfiednfinity by Lemma 4 O

The following lemma follows straightforwardly
from the above definition.

Lemma 10 (i) K(n) C K(n+1) forall n € w. (i) If
x,y € K, then so are{x,y} and |Jz. (iii) If Ais
transitive, G(A) C P(A). (iv) Every finite subset of
Kisin K.

Lemma 14 “ z is finite” and “z is a Cartesian prod-
uct” are absolute forkC.
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Proof: By Corollariesl (i) and2, Lemma 1Q(iv), and
Theorem 1“z is finite” is absolute forC.

Let ¢(x) be the formula3A3B(z = A x B).
Then z is a Cartesian product if and only #(z).
Supposer € K and¢(x) i.e.,z = Ax B € K.
Since K satisfiesUnion, A, B C |JUz € K. By
Corollary 4 A, B € K, and soA x B is absolute
for KC by Corollary 1 (ii). We have ¢(x)*. Thus
#(x) — ¢(x)*. The converse is obvious. O

Theorem 2 K is a model forvz (x is not an infinite
Cartesian produdt

Proof: Follows byCorollary 3andLemma 14 O

Corollary 5 If ZF is consistent, thenZP¥ 3z (x is
an infinite Cartesian produgt

Proof: Follows by Lemmas and9 and Theorem&
and2. O

Corollary 6 If ZF is consistent, thenZP# Z exists.

Proof: The proof is by contraposition. Suppose 2

F Z exists. Sincg JZ = w X w, Z—PF w X w exists.
Let S be the successor function. SingeC w x w,

Z—P + Sexists. Since the Pigeonhole Principle

can be proved in ZP% and S is a bijection from

wontow — {0}, Z-P F wisinfinite, and so ZP

F w x wisinfinite. By Corollary § the proof is

complete. a

Corollary 7 If ZF is consistent, thenZP}¥# Q exists.

Proof: Follows from the definition ofQ and Corol-
lary 6. O

REFERENCES

1. Bernays P (1968M\xiomatic Set TheoryPart I, General
Publishing, Toronto.

2. Kanamori A (1996) The mathematical development of
set theory from Cantor to CoheBull Symbolic Logi@,
1-71.

3. Suppes P (196 Axiomatic Set Theory. Van Nostrand,
New York.

4. Abian A, LaMacchia S (1978) On the consistency and in-
dependence of some set-theoretical axiddare Dame
J Formal Logic19, 155-8.

5. Kunen K (1980)Set Theory: An Introduction to Inde-
pendence ProofdNorth-Holland, Amsterdam.

6. Enderton HB (1977Elements of Set Theqrjcademic
Press, London.

399

www.scienceasia.org


http://www.scienceasia.org/2009.html
http://dx.doi.org/10.1305/ndjfl/1093888220
http://dx.doi.org/10.1305/ndjfl/1093888220
http://dx.doi.org/10.1305/ndjfl/1093888220
www.scienceasia.org

