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ABSTRACT : We examine the role of the replacement axiom and the power set axiom in proving the existence of the
integers (Z) and the rationals (Q). We show that without the power set axiom, the replacement axiom is sufficient for the
existence ofZ andQ but if both axioms are removed from Zermelo-Fraenkel set theory, then no infinite Cartesian products
can be proved to exist and thus the existence ofZ andQ cannot be proved.
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INTRODUCTION

The earliest axiom system for set theory was invented
by Zermelo in 1908. The Power Set Axiom (Table 1),
which asserts the existence of the power set of any set,
is one of Zermelo’s axioms1,2.

The Replacement Axiom was not part of Zer-
melo’s system. It was independently discovered by
Fraenkel and Skolem in 1922 in order to develop ordi-
nal arithmetic and transfinite induction2,3. Actually, it
is an axiom schema which states that ifF is a function
class whose domain is a set, then its range is also a set.

It has been shown that (1) the Power Set Ax-
iom is independent from Replacement, Extensionality,
Union, and Choice and (2) the Replacement Axiom is
independent from Power Set, Extensionality, Union,
and Choice4.

It is also well known that the Power Set Axiom
is needed for the existence of uncountable sets5 and
the Replacement Axiom is not necessary for ordinary
mathematics. Therefore the existence ofR cannot
be proved without the Power Set Axiom while the
Replacement Axiom is not needed for the existence
of Z, Q, andR.

In this paper, we show that without the Power
Set Axiom, the Replacement Axiom is sufficient for
the existence ofZ and Q but if both axioms are
removed from Zermelo-Fraenkel (ZF) set theory, then
no infinite Cartesian products can be proved to exist
and thus the existence ofZ andQ cannot be proved.

PRELIMINARIES

This section gives some background in the well-
founded sets, absoluteness, and consistency proofs
which are needed for proving the main result.
All basic concepts in set theory used in this

Table 1 The axioms of Zermelo-Fraenkel set theory.

Existence There exists a set.

Extensionality If two sets have exactly the same
members, then they are equal.

Foundation Every nonempty set has an∈-minimal
element.

ComprehensionFor each formulaϕ(x,w1, . . . , wn)
and any setsz, w1, . . . , wn, there exists a sety
which contains exactly all those setsx in z which
satisfyϕ(x,w1, . . . , wn).

Pairing For any setsx and y, there is a set that
contains bothx andy.

Union For any setF , there is a set which contains all
members of some members ofF .

ReplacementFor each formulaϕ(x, y, w1, . . . , wn)
and any setsA,w1, . . . , wn, if for each
x ∈ A, there exists a uniquey such that
ϕ(x, y, w1, . . . , wn), then there exists a set con-
taining all y such thatϕ(x, y, w1, . . . , wn) for
somex ∈ A.

Infinity There exists an inductive set.

Power SetFor any setx, there is a set containing all
subsets ofx.

paper are defined in the usual ways. We
use a, b, c, . . . , A,B,C, . . . ,A,B, C, . . . for sets,
α, β, γ, . . . for ordinals, andϕ, χ, ψ, . . . for formulae
in the language of set theory. We sometimes writeϕ
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asϕ(x1, . . . , xn) if the free variables ofϕ are among
x1, . . . , xn. We writeON for the class of all ordinals,
α+ for the successor ofα (i.e.,α∪{α}), 〈x, y〉 for the
ordered pair ofx andy, andP(x) for the power set
of x. If T is a set of formulae, we writeT ` ϕ for T
provesϕ.

Z is ZF withoutReplacement. If T is a subtheory
of ZF, the subtheories T−P, T−, and T−Inf consist of
every axiom in T exceptPower Set, Foundation, and
Infinity, respectively.

A brief explanation of the notions used here will
be given in an informal way. Full definitions of the
concepts and proofs of all lemmas in this section can
be found in Ref.5.

A classM is transitive if every member ofM is
also a subset ofM. The relativizationof a formula
ϕ to a classM, denoted byϕM, meansϕ is true in
M. For example,(∀y∃x(x 6= y))M is the formula
∀y ∈ M∃x ∈ M(x 6= y) which means “for everyy in
M, there exists anx in M which is distinct fromy”.
In this case,(∀y∃x(x 6= y))M if and only if M does
not contain exactly one element.

A sentenceis a formula which has no free vari-
ables. We sayM is amodelfor T , whereT is a set of
sentences, ifϕ is true inM for all ϕ in T .

The well-founded sets

The definition of the classWF of well-founded sets
is given below.

Definition 1 By transfinite recursion, we defineR(α)
by (i)R(0) = 0, (ii) R(α+) = P(R(α)), (iii) R(α) =⋃

ξ<αR(ξ) whenα is a limit ordinal. LetWF =⋃
α∈ONR(α).

Lemma 1 Every member ofR(ω) is finite.

Lemma 2 The Axiom of Foundation is true in any
classM ⊆ WF.

Lemma 3 If M is transitive, Extensionality holds in
M.

Lemma 4 If M is a transitive model for Z−−P−Inf
andω ∈ M, then the Axiom of Infinity is true inM.

Absoluteness

We sayϕ is absolutefor M whenϕ is true inM if
and only if ϕ is true. To be precise,ϕ is absolute
for M if ∀x1, . . . , xn ∈ M(ϕM(x1, . . . , xn) ↔
ϕ(x1, . . . , xn)).

For example, letϕ be the formula∃!y∀x(x /∈ y),
M = {1, {1}}, andN = {1, {2}}. Since1 is the only
member inM such that∀x ∈ M(x /∈ 1), ϕ is true in

M. Since∀x ∈ N(x /∈ 1) and∀x ∈ N(x /∈ {2}), ϕ
is not true inN. Since0 is the unique set satisfying
∀x(x /∈ 0), ϕ is true. Henceϕ is absolute forM but
not forN.

The concept of absoluteness of formulae can be
extended to absoluteness of some defined notions. A
defined setA is absolutefor M if it exists uniquely in
M, denoted byAM, and is exactlyA i.e.,A = AM.
Hence, from the above example,1 is 0 in M i.e.,1 =
0M. But 0 in N is not defined since both members
of N satisfy the condition, so the uniqueness of the
concept fails inN. Thus we can conclude that0 is not
absolute for eitherM or N. It is easy to see that0 is
absolute for{0, 2}.

Lemma 5 Absolute notions are closed under compo-
sition.

Lemma 6 The following are absolute for any tran-
sitive model for Z−−P−Inf: (i) x ∈ y, (ii) 〈x, y〉,
(iii) domain of f , (iv) range off , (v) f is a one-to-
one function.

Lemma 7 ω is absolute for any transitive model for
Z−P.

The following corollary easily follows from Lem-
mas5-7.

Corollary 1 Let M be a transitive model for Z−P. If
every finite subset ofM is in M, then “x is finite” is
absolute forM. If A×B ∈ M, thenA×B is absolute
for M.

Consistency proofs

A set of formulaeT is consistentif we cannot derive
a contradiction fromT .

Lemma 8 Let T andT ′ be sets of sentences andM
be a class. Suppose we can prove fromT thatM 6= ∅
andM is a model forT ′. Then ifT is consistent, so is
T ′.

The following lemma can be found in any elemen-
tary mathematical logic textbook.

Lemma 9 For any set of formulaeT and any formula
ϕ, T ∪ {¬ϕ} is consistent if and only ifT 0 ϕ.

SupposeT is a subtheory of ZF. Under the
assumption that ZF is consistent, the above lemmas
tell us that we can show thatT 0 ϕ by constructing a
nonempty model forT ∪ {¬ϕ} under ZF.
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Z AND Q WITHOUT THE POWER SET AXIOM

With the Replacement Axiom

First, let us recall the definitions ofZ andQ.

Definition 2 The setZ of all integers is the quotient
set(ω × ω)/∼ where∼ is defined by

〈m,n〉 ∼ 〈p, q〉 ↔ m+ q = p+ n.

Definition 3 Addition +Z and multiplication·Z on Z
are defined by

[〈m,n〉]∼ +Z [〈p, q〉]∼ = [〈m+ p, n+ q〉]∼

[〈m,n〉]∼ ·Z [〈p, q〉]∼
= [〈(m · p) + (n · q), (m · q) + (n · p)〉]∼.

Definition 4 The setQ of all rationals is the quotient
setZ× (Z− {0})/v wherev is defined by

〈m,n〉 v 〈p, q〉 ↔ m ·Z q = p ·Z n.

In general, all the notions used in the above def-
initions are defined in Z− (see Ref.6). The only use
of the Power Set Axiom is in showing the existence
of Cartesian products and quotient sets. Actually
they can be shown to exist by using the Replacement
Axiom instead of the Power Set Axiom5. As a result,
it follows thatZ andQ exist in ZF−−P.

Without the Replacement Axiom

From the above definitions, we can see thatZ is
constructed fromω × ω andQ is constructed fromZ.
In order to show that without both the Replacement
Axiom and the Power Set Axiom, the existence ofZ
and Q cannot be proved, we will construct a model
for Z−P underZF which containsω but not ω ×
ω. In fact, our model contains no infinite Cartesian
products.

Definition 5 Define

G(A) = {
⋃
x : x ∈ A} ∪ {x ⊆ A : x is finite} ∪A.

Definition 6 By recursion, defineK(n) for n ∈ ω by
K(0) = R(ω)∪P(ω) andK(n+ 1) = G(K(n)) for
all n ∈ ω. LetK =

⋃
n∈ω K(n).

The following lemma follows straightforwardly
from the above definition.

Lemma 10 (i) K(n) ⊆ K(n+1) for all n ∈ ω. (ii) If
x, y ∈ K, then so are{x, y} and

⋃
x. (iii) If A is

transitive,G(A) ⊆ P(A). (iv) Every finite subset of
K is inK.

Lemma 11 ∀n ∈ ω,K(n) is transitive.

Proof: The proof is by induction. For the base step,
use the fact thatR(ω) andP(ω) are transitive. �

Corollary 2 K is transitive.

Lemma 12 K ⊆ WF.

Proof: Claim that∀n ∈ ω, K(n) ⊆ R(ω + n + 1).
The proof proceeds by induction. Clearly,K(0) =
R(ω) ∪ P(ω) ⊆ R(ω + 1). If n = m + 1, by
Lemmas10 (iii) and 11 and the induction hypothesis,
K(n) = G(K(m)) ⊆ P(K(m)) ⊆ P(R(ω + m +
1)) = R(ω + m + 2) = R(ω + n + 1). ThusK =⋃

n∈ω K(n) ⊆
⋃

n∈ω R(ω + n + 1) = R(ω + ω) ⊆
WF. �

Lemma 13 If b ∈ K, b− ω is finite.

Proof: We will prove the lemma by induction onn.
Let b ∈ K(n) for somen ∈ ω such thatb is infinite.
If n = 0, since every member ofR(ω) is finite, b ∈
P(ω) and sob − ω = ∅. Assumen = m + 1. It
follows from the induction hypothesis ifb ∈ K(m).
The remaining case is the caseb =

⋃
a for somea ∈

K(m). SinceK(m) is transitive,a ⊆ K(m). By the
induction hypothesis,a − ω andx − ω are finite for
all x ∈ a. Since

⋃
a − ω ⊆

⋃
{x − ω | x ∈ a − ω},⋃

a− ω is finite. �

Corollary 3 K does not contain any infinite Carte-
sian product.

Proof: Since every natural number is not an ordered
pair, for anyA andB,A×B = (A×B)− ω. Hence
if A×B ∈ K, thenA×B is finite byLemma 13. �

Corollary 4 If z ∈ K andy ⊆ z, theny ∈ K.

Proof: Let z ∈ K and y ⊆ z. By Lemma 13,
z − ω is a finite subset ofK, and so isy − ω. By
Lemma 10(iv), y−ω ∈ K. Sincey∩ω ∈ P(ω) ⊆ K,
by Lemma 10(ii), y = (y − ω) ∪ (y ∩ ω) ∈ K. �

Theorem 1 K is a model for Z−P.

Proof: SinceK 6= ∅, Existenceholds in K. By
Lemmas 2, 3, 10 (ii), and 12, and Corollary 2,
Extensionality, Foundation, Pairing, andUnion hold
in K. By Corollary 4, Comprehensionholds inK.
Finally,K satisfiesInfinity by Lemma 4. �

Lemma 14 “ x is finite” and “x is a Cartesian prod-
uct” are absolute forK.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org


ScienceAsia35 (2009) 399

Proof: By Corollaries1 (i) and2, Lemma 10(iv), and
Theorem 1, “x is finite” is absolute forK.

Let φ(x) be the formula∃A∃B(x = A × B).
Then x is a Cartesian product if and only ifφ(x).
Supposex ∈ K andφ(x) i.e., x = A × B ∈ K.
SinceK satisfiesUnion, A, B ⊆

⋃ ⋃
x ∈ K. By

Corollary 4, A, B ∈ K, and soA × B is absolute
for K by Corollary 1 (ii). We haveφ(x)K. Thus
φ(x) → φ(x)K. The converse is obvious. �

Theorem 2 K is a model for∀x (x is not an infinite
Cartesian product).

Proof: Follows byCorollary 3andLemma 14. �

Corollary 5 If ZF is consistent, then Z−P0 ∃x (x is
an infinite Cartesian product).

Proof: Follows by Lemmas8 and9 and Theorems1
and2. �

Corollary 6 If ZF is consistent, then Z−P0 Z exists.

Proof: The proof is by contraposition. Suppose Z−P
` Z exists. Since

⋃
Z = ω × ω, Z−P` ω × ω exists.

LetS be the successor function. SinceS ⊆ ω×ω,
Z−P ` S exists. Since the Pigeonhole Principle
can be proved in Z−P6 and S is a bijection from
ω onto ω − {0}, Z−P ` ω is infinite, and so Z−P
` ω × ω is infinite. By Corollary 5, the proof is
complete. �

Corollary 7 If ZF is consistent, then Z−P0 Q exists.

Proof: Follows from the definition ofQ andCorol-
lary 6. �
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