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ABSTRACT: We determine the general solution of thedimensional mixed-type additive and quadratic functional

equation2f (37", i) + D1y jenin [ (@i —x5) = (n+ 1) 370, fxi) + (n — 1) 370, f(—=i), wheren > 1,
and investigate its general stability.
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INTRODUCTION A generalization of Hyers’ theorem was given
" . . >
A functional equation is an equation in which thePy AoKi®. Later, Rassias published the following

unknowns are functions. One widely studied funcStability theorem. If a functiorf : £, — E between

tional equation is the additive functional equation,E""m"’lCh spaces satisfies the inequality
1f(z+y) = f@) = FI <0 (=l + lyl")

fx+y) = f(z)+ f(y), for which it has been proved

that the only continuous solution on a Banach space

is a linear function (see, for example, pp. 36-7 ofy; somed >0,0<p<lforalzye E,then
Ref. 1). In 1940, Ulam posed the following questioniare exists an additive function : E, — B, such
concerning the stability of homomorphisms (see Ch. §,,+

of Ref. 2). Let G; be a group and let’; be a metric 20
group with metricd. Givene > 0, does there exist a If (@) —a@)ll < 5—;
0 > 0suchthatiff : G; — G4 satisfies the inequality for anyz € .

[l]”

Moreover, if f(¢tz) is continuous in
d(f(zy), f(z)f(y)) <& Va,y € G, t for each fixedr € E1, thena is linear. Since then,
the stability problem of several functional equations
then there exists a homomorphidin: G; — G5, with  have been extensively investigated by a number of
author$2,
d(f(z),H(z)) <e VreGi? For real vector spaceX¥ andY, a functionf :

If the answer to the above question is affirmative, thg( — ¥ will be calledadditiveif

functional equation for the homomorphisms will be Ffx+y) = fz)+ fly) Vo,yeX 1)
calledstable
In 1941, Hyers gave the first affirmative answer gnd will be callecquadraticif

to the question of Ulam for the case where and

G- are Banach spaces. Assume thatand E; are  f(xz +y) + f(z —y) = 2f(2) + 2f(y) Vz,y € X.

Banach spaces. If afunctigh: £y, — E, satisfies the (2)

inequality || f(z + y) — f(z) — f(y)|| < e for some We will thus call a functionf : X — Y mixed-

e = 0forall z, y € Fy, then the limit type additive and quadratiif there exists an additive
functiona : X — Y and a quadratic function :

a(z) = lim 27" f(2"z) X — Y such that

exists for eaclr € F4 anda : E; — Es is the unique f(z) = a(z) +q(x) VreX.

additive function such thatf (z) — a(z)|| <  for any

x € E;. Moreover, iff(tx) is continuous irt for each  Mixed-type functional equations have recently been

fixedz € Ey, thena is linear. studied by quite a few research@fs
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In this paper, we will study the general solution of ~ Now assume that there exist an additive function
an n-dimensional mixed-type additive and quadratiaz : X — Y and a quadratic function : X — Y
functional equation and then investigate its generaluch thatf(z) = a(z) + ¢(z) for all z € X. Then
stability. it follows that ¢(x) = B(z,z) for some biadditive

mappingB : X2 — Y (see pp. 89-91 of Refl).

THE GENERAL SOLUTION We want to show thaf satisfies 8). Considering the
Theorem 1 Letn > 1 be aninteger, and leX andY”  |eft-hand side of§) we obtain
be vector spaces. A functigh: X — Y satisfies the
functional equation

2f (Zm) + Zf Ty — xj)

2f (Z xl> + Z flzy —xj) 1<l’7gf"

:ﬁj n = 2a (i ;vl) + 2B <§”: xz,ixl>
LRI ICORCERDIFICDINC) = =i

i=1 + Za(xiij)qL ZB(xi—zj,xi—zj).
forall 21,9, ...,z, € X if and only if there exist an 1<;;g'j<” 1<Z?¥J‘j<”
additive functiorz : X — Y and a quadratic function (7
q : X — Y such that

f(z) = a(z) +q(z) VzeX. (4) By the additivity ofa,

Proof: Suppose a functiorf : X — Y satisfies 8). " n
Putting (z1, 2, ...,z,) = (0,...,0) in (3), we get a x| = alz;). 8)
f(0) = 0. Setting(z1,x2,...,2,) = (2,9,0,...,0) ; ; (=)

in (3) yields
Sincea(—z) = —a(x) forallz € X,

2f(x+y)+ flx —y) + fly — )
+(n = 2) (f(z) + f(y) + f(—=2x) + f(=v)) S alw — ;) = 0.

= (n+1) (f(z) + f(¥)+(n—1) (f(=2) + f(~y)), e 9)
which simplifies to i#]
2f(z+y)+ fz —y) + fly — ) SinceB(x, ) is symmetric and biadditive,

=3f(x) +3f(y) + f(—x) + f(=y) (5) n =

forall z,y € X. We define the even part and the odd B (Z i Z%) =YY B(wiz;) (10)
part of functionf by i= i= i=1 j=1

z)+ f(—x z)— f(—=x
fe(x):f( ) 2f( )7fo(-’17):f( ) 2f( ) and
Replacingr andy with —z and—y in (5), Z Blwi — ;, 2 — ;)
1<4,5<n

2f(—x —y) + f(—e +y) + f(—y + ) R

=3f(=z) +3f(—y) + f(@) + f(y). (6) = Y (B(wi,x;) — 2B(xs, ;) + Blxj, z))
Taking half the sum and half the difference &) ( Kii;gf”
and @), we immediately see thaf, and f, satisfy n
the classical quadratic functional equation and the = 2(n — 1)2 (xi,m;) — 2 Z B(x;, ;)
additive functional equation, respectively, i.e., i=1 1<7;g<n

1£]
2fe(z +y) + 2fe(x — y) = 4fe(®) + 4fe(y), " non
2yl + ) = 2fula) + 2s(0) =) Blena) =223 Blawey). (1)
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Substituting 8), (9), (10) and (1) in (7), we obtain

2f <Zx> + > fla

1<i,j<n
i

—l‘]

=(n+1)) flz)+(n- 1)Zf(_$i)'

i=1 i=1

which completes the proof.
GENERAL STABILITY

In this section, the stability of3) will be observed.
We define

Df(z1,...,2n —2f<Z:cz>+Zf T; —xj)
1<i,g<n
i£]
—(n+ )Y fla) = (n=1) Y f=a). (12)
1=1 i=1
Theorem 2 Let X be a real vector space. L&t

be a Banach space and let > 1 be an integer.
Letp : X™ — [0,00) be an even function with
respect to each independent variable. Defirie) =
¢(x,z,0,...,0) for all z € X. Define the following
two conditions:

(i) Y22 "p(2'z) converges for allz € X and
lim, o 27°0(2°21,...,2%2,) = 0, forall z; € X,
withi=1,...,n

(i) Y2, 4%p(27"z) converges for alke € X, and
limg 00 4°0(27 %21, ...,27%2,) =0, forall z; € X,
withi =1,...,n

If a functionf : X — Y satisfies

||Df(x17l'2, M .,.’17")” <

forall z1,xo,...,
functionT : X — Y that satisfieq3) and, for all
zeX,

1f ()

d(x1,x0,...,2,) (13)

—T(x)]l

ey ¥

2
i=(1—0)/2

1 + 21+¢7i
41+o’i

) p(27"x)

(14)

x, € X, then there exists a unique

383

wheres = 1 if condition (i) holds ands = —1 if
condition (ii) holds. The functiof’ is given by

T(x) = lim 477°f(27°2) + 277° f,(27°x)
S§— 00
forall x € X.

Proof:
yields

Putting (z1,...,z,)
¢(0)

< ————.

17O < G5 =T

First, we will prove the case when a functigh

satisfies condition (i). We putxy,xa,...,x,)

(z,2,0,...,0)in (13) to obtain that

(0,...,0) in (13

(15)

()
2 )
(16)
whereA = n? +n — 8. Replacingr by —x in (16)

F(20) ~3f(2) — f(—2) ~ 510} <
|

p(—z)
2

(z

F(-20) ~ 3f(~a) — f(&) - 50} <
|

BS)

2
17)
We apply the triangle inequality witt6) and (L7) to
get that

p(z)

2

Fo(20) = 4100) - 510)]| < (18)

and
Ifo(2) —2£@) < 22 g

Define a functiong, : X — Y by go(z) = fo(x) +
Af(0)/6 forall x € X. Note that

— 47" ge(22)]] <

(20)

p(z)
ng(x) s

Then for each positive integer we obtain
— 4_596(25$)H

s—1
> (47 g0(2") — 470 g (20702 ) H
i=0

s—1
<Y 47 |ge(2'2)
1=0

1 s—1

D 4p(2')

S5
=0

ng(x)

— 4_196(2 . 2%)”

Similarly, for each positive intege,

=

S

Z 27 p(2').

=0

||fo(x) - 2isfo(28x)H <

1
4
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Consider the sequendd°g.(2°z)},_,. For every
positive integet, we have
H4‘Sge(2sw) - 4_(S+t)ge(23+t$)H
=47 ng(QSx) — 47 ge (2 2%‘)”
g =1
<

z_:zrﬂp(zi - 257)
=0

1 o o
< A Z 4_(1'*'5)(,0(2”595).
i=0

From condition (i), the convergence
320 27 p(2) implies thatd 5 4= (215
approaches zero as 0. Therefore,

—

oflimitass — oo, we then have T, (xy, z2, . ..

ScienceAsid5 (2009)

for all z € X. Next, we will show thatl" satis-
fies @B). Define the even part and the odd part of
Df by Dfe(x1,..., @) = §(Dfpy + Dfi—y)) and
Dfo(xl, e ,xn) = %(Dfm - Df[_l]) Wheref[q] =
f(gz1,...,qz,). Then for a positive integerand for

all xy,x9,...,2, € X, we get

HDfe(2Sz17---72szn)”:%H +%||Df[—2]

< P(2°x1,2°2o ..., 2°2y,).

Dividing the above inequality by* and taking the
7xn) -
0forall x1,zo,...,2, € X. Similarly, we can show
that DT, (z1, z2,...,2,) = 0. HenceT = T, + T,

{47%g.(2%2)}.2, is a Cauchy sequence in thesatisfies 8).

Banach spacé&”. We can now define a function
T.: X - Y by
To(xz) = lim 47°ge(2°z) = lim 47°f,(2°x)

forall z € X. Thus,

lge(e) = Te(@)] < 5 3 47 (2'0)
=0

From the definition ofj.(z) and (L5), one finds that

Next we will prove thafl” is unique. Suppose that
there exists another functicff : X — Y such that
T’ satisfies ) and (14). Since we already proved in
Theorem ZhatT, andT, satisfy the quadratic and the
additive functional equations, respectively, we have
that 7o, (rz) r?To(z) and T, (rz) = rT,(x) for
everyr € Q and for everyx € X (see pp. 35-6,
100-1 in Ref.1). By the definition ofT" and the
triangle inequality, one gets thaf(z) — T'(z)|| <
| Te(x) = T!(x)[| + [|To(x) — T(x)]. For any posi-
tive integers and for eachr € X,

A
1fe(@) = Te(@)ll = ||ge(2) = & £(0) — Te(z)
4 [ Te(z) — Te(2)||
< loele) = Tu(a)l + | 5 10 =4 T(2%) - ()|
| . <A77 fe(2°) — Te(2°2)|
<Y apin) + 20 F | f(2%) - T2
=0 ) ) O)
_ —(i+s) i+s _5&
In a similar manner, we can prove that = 424 p(270x) +4 3
{2‘Sfo(25x)}:io converges in the Banach spake =
Define a functiori;, : X — Y by We now take the limit ass — oo. Since

To(z) = lim 27°f,(2°2)

forall z € X. Thus,

[folz) —

o

R
< - 27 p(2'x).
Dl < 3 L2 (2
Define a functiorl” : X — Y by
T(x) = Te(x) + To(x)

for all z € X. Then we obtain

1f@) — T@)] < [olz) - To@)|+]fol) - To(@)]
1 = L #0)
SgL ; L
(21)
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S, 47 p(2ix) converges,y o 4 ()20t )
tends to zero as — oo. Then we can conclude that
To(xz) = T!(x) for all z € X. Similarly, T, (z) and
T!(x) are proved to be equal for all € X. Hence
T(x) =T (x)foralz € X.

For the case when condition (ii) holds, the proof
is similar. Condition (ii) implies thap(0) = 0. Thus

f(0) = 0. Starting by settingz1, zs,...,z,) =
(£,2.0,...,0)in (13,
-2 () -1 (F)| < 2552

It follows from the definitions off, and f, that

)-4n(3)] < #

fe(z
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and Theorem 2we get that

o 20 (3)] < 252

The previous two inequalities can be extended to

er( 4f62 J) 241 2 .%‘
and

(| fola) — 2° fo(27°2) Zzl (2 )

17 - Tl < 524—1‘ e[l

1 > .
1 E - 2¢ H21pr
i=0

_el=l” | ell=l”
4—2p "2 2p
2¢(3 — 27)

“l-oe-»

[

forall z € X. If p > 2, then condition (ii) holds and
for a positive integes and for allz € X. The rest of We obtain a similar result. U

the proof can be carried out in a similar fashion.[J Acknowledgements We appreciate all valuable sug-
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| (@) - T(@)] < Ze.

Proof: From Theorem 2let ¢(x1,xa,...,2,) = €

2.

for all z1,zs,...,7, € X. Consequentlyp(z) = 3.

forall z € X. Being in accordance with condition (i),
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