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ABSTRACT : An analytical investigation was conducted in which about 1000 sample points from over 400 borehole
locations throughout the Tucson Basin, Arizona were used to determine the nature and extent of the variability of selected
collapse criteria and collapse-related soil parameters both spatially and with depth. Analysis of seven data sets corresponding
to different depth increments below the surface showed high dispersion tendencies as expressed by the value of coefficient of
variation (CoV). The value of CoV was found to increase linearly with depth. All the collapse criteria and collapse-related
soil parameters used in the study were found to follow a Gamma distribution except for two collapse-related soil parameters
which were found to follow a Weibull distribution. A polynomial regression model was developed for the collapse criterion,
Cp, which is defined as the percentage volumetric strain occurring in a soil sample when saturated under constant load.
The model showed thatCp varies almost linearly with depth. A stepwise regression analysis revealed thatCp is strongly
correlated with two collapse-related soil parameters, namely, in situ dry density (γd) and in situ moisture content (w0).
Factor analysis validated this finding by producing two strong factors which described almost 80% of the total variance.
These factors were closely related toγd and in situ degree of saturation, which is directly related tow0, the in situ void ratio,
and the specific gravity of solids.
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INTRODUCTION

A considerable portion of the geotechnical engineer’s
effort is devoted to the identification of soils and the
evaluation of their properties for use in a particular
analysis. Because of the variation of soil properties,
the uncertainty in determining soil parameters can be
very high. Even within a limited area, soil properties
may vary due to inherent variation or heterogeneity
of the soil strata1. Differences in testing techniques,
equipment, and overall human factors also add to the
difficulty in evaluating these parameters determinis-
tically. A statistical approach to geotechnical engi-
neering problems provides a rational basis to achieve
a more economical solution by avoiding the use of
extreme values and by quantifying the uncertainty in a
solution2. In general, a soil deposit in a region may be
either residual or transported. Also a transported soil
may be alluvial (stream borne), aeolian (wind borne),
or colluvial (gravity transported). When alluvial soils
are deposited in an arid or a semi-arid environment,
they develop larger voids within their structure due
to the high evaporation rate during consolidation pro-

cess. Such soils undergo a large decrease in bulk
volume virtually instantaneously upon saturation or
load application and are known as collapsing soils.
However, even within the context of this definition, it
is difficult to identify collapse susceptible soils due to
the existence of many different types of clay minerals
and many other factors that contribute to the collapse
phenomenon. Therefore, application of statistical
and probabilistic methods in analysing collapsing soil
parameter would provide an optimum solution.

In this study statistical techniques were applied
to selected collapse criteria and collapse-related soil
parameters for soil in Tucson, Arizona, where the
presence of collapse-susceptible soils is well docu-
mented3,4. Previous work on this topic was limited
only to studies involving either specific areas or spe-
cific soil parameters. The purpose of this study was to
gather as much information as possible from reliable
sources and to use this data with statistical techniques,
such as regression and factor analysis, to determine
the variation of selected collapse criteria and collapse-
related soil parameters in three dimensions. Only the
variation of these criteria with depth will be consid-
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ered here. Other geostatistical aspects of the problem
were also studied by the authors and are presented
elsewhere5–9.

COLLAPSE CRITERIA AND RELATED
PARAMETERS

When soils are deposited in an arid or semi-arid
environment, there is insufficient time for them to
consolidate under their own weight due to high evap-
oration rates. They become partially saturated with
large voids. Application of typical foundation loads
on such soils causes only minor deformation as long
as the degree of saturation remains low. As soon as the
soil becomes saturated, large deformations take place
due to the reduction of volume and collapse of the
intergranular structure. If water is readily available,
the subsequent volume change and deformation are
rapid and the phenomenon is referred to as collapse.
In general, collapse-susceptible soils can be identified
by a dry density criterion. If the dry density of the
soil is sufficiently low to give a void space larger than
that required to hold the liquid limit water content,
then collapse upon saturation is likely. Otherwise
collapse generally occurs only when the soil is loaded.
In some cases, collapse susceptible soils are also
found in residual soils. In general, these soils are
terrace sediments consisting of low density, organic-
rich silts, sands, clays of varying percentage and traces
of gravels. Their approximate distribution varies.
Fig. 1 shows grain size distribution curves of typical
collapsing soil. However, regardless of the formation
process and grain size distribution, most collapsible
soils are geologically young10.

The influence of clay fraction on collapse has
been studied (see Refs.14,15). The studies show that
collapse potential is negligible when the clay content
is greater than 30%. If the clay content is below
5%, a collapse settlement, which remains small, is
likely to take place, whereas maximum collapse is
reached at clay contents of about 15%. This result
conforms to the interval established by Lawton et al16

who indicated that maximum collapse potential for the
natural soils studied is obtained when the clay content
is in the range of 10–40%.

Collapsing soils have been recognized throughout
the world; particularly in Africa, part of Asia, Europe,
as well as in the US. In the US the severity of
the problem has been observed for well over two
decades in the Midwestern and Western US, where
soil deposits are generally either aeolian or alluvial.

There are altogether about ten criteria for predict-
ing the collapsing potential of a soil. Some of the
criteria are empirical. Others are derived theoretically

Table 1 Critical values for non-collapsing (NC), medium
collapsing (MC), and high collapse (HC) soil parameters.

Parameter HC NC MC

R > 1.4 < 1.0 1.0 6 R < 1.4
Cp (%) > 5 6 2 2 < Cp 6 5
n0 (%) > 45 < 40 40 6 n0 < 45
e0 > 0.82 < 0.67 0.67 6 e0 < 0.82
γd,(pcf) 6 91.0 > 99.0 91.0 < γd 6 99.0
s0 (w0/s0) > 0.308 < 0.253 0.253 < s0 6 0.308
PL > 23 < 19 19 6 PL < 23
A e0 > 0.67, e0 < 0.67, -

A > −0.67 A < −0.67

from consolidation test results. The methods for
evaluating collapse susceptibility vary from simple to
very complex. Considerable effort has been given to
establish criteria for predicting the collapse potential
and the critical values for severity of a soil. The more
commonly used criteria are described in Ref.11. The
two criteria most widely used in the US are the Gibb’s
collapse parameter (R)12 and the percentage collapse
(Cp) as obtained from the double oedometer test13.
A third parameterA developed in Ref.10 was also
included. The parameters are defined by

Cp =
∆ec

1 + e0
=

∆Hc

H0
,

R =

γw
γd

− 1
Gs

wl
,

A =
(e0 − el)γw

(1 + e0)w0γd
,

where∆ec and ∆Hc are changes in void ratio and
sample height, respectively, after saturation under a
pressure of 200 kPa,el is the void ratio at liquid limit,
andH0 is the initial height of sample. Other related
parameters are the initial dry unit weight (γd), initial
moisture content (w0), initial void ratio (e0), initial
porosity (n0), initial degree of saturation (s0), and
plastic limit (PL).

Specific cut-off values for collapse susceptibility
of each parameter for each collapse criterion (R, Cp,
A) and collapse-related parameters (γd, e0, n0, s0,
PL) are given below. The critical values for param-
etersR, Cp, and n0 obtained are given inTable 1.
Other critical values were derived from a conventional
volumetric-gravimetric relationship among the param-
eters.

For this study, field and laboratory test data were
collected from local consulting engineers’ offices and
from the reports of previous researchers4. In all,
data for 992 sample points were collected from 411
different locations within the city of Tucson and its
surroundings. The raw data were reduced to obtain
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Fig. 1 Typical grain size distribution curve of collapsing
soil.
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Fig. 2 Typical collapse potential test result13.

parameters in two categories: established criteria (Cp,
R, A) and collapse-related soil parameters (γd, w0, e0,
n0, s0, andPL).

The collapse parameter,Cp, is obtained from a
pseudo-consolidation test13 and represents the volu-
metric strain the sample undergoes after it is saturated
with water while under a pressure of 200 kPa as shown
in Fig. 2. Some of the parameters listed previously are
redundant since they can be calculated from a com-
bination of the others. However, the objective was to
investigate the effect of each commonly used collapse-
related soil parameters on the collapse phenomenon.

Summary statistics

A total of 7 to 10 soil parameters were determined for
each of the 992 sample points. Sample depths ranged
from the surface to about 12.2 m.Table 2shows the
data sets for the range of depths considered and the
total number of sample points (N ) for each set. Data
sets 1–6 each contain 7 parameters.Table 3provides
the descriptive statistics for each of the 6 parameters.
Data set 7 contains the additional parametersR, A,
and PL and the descriptive statistics of these are
presented inTable 5.

Table 2 Data sets used in the analysis.

Data set Range of depths (ft) N

1 0–1 125
2 1.1–2 286
3 2.1–3 254
4 3.1–4 100
5 4.1–6 104
6 6.1–40 123
7 0–40 219

REGRESSION ANALYSIS

For the purpose of obtaining general descriptive pa-
rameters, primary attention was given to univariate
data sets, i.e., numerical values obtained for a single
characteristic of a sample. Linear regression and
multiple linear regression analyses were used for all
data sets in order to investigate possible functional
relationships among the variables. Polynomial re-
gression analyses were conducted on each data set to
model the variation of the parameters with respect to
depth,d.

The functional relationship between the depen-
dent variables (y) and the independent variables (x)
was found by the method of least squares. The
goodness-of-fit or strength of this relationship was ex-
pressed in terms of percentage reduction of variance,
which is defined as 100 times the sum of the squares
of the computed values ofy divided by the sum of the
squares of the observed values ofy.

Table 6 gives the results of the polynomial re-
gression analyses for all data sets in terms of depth
expressed in units of feet. The relationships apply for
depths varying from 0.5 to 40 feet. Also included in
the table isp-value used to test the null hypothesis
that the multiple correlation is zero.Table 7 gives
the results of a similar analysis for data set 7 which
contains values for all collapse criteria and collapse
related soil parameters. The regression equations
for Cp, s0, d, andw0 given in Table 6and Table 7
are different because of differences in the number of
data points in each of the data sets considered and
differences in their dispersion tendencies. The results
in Table 6were derived from 992 data points, whereas
those inTable 7were derived from 219 data points.

A stepwise linear regression analysis was used to
express the collapse criterionCp as a function of the
collapse related soil parameters. A summary of the
results of this analysis is given inTable 8. In general,
the analysis shows that the parametersCp is strongly
related to the dry unit weight,γd, and the natural
moisture content,w0. It is weakly related to natural
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Table 3 Descriptive statistics for collapse parameters for the 7 data sets (DS). CoV given as a percentage.

Cp e0 s0 γd w0 n0

DS Mean SD CoV Mean SD CoV Mean SD CoV Mean SD CoV Mean SD CoV Mean SD CoV

1 6.7 7.06 105.8 0.92 0.042 53.8 0.078 0.26 27.2 22.5 11.21 49.7 94.2 10.07 11.4 47.0 6.6 13.5
2 7.1 7.73 109.1 0.84 0.047 58.0 0.081 0.22 26.5 24.9 11.29 45.4 98.0 9.6 9.8 45.0 6.4 14.1
3 5.2 5.90 114.4 0.82 0.052 65.0 0.080 0.25 30.3 25.1 12.55 50.0 99.4 10.8 10.9 44.1 7.2 16.4
4 4.3 4.83 111.6 0.85 0.071 83.5 0.085 0.34 39.1 24.5 12.94 52.7 98.5 10.5 10.6 44.7 7.7 17.3
5 3.6 4.06 111.8 0.78 0.049 68.1 0.072 0.23 30.2 23.4 12.29 52.6 100.7 10.0 9.9 43.0 6.9 16.0
6 2.0 2.33 117.0 0.79 0.083 96.5 0.086 0.34 42.4 26.3 17.60 66.8 102.5 11.7 11.4 42.5 8.6 20.3
7 5.7 6.01 104.3 0.94 0.068 77.2 0.094 0.26 28.3 26.3 13.87 52.7 94.8 10.7 11.3 47.5 6.8 14.3
All 5.2 6.32 120.1 0.84 0.06 74.1 0.08 0.27 32.2 24.8 13.04 52.7 98.8 10.7 10.8 44.5 7.3 16.3

Table 4 Regression equation of CoV with depth.

Regression equation R2

CoV(Cp) = 107.11 + 1.433d 0.396
CoV(e0) = 25.55 + 2.21d 0.336
CoV(s0) = 48.56 + 0.0099d4 0.825
CoV(γd) = 10.5 + 0.02d 0.960
CoV(w0) = 50.5 + 6.25d 0.545
CoV(n0) = 13.14 + 0.966d 0.624

Table 5 Descriptive statistics forR, A, andPL.

Parameter Mean SD Skew,β1 Skew,β2 CoV N

R 1.12 0.40 0.67 0.34 29.7 219
A 0.79 1.81 −1.75 12.0 28.6 219
PL 0.27 0.07 1.13 1.24 25.6 219

void ratio, e0, porosity,n0, degree of saturation,s0,
and the depth,d. As has been mentioned previously,
the importance of a variable may increase or decrease
when it is taken in combination with other variables.
Moreover, a linear regression model is not the only
model that can be used to explain the data set ade-
quately.

Table 9contains the results of a similar analysis
for R, Cp, andA (data set 7). The collapse parameter
R is related most strongly toA, PL, andd as seen
in Step 5. The parameterCp, as seen in Step 3, is
strongly related tos0, A, andd. The parameterA,
on the other hand, is related most parameters and is
strongly related toR, PL, andw0.

Table 6 Polynomial regression equations for all data sets
(d = depth in feet).

Regression equation Fc p-value

Cp = 7.89− 1.035d + 0.0488d2 − 0.00067d3 23.7 < 0.001
e0 = 0.09− 0.0305d + 0.0016d2 6.8 0.0014
n0 = 46.67− 0.19d + 0.043d2 − 0.00002d4 9.9 < 0.001
s0 = 24.05 + 0.018d2 23.6 < 0.001
γd = 95.33 + 1.39d− 0.076d2 + 0.0014d3 13.3 < 0.001
w0 = 0.078 + 0.00006d2 14.4 < 0.001

Table 7 Polynomial regression equations for data set 7 (d =

depth in feet).

Regression equation Fc p-value

Cp = 7.42− 0.063d + 0.014d2 8.01 < 0.001
PL = 0.26− 0.05d 4.9 0.028
A = 1.21− 0.16d + 0.005d2 4.3 0.015
s0 = 21.8 + 1.14d 48.3 < 0.001
γd = 93.1 + 0.05d 11.0 0.001
w0 = 0.077 + 0.0035d 25.7 < 0.001

Table 8 Stepwise regression equations forCp.

DS Regression equation PVE

1 8.03− 0.195s0 + 5.06d 10.8
2 54.59− 0.094− s0 − 0.436γd − 87.8w0 26.4
3 37.41− 0.29γd − 39.29w0 29.2
4 29.8− 0.026s0 − 0.22γd − 29.26w0 24.6
5 73.22− 0.05γd − 17.1e0 32.5
6 −19.14 + 0.125γd − 47.23w0 + 13.4e0 + 0.072s0 27.2

PVE = % variation explained

Correlation coefficient matrix

The correlation coefficient matrices, which show the
interrelationships among all the variables, were com-
puted for each of the data setsXij considered in this
study.Table 10, which applies to data set 7, illustrates
these matrices. The correlation coefficient matrix and
deviation matrix for a given data set are obtained from

Zij = (Xij −Xj)/Xij ,

R = (1/n)ZTZ,

whereZ is the deviation matrix,R is the correlation
matrix, andn is the number of observations in the data
set.

Since the correlation coefficient is a measure of
the linear association among variables, or how well
one variable predicts another variable, it is an ex-
ample of simple linear regression. The value of the
correlation coefficient ranges between−1 and +1.
If the value of the correlation coefficient is zero, no
success in prediction is indicated. Perfect prediction
is indicated by either+1 or −1. Based on the
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Table 9 Stepwise regression equations forR, Cp andA.

Parameter Regression equation (γd in pcf) % variation explained

R R = 2.27− 0.0005A− 0.009γd − 3.51PL− 0.9e0 − 1.5w0 93.9
Cp Cp = 3.94− 0.138s0 + 0.437A− 0.109d 16.0
A A = −6.77− 0.31R + 0.02Cp + 0.065s0 − 22.96w0 + 0.25n0 − 14.7PL 69.3

Table 10 Correlation coefficient matrix for data set 7.

d R Cp e0 A n0 s0 PL γd w0

d 1.00 −0.24 −0.22 −0.06 −0.16 −0.08 0.43 0.15 0.22 0.33
R −0.24 1.00 0.36 0.63 0.77 0.64 −0.43 −0.62 −0.75 −0.10
Cp −0.22 0.36 1.00 0.27 0.38 0.31 −0.31 −0.14 −0.40 −0.17
e0 −0.06 0.63 0.27 1.00 0.52 0.98 −0.01 0.10 −0.91 0.47
A −0.16 0.77 0.38 0.52 1.00 0.55 −0.25 −0.52 −0.62 −0.04
n0 −0.08 0.64 0.31 0.98 0.55 1.00 −0.02 0.09 −0.93 0.45
s0 0.43 −0.43 −0.31 −0.01 −0.25 −0.02 1.00 0.27 0.37 0.83
PL 0.15 −0.62 −0.14 0.10 −0.52 −0.09 0.27 1.00 0.02 0.30
γd 0.22 −0.75 −0.40 −0.91 −0.62 −0.93 0.37 0.02 1.00 −0.11
w0 0.33 −0.10 −0.17 0.47 −0.04 0.45 0.83 0.30 −0.11 1.00

information provided by the correlation matrices and
the results of several regression analyses for each data
set, the following conclusions are made.

No significant correlation was observed between
depth and the other parameters for data sets 1–5 since
values of the correlation coefficients were close to
zero for these cases. This is to be expected because
for each of these data sets the depth increment is
small (1.0 or 2.0 feet) as shown inTable 2. The
lack of correlation betweenCp and depth and the
other parameters is also clear fromTable 7where the
parameterd does not appear in the regression equation
for data sets 2–5. For data set 7, the depth varies
from 6.0 to 40.0 feet. The first row ofTable 10gives
values of the correlation coefficient sufficiently greater
or less than zero to indicate a stronger correlation of
d with other parameters than was obtained for any of
the other data sets. This conclusion is also supported
by the regression equation obtained forCp from data
set 7 as presented inTable 7.

The parameterCp has a moderate negative corre-
lation with γd (−0.40) andw0 (−0.17), as was also
seen by the use of regression analysis.

The natural void ratio,e0, exhibits a strong nega-
tive correlation withγd (−0.91) and a strong positive
correlation withn0 (0.98).

The degree of saturations0 has a strong positive
correlation withw0 (0.83) and a moderate negative
correlation withCp (−0.31) as expected.

As shown inTable 10, the Gibbs collapse param-
eterR has strong correlation withe0 (0.63), A (0.77),
PL (−0.62) andγd (−0.75). Since bothR andA are

functions ofPL, the high correlation is justified and
expected. A comparison of the regression equations
for R presented inTable 9 with the values of the
coefficient of determination (R2) for R presented in
Table 10verifies this observation. The comparison
also shows thatw0 has only a small effect on explain-
ing variations when it is included in the regression
equation. One possible explanation is that when two
or more variables are considered together, their effect
on a third parameter is markedly different than if either
of the two variables is considered alone. Moreover,
when there is an extreme value for any one of the
parameters, an unusual value in the deviation matrix
may occur. This can result in a erroneously very low
or high coefficient in the matrix.

The parameterA was found to be moderately to
strongly correlated toR (0.77), Cp (0.33), n0 (0.55),
e0 (0.52), s0 (−0.25), PL (−0.52), andγd (−0.62).
The parameteryd apparently did not enter into the
regression equation. It is often difficult to select
the one or two strongest variables for a regression
analysis on the basis of the correlation matrices or vice
versa, since the importance of a given variable may
change when it is entered into the regression analysis
in combination with other variables.

FACTOR ANALYSIS

The various statistical techniques described in the
previous section provide for rapid data evaluation,
determination of statistical significance, evaluation of
parameters, and the fitting of linear models. However,
neither the predictor equations nor the correlation
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coefficients provide a complete characterization of the
variability in collapse properties. For this reason, a
higher order statistical technique called factor analysis
was applied to each of the seven data sets. Factor
analysis15 is a powerful multivariate analytical tool
which is used to reduce a large number of variables to
a relatively small numbers of factors. The technique is
useful in screening large data sets and helpful in for-
mulating a hypothesis for an observed phenomenon.

The mathematical theory for the development
of factor analysis is described in Ref.17. Several
factor solutions have been developed and procedures
by which the factor coefficients are computed have
been presented. The most general and widely used
procedure is the principal-factor solution17 which is
also known as the ‘method of axes’. In this method,
the first axis in an ellipsoid is selected so that the sum
of the squares of the distances of points from the axis
is minimized. Successive axes, each orthogonal to the
preceding ones, are chosen in order to minimize the
squares of the distances of the points from the new
axis. As a result of this process, the factor loadings,
which are the correlations between the factors and the
variables on each successive axis, become smaller and
smaller until the number of factors reaches the rank of
the correlation matrix satisfactorily.

The factor analysis presented here is based on
principal components. Principal component analysis
transforms a given set of variables into a new set of
variables which are either orthogonal or uncorrelated.
There is an essential difference between principal
component analysis and factor analysis. In factor anal-
ysis, a variable is influenced by certain determinants,
some of which are shared by other variables while
others are not shared by any other variable. The main
purpose of factor analysis is to define a minimum
number of hypothetical variables or factors with which
the correlation can be re-analysed.

In factor analysis, the data matrixZ, which is an
n × m matrix containing the values ofm measure-
ments onn objects, is used to findm new measure-
ments with zero as mean and identity matrix,I, as
variance. These measurements, called factors, are lin-
ear functions ofz scores. With the new measurements,
the correlation matrix is recalculated and re-analysed.

The z scores expressed as a linear function of
factors are

Zi = f1Ui1

√
λ1 + f2Ui2

√
λ2 + · · ·+ fmUim

√
λm,
(1)

wherei = 1, . . . ,m. The correlation coefficient ofzi

with fm is given byL = U
√

λ and is known as the
loading.

With the availability of SPSS and other similar
programs, lengthy routine calculations can be short-
ened considerably. This is particularly important
when a large matrix is to be inverted or when the
solutions of the characteristic equations used in factor
analysis need to be obtained.

The factor model used here is based on the least
squares method of the formZi = ai1f1+· · ·+aimfm,
whereaij are factor coefficients (loadings)= uij

√
λi

(i = 1 . . ., m; j = 1, 2, 3, . . ., m) as shown in (1).

DISCUSSION

Factor analysis was applied to all seven data sets for
collapse and collapse-related soil parameters. The
analysis was also applied to a data set consisting of
all the data. The results are presented in the form of
rotated factor matrices inTable 11. In grouping the
variables with a given factor, factor loadings less than
0.3 were arbitrarily considered to be zero and were
reported in order to facilitate reading. An explanation
of the significance of the factors for each of the data
set follows.

Data set 1: Variables for 125 observations were
analysed. The results in the form of a rotated factor
matrix are shown inTable 11. Four factors were
extracted, but only two are reported. The first two
factors accounted for 76% of the total variance. The
two factors extracted for the various parameters were
F1: Cp, e0, n0, γd, w0 and F2: Cp, s0, γd, w0.
Factor 1 is seen to depend on the unit weight and
other natural properties of the soil deposit. For each
factor the variables associated with the factor are quite
strong with respect to that factor and negligible for
other factors. The inverse relationship betweenγd

(−) and e0 (+) is confirmation of the relationship
γd = Gsγw/(1 + e0). Factor 2 mainly depends on
s0. The Cp value was found to depend moderately
on the degree of saturation in regression analysis. A
strong correlation with water content is justified, i.e.,
Se = wGs.

Data set 2: For this data set, the same variables
were considered as for data set 1 and 286 observations
were analysed. As shown inTable 11, the first two
factors account for about 76% of the total variance.
The two factors are quite similar to those derived for
data set 1 except forCp, which did not come out as
a strong a factor as was previously obtained for data
set 1.

Data set 3: Four factors were extracted and only
two are reported inTable 11. TheCp value is found
to have a strong negative correlation with the degree
of saturations0 within Factor 1. This unusual rela-
tionship is probably due to an extreme value in the
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Table 11 Rotated Factor Matrices of all Data Sets.

Variables DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7 All

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

d - - - - - 0.227 - −0.40 - - - 0.73 - 0.464 - 0.40
Cp 0.580 - - - 0.362 - 0.32−0.75 0.52 −0.49 0.37 - 0.512 - 0.41−0.62
e0 0.994 0.516 0.987 0.738 0.986 - 0.97 - 0.97 - 0.97 0.75 0.847 - 0.98 -
n0 0.997 - 0.983 - 0.989 - 0.98 - 0.98 - 0.97 - 0.863 0.472 0.99 -
s0 - - 0.268 - - 0.918 0.52 0.76−0.41 0.88 0.54 - −0.38 0.779 0.29 0.88
γd - 0.963 - 0.898 - 0.373−0.88 0.37 −0.88 0.41 −0.83 0.70 −0.94 - −0.90 0.31
w0 0.941 0.291 0.887 0.443 0.905 0.707 0.86 0.44 0.73 0.66 0.84 0.46 - 0.931 0.70 0.68
R 0.892 -
A 0.976 -
PL −0.31 0.55
EV 3.299 2.000 3.404 2.089 3.408 1.994 3.299 1.633 3.667 1.664 3.716 1.72 4.362 2.600 3.493 1.920
CPTV 47.1 75.7 48.6 78.5 48.7 77.2 47.1 77.8 52.4 76.2 53.1 77.2 43.6 69.6 49.9 77.4

EV = eigenvalue; CPTV = cumulative percentage of total variance; DS = data set

deviation matrix.
Data set 4: As shown inTable 11, three factors

accounted for 91.2% of the total variance, but only
two are presented. This is essentially the same as for
data set 2, except that a weak loading ond is combined
with Factor 2.

Data set 5: As shown inTable 11two factors
accounted for 78% of the total variance. The factor
loadings and variables are similar to those of data
set 1.

Data set 6: As shown inTable 11, two factors
accounted for 77% of the total variance. Factor 1 is
the same as was found in all the other sets. Factor
2 appears here as a combination of the other factors.
Data sets 3, 4, 5, and 6 have the same seven variables
and 254, 100, 104, and 123 observations respectively.
From the rotated factor matrices of these sets, as given
in Table 11, it is observed that the factors extracted for
each data set are virtually the same. This suggests that
all of the collapse-related soil parameters are from the
same population.

Data set 7: A separate analysis was done with
the three collapse criteria and seven collapse-related
soil parameters, i.e. ten variables altogether for 219
observations. Five factors were found to account for
about 96% of the total variance, but only two are
shown inTable 11. The factors extracted were:F1:
R, Cp, e0, A, n0, γd; F2: d, e0, n0, s0, PL, w0;
F3: d, A; F4: d, Cp; F5: d, Cp. Factor 1 is clearly
a factor of collapse criteriaA and R. The strong
negative correlation withγd was expected from their
theoretical relationships. Factor 2 is determined by
water content,w0, which includesPL ands0. Factor
3 is determined byPL. Factors 4 and 5 are the same
as for other data sets.

All data sets: An additional run was made for all
data sets with seven variables for 992 observations.
The resulting rotated factor matrix is presented in

Table 11. Four factors were extracted accounting for
98.7% of total variance, but only two are presented. It
is seen that the strongest factor in the factor analysis
of all the collapse-related soil parameter data isF1

since it accounts for almost 50% of the variability. It
appears most strongly related toe0 andγd, therefore
it can be considered as the “unit weight factor”. The
second strongest factor appears to beF2 since it
accounts for an additional 27.5% of the variance. It
is most strongly related tos0 can therefore be called
the “degree of saturation factor”. The third factor ac-
counted for an additional 13% of the variance and was
solely related to depth. The fourth factor accounted
for an additional 8% variance and was related toCp.

Table 12presents a semi-quantitative summary of
the results of the factor analysis. It is observed that
the cumulative proportion of total variance among
the eight sets of data is fairly uniform. There is
little difference between the proportions of variance
extracted from ten variables versus the proportion of
variance extracted from seven variables.

In order to obtain meaningful associations from
a factor analysis in this case, two conditions are
required. The first is that the number of variables that
characterize the collapse susceptibility should be the
same for all strata analysed. The second is that the
sample source from different locations and different
depths should be identical. In other words, the deposit
should be homogeneous.

In this analysis the most stable factors appear to
be unit weight (F1) and degree of saturation (F2)
factors. The introduction of unique factors such as
Cp and d into the analysis reflects the independent
character of these quantities and does not influence the
deduced variables significantly. The parametersR and
A may be strong factors as obtained from data set 7,
but this cannot be investigated fully since they were
not included as part of the other data sets due to the
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Table 12 Summary of factor analysis.

Data Sets N No. of Variables F1 F2 F3 F4 F5 Cum % of Total variance

1 125 7 γd s0 d Cp - 99.4
2 286 7 γd s0 d - - 92.3
3 254 7 γd s0 d Cp - 99.2
4 100 7 γd s0 d - - 91.2
5 104 7 γd s0 d Cp - 99.2
6 123 7 γd d Cp - - 89.0
7 219 10 γd, R, A s0 PL Cp d 96.2
All 992 7 γd s0 d Cp - 98.7

unavailability of sufficient data at most depths.
Factor analysis was used in this study as a sup-

plement to multiple regression analysis. In regression
analysis, the significance of the regression and corre-
lations can be tested. In factor analysis, there is no
significance test for factor loadings. However, factor
analysis provides more insight into the understanding
of theoretical concepts and procedures than does the
multiple regression analysis. In some cases, however,
rotation in factor analysis may yield meaningless
factors18. The factor analysis was performed by using
the fact thatγd and s0 were the parameters most
closely related to the two strongest factors. In this
regard, factor analysis proved to be a sophisticated
data reduction technique that confirmed the results of
more conventional statistical analysis.

CONCLUSIONS

Values of selected collapse criteria and collapse-
related soil parameters obtained from tests performed
on about 1000 samples obtained from over 400 bore-
hole locations throughout the Tucson Basin were anal-
ysed statistically to determine the nature and extent
of their variability both spatially and with depth. The
results of those analyses lead to the following observa-
tions and conclusions with respect to variability with
depth.

(1) The statistical parameters for all the variables
considered in the analysis manifest high dispersion
tendencies as evidenced by the high values of the coef-
ficient of variation (CoV). The value of the CoV was
found to increase with depth as indicated inTable 8.
The variations of CoV with depth were best modelled
linearly forCp, e0, γd, w0, andn0 and nonlinearly for
s0. (2) In an attempt to fit the theoretical probability
distribution function to each parameter, it was found
that the distributions for all parameters exceptγd

and n0 were closely approximated by the Gamma
distribution. The distributions for the parametersγd

andn0 were found to follow the Weibull distribution
function. (3) All parameters were regressed with

depth using a polynomial model in order to take
nonlinearity within the profile into account. As in-
dicated inTable 5, higher-order terms made a very
insignificant contribution to the variation and can be
ignored. (4) The results of a stepwise linear regression
analysis of collapse parameterCp presented inTable 8
reveal it to be significantly correlated withγd and
w0. The results of a similar analysis performed on
the Gibbs ParameterR contained inTable 9show a
strong correlation between it andA, L, γd. (5) Factor
analysis enabled the number of variables to be reduced
to two independent parameters,γd ands0, that were
found to describe approximately 80% of the variation
encountered in the data. This suggests that a good
estimate of the variation of collapse susceptibility can
be obtained from the two collapse-related soil param-
eters, dry unit weight,γd, and degree of saturation,
s0. It also validates the earlier findings revealed by
regression analysis. (6) The database created with col-
lapse and collapse-related soil parameters can be used
for information regarding the severity of collapsing
problems in a particular location of the city, and for
further analysis.
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