On the normal approximation of the number of vertices in a random graph

Kritsana Neammanee*, Angkana Suntadkarn

Department of Mathematics, Faculty of Science, Chulalongkorn University, Phyathai Road, Patumwan, Bangkok 10330, Thailand

*Corresponding author, e-mail: kritsana.n@chula.ac.th

ABSTRACT: In this paper, we use Stein-Chen’s method to give a uniform bound on the normal approximation of the number of vertices of a fixed degree in a random graph. This work corrects our results published previously.

KEYWORDS: Stein-Chen method, uniform bound, vertex

INTRODUCTION AND MAIN RESULTS

A random graph is a collection of points or vertices with lines or degrees connecting pairs of them at random. The study of random graphs has a long history. A systematic study of random graphs began with the influential work of Erdős and Rényi1–3 and it has since developed into a significant area of study in modern discrete mathematics. There are many applications of random graphs (see Refs. 4–7).

Let \(G(n, p) \) be a random graph on \(n \) labelled vertices \(\{1, 2, \ldots, n\} \) with the edges added randomly such that each of the \(\binom{n}{2} \) possible edges exists with probability \(p, 0 < p < 1 \). In this study, the assumption has been made that the presence of an edge between two vertices is independent of the others.

Let \(G = (V(G), E(G)) \) be a graph where \(V(G) \) and \(E(G) \) are the sets of vertices and edges of \(G \), respectively. The degree of a vertex \(v \) in graph \(G \), denoted by \(\deg(v) \), is the number of edges incident to \(v \), i.e., \(\deg(v) = |\{w \in V(G) | vw \in E(G)\}| \). Any vertex of degree zero is called an isolated vertex.

Let \(S_n \) be the number of vertices of a fixed degree \(d \geq 0 \) in \(G(n, p) \). Then \(S_n = Y_1 + Y_2 + \cdots + Y_n \) where

\[
Y_i = \begin{cases} 1, & \text{if vertex } i \text{ has degree } d \text{ in } G(n, p), \\ 0, & \text{otherwise}, \end{cases}
\]

for \(i = 1, 2, \ldots, n \). Note that \(a_n := E[Y_i] \) is given by

\[
a_n = P(Y_i = 1) = \binom{n-1}{d} p^d q^{n-1-d}
\]

where \(q = 1 - p \) and \(E[S_n] = na_n \). Also\(^8\),

\[
\sigma_n^2 := \text{Var}(S_n) = \frac{n}{n-1} \binom{n-1}{d} (d - (n - 1)p)^2
\times p^{2d-1}(1 - p)^2(n - d)^2 + E[S_n] - \frac{(E[S_n])^2}{n}.
\]

Stein introduced a new powerful technique for obtaining the rate of convergence to the standard normal distribution\(^9\). His approach was subsequently extended to cover the convergence to the Poisson distribution\(^10\). Stein’s method was applied to random graphs by Barbour\(^11\).

The Poisson convergence has since been widely taken up (see, e.g., Refs. 12–15). Barbour et al\(^16\) proved that the distribution of \(S_n \) converges to the Poisson distribution with parameter \(\lambda = na_n \) if either \(np \to 0 \) and \(d \geq 2 \), or \(np \) is bounded away from 0 and \((np)^{-\frac{1}{2}} |d - np| \to \infty \). Later, Suntadkarn and Neammanee\(^17\) gave the rates of convergence in case of \(d \geq 1 \) and \(p = 1/n^\delta \) for some \(\delta > 0 \). They showed that for \(A \subset \{1, 2, \ldots, n\} \), \(|P(S_n \in A) - \text{Poi}_\lambda(A)| \), where

\[
\text{Poi}_\lambda(A) = \sum_{k \in A} \frac{e^{-\lambda} \lambda^k}{k!},
\]

is \(O(n^{-(\delta - 1)(d-1)}) \) if \(\delta > 1 \) and is \(O(n^{-d(1-\delta)}) \) for \(0 < \delta < 1 \).

For the normal approximation, Barbour et al\(^8\) proved that the distribution function of

\[
W_n := \frac{S_n - na_n}{\sigma_n}
\]

converges to the standard normal distribution function

\[
\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} \, dt.
\]
For $E[S_n] \to \infty$ they gave the rate of convergence expressed in terms of $E[S_n]$ with respect to the Wasserstein metric d_1 which is defined by $d_1(X, Y) = \sup \{E|h(X) - E[h(Y)]| : \sup_{x \in \mathbb{R}} |h(x)| + \sup_{x \in \mathbb{R}} |h'(x)| \leq 1 \text{ for all bounded test functions } h \text{ with bounded derivative} \}$ for any random variables X and Y. They showed that

$$d_1(W_n, \mathcal{N}(0, 1)) \leq \frac{C(d)}{\sqrt{E[S_n]}}$$

where $\mathcal{N}(0, 1)$ is the standard normal random variable and $C(d)$ is a positive constant depending on d. In this article we consider the uniform distance

$$\delta_n := \sup_{z \in \mathbb{R}} |P(W_n \leq z) - \Phi(z)|.$$

Note that $\delta_n = O((d_1(W_n, \mathcal{N}(0, 1)))^{1/2})$, in general\(^{18}\). In Barbour et al\(^8\) the authors explicitly restricted their considerations to smooth test functions but Raić\(^9\) used the Lipschitz test function to modify the proof of Barbour et al\(^8\) for non-smooth test functions at the cost of a boundedness condition.

In this paper, we use Stein’s method and a Lipschitz test function to correct the work on normal approximation of Neammanee and Suntadkarn\(^20\). We give a uniform bound of the normal approximation of the number of vertices of a fixed degree in a random graph. The following theorem is our main result.

Theorem 1 For $d \geq 0$, $0 < \beta < 1$, and a positive integer $r_0 \geq \beta/(1 - \beta)$ there exists a positive constant $C(d, r_0)$ such that, for large n,

$$\sup_{z \in \mathbb{R}} |P(W_n \leq z) - \Phi(z)| \leq \frac{C(d, r_0)(1 + (np)^{r_0 + 1})}{\sigma_n^\beta} + \frac{C(d)(1 + (np)^{r_0 + 1})}{\sigma_n^{r_0(1 - \beta) + 1}}\sqrt{n}.$$

Furthermore, if $\sigma^2 = O(n)$ then

$$\sup_{z \in \mathbb{R}} |P(W_n \leq z) - \Phi(z)| \leq \frac{C(d, r_0)(1 + (np)^{r_0 + 1})}{\sigma_n^\beta}.$$

In the case of $np = O(1)$ we have $\sigma_n^2 = O(n)$. Hence, for $\beta > \frac{1}{2}$ and $r_0 \geq \beta/(1 - \beta)$, there exists a constant $C(d, r_0)$ such that $\delta_n = C(d, r_0)/\sigma_n^\beta$. Here, and throughout the paper, $C(c_1, c_2, \ldots, c_k)$ stands for an absolute constant depending on c_1, c_2, \ldots, c_k.

In the next section we prove auxiliary results and in the final section we introduce the Stein’s method for normal approximation which we use in the proof of main result in the last section.

AUXILIARY RESULTS

For each $i \in \{1, 2, \ldots, n\}$, let

$$X_i = \frac{Y_i - E[Y_i]}{\sigma_n}$$

and for any $\Lambda \subset \{1, 2, \ldots, n\}$ we define

$$Y_i(\Lambda) = \begin{cases} Y_i/\sigma_n, & i \in \Lambda, \\ (Y_i - Y_i(\Lambda))/\sigma_n, & i \not\in \Lambda, \end{cases}$$

where $G(n, p) - \{\Lambda\}$ is the random graph obtained from $G(n, p)$ by removing the vertices in Λ.

For $i, j = 1, 2, \ldots, n$, let

$$Z_{ij} = \begin{cases} Y_i/\sigma_n, & i = j, \\ (Y_j - Y_j(i))/\sigma_n, & i \neq j, \end{cases}$$

$$W(i) = \sum_{l=1}^n \frac{1}{\sigma_n} (Y_l(i) - E[Y_l(i)]) - E[Z_i]$$

$$= W_n - Z_i,$$

$$V_{ij} = \begin{cases} 0, & i = j, \\ \frac{1}{\sigma_n} \{Y_j(i) + \sum_{l=1}^n (Y_l(i) - Y_l(\{i\})) \} & i \neq j, \end{cases}$$

$$W_{ij} = \sum_{l=1}^n \frac{1}{\sigma_n} (Y_j(i, j) - E[Y_j(i, j)]) - E[V_{ij}] - E[Z_i]$$

$$= W(i) - V_{ij}$$

where $Y_j(i) := Y_j(i(i))$ and $Y_j(i, j) := Y_j(i(j))$. Note that $W(i)$ is independent of X_i, and W_{ij} is independent of the pair (X_i, Z_{ij}) (see Ref. 8) and

$$W_n = \sum_{i=1}^n X_i.$$

The following propositions improve the results of Propositions 2.1–2.3 in Ref. 20 for the case of arbitrary p.

Proposition 1 For large n, we have $\sigma_n^2 \geq \frac{1}{2} na_n$.

Proof: From Proposition 2.1 of Ref. 20 we know that $\sigma_n^2 \geq na_n(1 - a_n)$. If we can show that $a_n \leq \frac{1}{2}$, then the proposition is proved. From the fact that $1 - p \leq e^{-p}$, we have

$$a_n = \binom{n - 1}{d} p^d q^{n-1-d} \leq \frac{(1 + d)p}{d!} \frac{(np)^d}{e^{np}} \leq \frac{1}{2}$$

for large n. □
Proposition 2 For \(i, j \in \{1, 2, \ldots, n\} \) and \(r_1, r_2, r_3 \in \mathbb{N} \), there exists a positive constant \(C(d, r_2, r_3) \) such that for large \(n \),
\[
E[|X_i^{r_1} Z_i^{r_2} V_{ij}^{r_3}|] \leq \frac{C(d, r_2, r_3) a_n (1 + (np)^{r_2 + r_3 - 1})}{\sigma_n^{r_1 + r_2 + r_3}}.
\]

Proof: We follow the proof of Proposition 2.2 of Ref. 20 to show that for \(r, r_1, r_2, \ldots, r_m \in \mathbb{N} \) and for distinct \(j_1, j_2, \ldots, j_m \) which are not equal to \(i \) we have
\[
E[|Y_{j_1} - Y_{j_1}^{(i)}||Y_{j_2} - Y_{j_2}^{(i)}|| \ldots |Y_{j_m} - Y_{j_m}^{(i)}|] \leq \frac{p^{m-1} a_n}{(n-1)} \left[d + \frac{np}{q} \right] \leq C(d)(1 + np) \frac{p^{m-1} a_n}{n},
\]
and
\[
E \left[\left(\sum_{j=1}^{n} (Y_j - Y_j^{(i)}) \right)^r \right] = C(d)(1 + np)a_n \left(1 + np + \ldots + (np)^{r-1} \right) \leq C(d, r)(1 + (np)^{r-1})a_n.
\]

Hence
\[
E[|Z_i^r|] = \frac{1}{\sigma_n^r} E \left[\left(Y_i + \sum_{j=1}^{n} (Y_j - Y_j^{(i)}) \right)^r \right] \leq \frac{\sigma_n^r}{\sigma_n^r} \left\{ E[|Y_i|^r] + E \left[\left(\sum_{j=1}^{n} (Y_j - Y_j^{(i)}) \right)^r \right] \right\} \leq \frac{\sigma_n^r}{\sigma_n^r} \left(E[Y_i^r] + C(d, r)(1 + (np)^{r-1})a_n \right) = C(d, r)(1 + (np)^{r-1})a_n.
\]
Again for distinct \(l_1, l_2, \ldots, l_m \) which are not equal to \(i, j \), we have
\[
E \left[\prod_{k=1}^{m} |Y_{l_k}^{(i)} - Y_{l_k}^{(i, j)}|^{r_1} \right] \leq C(d)(1 + np) \frac{p^{m-1} a_n}{n}
\]
and
\[
E \left[\sum_{l \neq i, j} (Y_l^{(i)} - Y_l^{(i, j)})^r \right] \leq C(d, r)(1 + (np)^{r-1})a_n.
\]
From this and the fact that \(E[Y_j^{(i)}] = P(Y_j^{(i)} = 1) \leq C(d, a_n) \) (see Ref. 20) we have,
\[
E[|V_{ij}^r|] \leq C(d, r)(1 + (np)^{r-1}) \frac{a_n}{\sigma_n^r}.
\]

Proposition 3 For \(r_1 \in \mathbb{N} \cup \{0\}, r_2, r_3 \in \mathbb{N} \) and \(i, j \in \{1, 2, \ldots, n\} \), there exists a positive constant \(C(d, r_3) \) such that
\[
E[|X_i^{r_1} Z_{ij}^{r_2} V_{ij}^{r_3}|] \leq C(d, r_3)(1 + (np)^{r_3}) \frac{a_n}{n\sigma_n^{r_1 + r_2 + r_3}}.
\]

Proof: From the proof of Proposition 2.3 of Ref. 20 we can see that
\[
E[|Y_j^{(i)}|^{r_3} (Y_j - Y_j^{(i)})^{r_2}] \leq C(d) a_n p
\]
and
\[
E[|Y_j - Y_j^{(i)}|^{r_3} (Y_i^{(i)} - Y_i^{(i, j)})^{r_2} (Y_j - Y_j^{(i)})^{r_3} \ldots (Y_{l_m}^{(i, j)})^{r_{m+1}}] \leq C(d)(1 + np) \frac{p^{m} a_n}{n}.
\]
Hence
\[
E[|X_i^{r_1} Z_{ij}^{r_2} V_{ij}^{r_3}|] \leq \frac{1}{\sigma_n^{r_1 + r_2 + r_3}} \left\{ E[|Y_j - Y_j^{(i)}|^{r_2} \left(\sum_{l=1}^{n} (Y_l^{(i)} - Y_l^{(i, j)}) \right)^{r_3} \right\] + E \left[|Y_j - Y_j^{(i)}|^{r_3} \left(\sum_{l=1}^{n} (Y_l^{(i)} - Y_l^{(i, j)}) \right)^{r_3} \right] \right\} \leq C(d, r_3) \left(a_n p + (1 + (np)^{r_3}) \frac{a_n}{n} \right) \leq C(d, r_3)(1 + (np)^{r_3}) \frac{a_n}{n\sigma_n^{r_1 + r_2 + r_3}}.
\]

Since
\[
|X_i| = \left| \frac{Y_i - \mu}{\sigma_n} \right| \leq \frac{1}{\sigma_n},
\]
we get
\[
E[|X_i^{r_1} Z_{ij}^{r_2} V_{ij}^{r_3}|] \leq \frac{1}{\sigma_n^{r_1}} \left\{ E[|Z_{ij}^{r_2} V_{ij}^{r_3}|] \right\} \leq \frac{1}{\sigma_n^{r_1}} \left\{ E[|V_{ij}^{r_3}|] \right\} \leq C(d, r_3)(1 + (np)^{r_3}) \frac{a_n}{n\sigma_n^{r_1 + r_2 + r_3}}.
\]

□

www.scienceasia.org
STEIN’S METHOD FOR NORMAL APPROXIMATION

Stein’s method\(^9\) relies on the elementary differential equation

\[
f'(w) - w f(w) = h(w) - \mathcal{N} h \tag{8}
\]

where \(f : \mathbb{R} \to \mathbb{R} \) is a continuous and piecewise continuously differentiable function, \(h \) is a bounded test function with bounded derivative, and

\[
\mathcal{N} h := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t)e^{-t^2/2} dt.
\]

In order to use (8) to obtain the bound of normal approximation, many authors,\(^{20-22}\) choose the test function \(h = I_z \) where

\[
I_z(w) = \begin{cases} 1, & w \leq z, \\ 0, & w > z. \end{cases}
\]

Hence (8) becomes

\[
f'(w) - w f(w) = I_z(w) - \Phi(z) \tag{9}
\]

and the unique solution \(f_z \) of (9) is

\[
f_z(w) = \begin{cases} \sqrt{2\pi}e^{w^2/2}\Phi(w)[1 - \Phi(z)], & w \leq z, \\ \sqrt{2\pi}e^{w^2/2}\Phi(w)[1 - \Phi(w)], & w > z. \end{cases}
\]

Substituting any random variable \(W \) for \(w \) in (9), we get

\[
E[f_z'(W) - W f_z(W)] = P(W \leq z) - \Phi(z).
\]

Hence, to bound \(|P(W \leq z) - \Phi(z)| \), it suffices to bound \(E[f_z'(W) - W f_z(W)] \). But in our work, we choose the Lipschitz test function

\[
I_{z,\epsilon}(w) = \begin{cases} 1, & w < z - \epsilon, \\ \frac{w - z - \epsilon}{2\epsilon}, & z - \epsilon \leq w < z + \epsilon, \\ 0, & w \geq z + \epsilon,
\end{cases}
\]

where \(\epsilon > 0 \) is fixed. Observe that

\[
I_{z,\epsilon}(w) = \frac{1}{2\epsilon} \int_{z-\epsilon}^{z+\epsilon} I_1(t) dt
\]

and

\[
\mathcal{N} I_{z,\epsilon} = \frac{1}{2\epsilon} \int_{z-\epsilon}^{z+\epsilon} \mathcal{N} I_1(t) dt = \frac{1}{2\epsilon} \int_{z-\epsilon}^{z+\epsilon} \Phi(t) dt.
\]

From (8) we have

\[
E[I_{z,\epsilon}(W) - \mathcal{N} I_{z,\epsilon}] = E[f_z'(W) - W f_z(W)]
\]

where

\[
f_{z,\epsilon}(w) = \frac{1}{2\epsilon} \int_{z-\epsilon}^{z+\epsilon} f_1(w) dt
\]

and

\[
f'_{z,\epsilon}(w) = \frac{1}{2\epsilon} \int_{z-\epsilon}^{z+\epsilon} f'_1(w) dt.
\]

Note that\(^{19}\)

\[
\sup_{x \in \mathbb{R}} |f_{z,\epsilon}(x)| \leq \frac{\sqrt{2\pi}}{4},
\]

\[
\sup_{x,y \in \mathbb{R}} \frac{|f_{z,\epsilon}(x) - f_{z,\epsilon}(y)|}{x - y} \leq 1.
\]

Raič\(^{19}\) used a test function \(I_{z,\epsilon} \) to give a bound in the following theorem. However, his work cannot be applied to a random graph since our \(V_{ij} \) is not bounded.

Theorem 2 (Raič\(^{19}\)) Let \(W_n \) be a decomposed random variable defined by

\[
W_n = \sum_{i \in I} X_i,
\]

\[
E[X_i] = 0, \ i \in I, \ E[W_n^2] = 1, \ W_n = W^{(i)} + Z_i,
\]

where \(W^{(i)} \) is independent of \(X_i \), and

\[
Z_i = \sum_{j \in K_i} Z_{ij}, \quad i \in I, \quad K_i \subset I
\]

\[
W^{(i)} = W_{ij} + V_{ij}, \quad i \in I, \quad j \in K_i
\]

where \(W_{ij} \) is independent of the pair \((X_i, Z_{ij}) \). Suppose that \(|X_i| \leq A_i, \ |Z_{ik}| \leq B_{ik}, \ |V_{ik}| \leq C_{ik}, \ |Z_i + V_{ik}| \leq C'_{ik} \) for some constants \(A_i, B_{ik}, C_{ik}, \text{ and } C'_{ik} \). Then

\[
\sup_{z \in \mathbb{R}} |P(W_n \leq z) - \Phi(z)| \leq 13.7 \sum_{i \in I} A_i B_{ik}^2 + \sum_{i \in I} \sum_{k \in K_i} A_i B_{ik} (6.8 C_{ik} + 9.3 C'_{ik})
\]

where \(B_i := \sum_{k \in K_i} B_{ik} \).

To prove this theorem, Raič\(^{19}\) showed that for all \(\epsilon > 0 \),

\[
|P(W_n \leq z) - \Phi(z)| \leq A_1 + A_2 + A_3 + B_1 + B_2 + B_3 + \frac{\epsilon}{\sqrt{2\pi}} \tag{11}
\]
where

\[A_3 = C \sum_{i=1}^{n} \sum_{j=1}^{n} \left(E[\|Z_i + V_{ij}\|] E[\|X_i Z_{ij}\|] \right) \]

\[+ E[\|Z_i + V_{ij}\|] E[\|X_i Z_{ij}\|] \]

From (1), (5), (7), and the facts that \(W_{ij} \) is independent of \((X_i, Z_{ij}) \) and that \(\sigma_n^2 E[X_i^2] = E[(Y_i - a_n)^2] \leq a_n \), we have

\[E[\|W_n X_i|Z_i^2\|] \leq E[\|W(i) + Z_i\| X_i|Z_i^2\|] \]

\[\leq E[\|W(i)\| X_i|Z_i^2\| + E[|X_i Z_i^2|]] \]

\[\leq \left\{ E[(W(i))^2 X_i^2] \right\}^{\frac{1}{2}} \left\{ E[Z_i^4] \right\}^{\frac{1}{2}} \]

\[+ \frac{C(d)(1 + (np)^2)a_n}{\sigma_n^2} \]

\[\leq C \left\{ E[|W_n + Z_i^2| E[X_i^2]] \right\}^{\frac{1}{2}} \left\{ E[Z_i^4] \right\}^{\frac{1}{2}} \]

\[+ \frac{C(d)(1 + (np)^2)a_n}{\sigma_n^2} \]

\[\leq C(d)(1 + (np)^2)a_n. \]

Hence, by (5) and (7),

\[A_1 \leq \frac{C(d)(1 + (np)^2)}{\sigma_n}. \]

(12)

From (1) and (5), we have \(E[|W_{ij}|] \leq E[|W_n|] + E[|V_{ij}|] + E[|Z_i|] \leq C(d) \). Therefore,

\[E[|W_n X_i Z_{ij} V_{ij}|] \]

\[\leq E[|W_{ij} X_i Z_{ij} V_{ij}|] + \sigma_n^{\alpha \beta} E[|W_{ij} X_i Z_{ij} V_{ij}^{\alpha \beta + 1}|] \]

\[\leq C(d)a_n \]
From (3), (5), (6), (7), and $E[W_n^2] = 1$,

$$A_3 \leq \frac{C(d)(1 + (np)^2)}{\sigma_n^2}. \quad (14)$$

From (12–14),

$$A_1 + A_2 + A_3 \leq \frac{C(d)(1 + (np)^2)}{\sigma_n^2} + \frac{C(d)(1 + (np)^{q+1})\sqrt{n}}{\sigma_n^{q(1-\beta)+1}}.$$

In the remainder of the proof we let $\varepsilon > 0$.

Step 2 We will show that

$$B_1 \leq \frac{C(d, r_0)(1 + (np)^{q+1})}{\varepsilon \sigma_n} \left(\delta_n + \frac{1}{\sigma_n^2}\right) + \frac{C(d)(1 + np)}{\sigma_n^2},$$

where $\delta_n = \sup_{z \in \mathbb{R}}|P(W_n \leq z) - \Phi(z)|$. From the fact that \(^{19}\)

$$I_{z, \varepsilon}(x) - I_{z, \varepsilon}(y) = \frac{y - x}{2\varepsilon} \int_0^{1} I_{[z-\varepsilon \leq (1-\theta)x + \theta y \leq z+\varepsilon]} \, d\theta$$

(15)

where

$$I_A(w) = \begin{cases} 1, & w \in A \\ 0, & \text{otherwise} \end{cases}$$

we have

$$B_1 = \sum_{i=1}^n E[|I_{z, \varepsilon}(W^{(i)}) - I_{z, \varepsilon}(W^{(i)} + \theta_i Z_i)||X_i Z_i|]$$

$$\leq \frac{1}{2\varepsilon} \sum_{i=1}^n E \left[\left| \int_0^1 I_{[\Xi_i(\theta), |V_{ij}| > \frac{1}{\sigma_n^2}]} \, d\theta \right| |X_i Z_i^2| \right]$$

$$\leq \frac{1}{2\varepsilon} \sum_{i=1}^n E \left[|X_i Z_i^2| \left| \int_0^1 I_{[\Xi_i(\theta), |V_{ij}| > \frac{1}{\sigma_n^2}]} \, d\theta \right| \right]$$

$$+ \frac{1}{2\varepsilon} \sum_{i=1}^n E \left[|X_i Z_i^2| \left| \int_0^1 I_{[\Xi_i(\theta), |V_{ij}| \leq \frac{1}{\sigma_n^2}]} \, d\theta \right| \right]$$

where $\Xi_i(\theta)$ denotes $z - \varepsilon \leq W^{(i)} + \theta \theta_i Z_i \leq z + \varepsilon$, and we denote the two terms on the last right-hand side by B_{11} and B_{12}, respectively. By Proposition 2,

$$B_{11} \leq \frac{\sigma_n^{\alpha\beta}}{2\varepsilon} \sum_{i=1}^n E \left[|X_i Z_i^2|^\alpha V_{ij}^{\alpha\beta} \left| \int_0^1 I_{[\Xi_i(\theta), |V_{ij}| > \frac{1}{\sigma_n^2}]} \, d\theta \right| \right]$$

$$\leq \frac{\sigma_n^{\alpha\beta}}{2\varepsilon} \sum_{i=1}^n E[|X_i Z_i^2 V_{ij}|^{\alpha\beta}],$$

$$\leq \frac{C(d, r_0)(1 + (np)^{q+1})\alpha n}{\varepsilon \sigma_n^{\alpha(1-\beta)+1}}, \quad (16)$$

To bound B_{12} we use the concentration inequality

$$P(a \leq W_n \leq b) \leq 2\delta_n + \frac{b - a}{\sqrt{2\pi}}$$

(see Raši\(^{19}\)). Note that from (1), (2), (17) and Chebyshev’s inequality we have

$$P(a \leq W_{ij} \leq b)$$

$$= P(a \leq W_n - (Z_i + V_{ij}) \leq b, |Z_i + V_{ij}| \leq \frac{1}{\sigma_n^2})$$

$$+ P(a \leq W_n - (Z_i + V_{ij}) \leq b, |Z_i + V_{ij}| > \frac{1}{\sigma_n^2})$$

$$\leq P(a - \frac{1}{\sigma_n^2} \leq W_n \leq b + \frac{1}{\sigma_n^2})$$

$$+ P(|Z_i + V_{ij}| > \frac{1}{\sigma_n^2})$$

$$\leq 2\delta_n + \frac{b - a}{\sqrt{2\pi}} + \frac{2}{\sqrt{2\pi} \sigma_n^2} + E|Z_i + V_{ij}|^{\alpha\beta} \sigma_n^{\alpha\beta}$$

$$\leq 2\delta_n + \frac{b - a}{\sqrt{2\pi}} + \frac{2}{\sqrt{2\pi} \sigma_n^2}$$

$$+ C(d, r_0)(1 + (np)^{q-1}) \frac{\alpha n}{\sigma_n^3}, \quad (18)$$

From (5), (7), (18), and the fact that W_{ij} is independent of (X_i, Z_i), we have

$$B_{12} = \frac{1}{2\varepsilon} \sum_{i=1}^n E \left[|X_i Z_i^2| \right]$$

$$\times \left| \int_0^1 I_{[z - \varepsilon \leq W_{ij} + \theta Z_i, Z_i \leq z + \varepsilon, |Z_i| \leq \frac{1}{\sigma_n^2}, |V_{ij}| \leq \frac{1}{\sigma_n^2}]} \, d\theta \right|$$

$$+ \left| \int_0^1 I_{[z - \varepsilon \leq W_{ij} + \theta Z_i, Z_i \leq z + \varepsilon, |Z_i| > \frac{1}{\sigma_n^2}, |V_{ij}| \leq \frac{1}{\sigma_n^2}]} \, d\theta \right|$$

www.scienceasia.org
Step 3 We will show that

\[
B_2 \leq \frac{C(d, r_0)(1 + (n)p) \beta}{\varepsilon \sigma_n^3} \left(\delta_n + \frac{1}{\sigma_n^3} \right) + \frac{C(d)(1 + np)}{\sigma_n^3}.
\]

By using (15), Proposition 1, Proposition 3 and (18) we have

\[
B_2 = \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[|X_i Z_i - (W_i) - I_{z \in (W_i) + V_i})| |X_i Z_i| \right] \\
\leq \frac{1}{2\varepsilon} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[|X_i Z_i V_i| \right] \\
\times \int_0^1 I_{|z - \epsilon - \frac{W_i}{\sigma_n^3} \leq z + \epsilon + \frac{1}{\sigma_n^3}|} d\theta \\
\leq \frac{1}{2\varepsilon} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[|X_i Z_i V_i| \right] \\
\times \int_0^1 I_{|z - \epsilon - \frac{W_i}{\sigma_n^3} \leq z + \epsilon + \frac{1}{\sigma_n^3}|} d\theta \\
\leq \frac{1}{2\varepsilon} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[|X_i Z_i V_i| \right] \\
\times \int_0^1 I_{|z - \epsilon - \frac{W_i}{\sigma_n^3} \leq z + \epsilon + \frac{1}{\sigma_n^3}|} d\theta.
\]
+ \frac{1}{2\varepsilon^2} E \left[|Z_i + V_{ij}| \right]
\times \int_0^1 I_{\{z - \varepsilon \leq W_n - \theta(Z_i + V_{ij}) \leq z + \varepsilon, |Z_i + V_{ij}| > \frac{1}{\sigma n} \}} d\theta
\leq \frac{1}{2\varepsilon \sigma_n^2} E \left[\int_0^1 I_{\{z - \varepsilon \leq W_n - \theta(Z_i + V_{ij}) \leq z + \varepsilon, |Z_i + V_{ij}| > \frac{1}{\sigma_n} \}} d\theta \right]
+ \frac{\sigma_n^2 \varepsilon}{2\varepsilon} E[|Z_i + V_{ij}|^{r_0 + 1}]
= \frac{1}{2\varepsilon \sigma_n^2} \left(z - \varepsilon - \frac{1}{\sigma_n^2} \right) \leq W_n \leq z + \varepsilon + \frac{1}{\sigma_n^2}
\leq \frac{C(d, r_0)}{\varepsilon \sigma_n^2} \left(\delta_n + \varepsilon + \frac{1}{\sigma_n^2} \right)
\leq \frac{C(d, r_0)}{\varepsilon \sigma_n^2} \left(\delta_n + \varepsilon + \frac{C(d, r_0)}{\sigma_n^2} \right).

From this fact, and (20) we have

\begin{align*}
B_3 & \leq \frac{C(d)(1 + np)}{\varepsilon \sigma_n^2} \left(\delta_n + \varepsilon + \frac{C(d, r_0)}{\sigma_n^2} \right).
\end{align*}

We now deduce our main result. From (11) and Steps 1–4 we have

\begin{align*}
\delta_n &= \sup_{z \in \mathbb{R}} |P(W_n \leq z) - \Phi(z)|
\leq \frac{C(d, r_0)(1 + (np)^{r_0 + 1})}{\varepsilon \sigma_n^2} \left(\delta_n + \frac{1}{\sigma_n^2} \right)
\leq \frac{C(d)(1 + (np)^2)}{\sigma_n^2} + \frac{C(d, r_0)}{\sigma_n^2} + \frac{\varepsilon}{\sqrt{2\pi}},
\end{align*}

for all $\varepsilon > 0$. Hence we can choose $\varepsilon = C(d, r_0)(1 + (np)^{r_0 + 1})/2\sigma_n^2$ such that for large n,

\begin{align*}
B_1 + B_2 + B_3 & \leq \frac{C(d, r_0)(1 + (np)^{r_0 + 1})}{\sigma_n^2}.
\end{align*}

This fact and Step 1 complete the proof.

Acknowledgements: The authors would like to thank the referee for many helpful remarks which have led us to improve the presentation and the Thailand Research Fund for financial support (RG12550).

REFERENCES