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Modelling nature: A physicist’s viewpoint
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ABSTRACT: Recent progress in the life sciences, in the theory of complex systems, and in computers, allow a new
approach to understanding and/or predicting nature, very much inspired by physics. Modelling natural objects has become
possible. Moreover, because of man’s impact on the environment, it has also become a necessity. This note tries to convince
researchers in the life sciences that modelling should not be frightening, and that it can be very useful.

INTRODUCTION law (an equation relating a small number of variables),
from the possibility of predicting the behaviour of a
Nowadays, physics is often seen as the science cbmplex systerby using amode| and this applied
the inanimate world, from the very small (particleto such fields as economy, biology, ecology, and psy-
physics, quantum mechanics), to the very large (ashology. Note that although there is no strict definition
tronomy and cosmology), but this is only a recenbf a complex system, there is some consensus that
restriction. Etymologicallyphysicscomes from the it should: (a) have many components (b) have a be-
Greek verbpdouar which meand appear and grow haviour which is not trivial to predict (c) exhibit some
spontaneouslyike a cell or a plant. From this verb kind of emerging properties such as self-organization.
comes the substantivévois, which meansnature Because of the large (and often huge) number of actors
and the related adjectivevocxr. Hencephysicsor and relations in such systems, it is impossible to find
ovokn emoTiun is the science of natureand its simple laws describing their behaviour, and a very
object is the totality of the real world. Beyond, begindarge number of equations and variables are necessary,
the realm ofmetaphysics thus constituting a model. This large number of
It is the reductionist approach which first permit-equations cannot be solved by hand, and this is where
ted some fields of science to obtain results such dse third elementis crucial: the appearance of comput-
laws and equations: astronomy became a predictiegs renders feasible the study of the evolution of the
science when planets were ‘reduced’ to points in theets of equations which constitute the models. Mod-
equations of Kepler and Newton. Because the sciencelling complex systems such as those encountered in
dealing with life could not for a long time benefit meteorology, climatology, economy, social sciences,
from this kind of approach, they were left out ofneurosciences, organic chemistry, molecular biology,
mainstream physics. But recent progress in three vepgychology, and ecology is now possible using the
different directions — firstly, measuring methods andnethods of physics and supercomputers.
data analysis, secondly, theoretical tools, and lastly, Surprisingly (but is it really a coincidence?), it is
computers — have drastically changed the picture, arad this same present time that direct human influence
now life sciences can be addressed by the tools oh our planet is becoming worrying. Short term
physics. problems have to be addressed urgently if we want to
Experimental physics has given a large numbeanaintain the Earth as viable for mankind. And for this,
of new tools to study nature of which the most noit is no longer enough to discover, describe, and clas-
table are microscopy;’C radiometric dating, satellite sify new species; one needs a readerstandingof
imagery, and DNA analysis. Simultaneously, statiselimate change, of ecosystems dynamics, of emerging
tics and data analysis methods have been developgideases, and so on, in order to predict the impacts of
making these measurements exploitable. Life scienchaman activities, and to adapt and optimize them.
have thus become quantitative sciences. Fig. 1shows a few spatio-temporal scales of living
On the theoretical side, Friedrich Hayek, (1899-systems (here, forest) and of meteorological phenom-
1992, Nobel prize in economics in 1974), was onena, while the two diamonds show the spatio-temporal
of the first to introduce the concept @bmplexity influence range of pre-industrial and modern man,
in science, and he distinguished the possibility ofespectively. This kind of representation (without
predicting the behaviour ofsimple systerby usinga man) was introduced in 1986 by C.S. HollthgThe
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Time (log years) mathematician: it is the result of a team effort, where
, natural scientists are major players. Not only are they
— B
¢ the end-users of an abstract product, but they are also

Forest 1al ini i
L essential in its making.
‘ MODELLING: DEFINITION AND
L= @ PRINCIIIDL-ITZS |
Tropical The definitions of ‘model’ (noun) in th&€Compact
Low Oxford English Dictionaryare as follows:
-2 — Pressure : : :
area (1) a thre.e-dlmensmnal representation of a person or
thing, typically on a smaller scale
(2) a figure made in clay or wax which is then
| | | | | | reproduced in a more durable material
-2 0 2 4 6 8 .
Space (Iog metres) (3) something used as an example
(4) a simplified mathematical description of a system
Fig. 1 Some scales, in space and time, of natural objectsy process, used to assist calculations and predictions
and natural phenomena, and of human activities. (5) an excellent example of a quality
(6) a person employed to display clothes by wearing
them
figure illustrates how human influence on nature ha§) a person employed to pose for an artist
changed: 10000 years ago, there were 6 to 7 millio8) a particular design or version of a product.
humans. Nowadays, there are more than 6 billion ©bviously, what this article deals with is the definition
a thousand times more. 10000 years ago, men wepeovided in ‘4’, but ‘3’ is also relevant, as a given
hunter-gatherers, and their action was at the scale s€ientific model of a given phenomenon is sometimes
the leaf, or at most, at the scale of a tree. Nowadayan illustration of a larger class of phenomena (see
300 kn? of tropical forest are cut every day. Worse for instance the ‘forest fire’ paradighh The auto-
the climate itself is impacted world-wide by humanmatic association of ‘mathematical’ with the activity
activity, leading in less than one century to changesf modelling in sciences is not a good one. In
that took thousands of years during past climatifact, mathematics (and therefore equations) is a tool
variations. The biosphere was able to adapt to passed to build a scientific representation of reality.
changes because of genetic evolution, but now, thdodelling is based more on physics (as opposed to
rate of change is too high to allow adaptive evolutionmetaphysics’) than on mathematics. The distinction
or the migration of ecosystems along temperature @& meaningful and will become obvious later in this
hygrometry gradients. Man-induced climate changarticle.
also leads to the emergence of new diseases, or their Science always follows a simple three-step pro-
extension to places where they were not present beess: (1) observation of a real phenomenon, e.g., the
fore, thus leading to major health concetis motion of planets, a tornado, the spread of a disease,
To address those problems, scientists working ithe growth of a tree (2) elaboration of an abstract
life sciences have to builchodelsof the objects they construction to represent or explain the observation;
study, and they have to follow the paths and methodss seen earlier, it can be an equation, then called a
which have previously been used by physicists ttaw (like Newton's law), a theory (which is basically a
model and understand inanimate objects. As will bset of laws), or a model (3) comparison of the results
discussed later, mathematics is but a tool to achiews predictions of this construction with observation.
this goal. If there is a strong disagreement, then go back to the
This article does not intend to provide the readesecond step.
with a complete understanding or an exhaustive in- Two points should be made here. First, the
ventory of existing modelling techniques for naturakriterion ofempirical falsifiability, introduced by Karl
sciences, but simply to identify the goals and tools dPopper, is essential to the scientific method in physics
modelling, and also its pitfalls. Above all, it attemptsand many other sciences. A theory or a model
to convince the reader that work in collaboration withcannot be ‘proven’ but only ‘refuted’ for logical in-
a physicist or a mathematician to build a model willconsistency, or shown wrong by experimentation. A
offer rewards in the form of a better understandinggood’ theory or model is one which withstands con-
Modelling nature is not exclusive to the physicist oifrontations with experimentation. On the other hand,
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a conjecture in mathematics, which does not dea surface will be described as a grid of squares and
with physical objects, can be refuted (by a countethe variables will be computed on these squares. If
example) but can also be proven (and hence becorie variables themselves are continuous, one speaks
a theorem). But a theory or a model can be wrongf finite difference equations (FDESs) (discrete time),
(as everybody knows, general relativity has replaceor of coupled networks (discrete space and time). If
Newton’s theory of gravity), but can still be usefulthe variables themselves take only discrete values, one
(planet orbits can be described with a good degreeill speak of cellular automata.

of accuracy using classical mechanics). Secondly,

it is very important to make the distinction betweerDeterministic versus probabilistic (stochastic)

predictionandunderstandingA model can be purely A fully deterministic model performs exactly in the

descriptive. Models can have good predicting abil- . - o )
o X ) : ) ._~same way for a given set of initial conditions, while
ities, without incorporating underlying mechanisms

_ thev are like a ‘black box’ into which one feeds™ & stochastic model, randomness is present and
. y - e " .—even when given an identical set of initial conditions,
input quantities, such as initial conditions, and which

produce predicted quantities as output. Converselresults may in some cases vary greatly (this would be

SR . . . ?f‘le case for the outbreak of an epidemic started by one
an explicative model is built from causal mechanisms . e o .
. infected mosquito — if it dies before biting a host, there
and can therefore be termed a theory. Models which. . : )

. . o will be no incidence of the disease, whereas in another
are oriented essentially towards prediction (often . .
- . run of the model, the disease could reach the entire

statistical models) are different from those that are . L
opulation). In other cases, the results have a limited

built mainly to help to understand a phenomenon,. : .
- dispersion, at least for averaged output variables (e.g.,
(generally, mechanistic models). Nevertheless, on ; . . . S
e epidemiological status of a given individual may

a good mechanistic model is built, it can also become :
- vary from run to run, but the percentage of infected
useful for prediction.

Some other dichotomies should be defined, réosts would stay the same). The model is then said to

listed below: e robust.
' It is to be noted that mechanistic models can
Static versus dynamic incorporate some randomness (for instance in the

. . . : . expression of transition rates between different states).
A static model does not involve 'ume,whlleadynamm]_hey are then no longer fully deterministic, but if

model does. care is taken to verify the robustness, they can still be
Spatial (usually 2-d or 3-d) versus local or considered as explicative and mechanistic.
non-spatial (0-d)

If the model is homogeneous (the system has the sam@P-down versus bottom-up

state throughout), the variables are lumped, whereadif many cases an idea or a theoretical model has been
the model is heterogeneous (varying state within theonceived before envisaging a specific application to
system), then the variables are distributed or space-natural object. Reaction-diffusion equations and
dependent. cellular automata were studied long before they were
applied to morphogenesis of the patterns observed on
shells and animal pelts (see, e.g., RBf.or “tiger

If all the equations in the model are linear equationgush” in Nige®. This is also the case for collective
the model is known as a linear model. If one oibehaviour theories, which were developed before their
more of the objective functions or constraints ar@pplication to flocks of bird and schools of fistSuch
represented by nonlinear equations, then the modelas approach can be classified as being “top-down” —
a nonlinear model. from abstract concepts to practical application.

But often the problem comes first, and there
exists no ready-made model or theory. The choice of
In real life, one tends to consider that space, as wathodelling tools has to be decided after the question
as time, are continuous. The phenomenon is then deas been precisely formulated. It is then a “bottom-
scribed by sets of either ordinary or partial differentiaip” approach, from a practical problem towards an
equations (ODEs or PDESs). In many cases, howevabstract formalization. Of course, once the modelling
models will consider space and/or time as discretgoal is reached, the physicist can try to find regular-
time will proceed by jumps (which can be very short-ities and generalizations which can be compared to
fractions of seconds, or long — a year or more), whilevhat is observed in more traditional physics.

Linear versus nonlinear

Discrete versus continuous
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MODELLING: TOOLS and relations. Combined with multiple regression,
it can be used to build predictive models which will
A good modeller should be familiar with a number ofbe operational in the range of parameters covered by
concepts and methods. If one makes a short — and fde data they use. But recent examples, such as the
from exhaustive — list, it should at least include theshameful dispersion in the predictions of BSE (bovine
following: Hamiltonian theory, integrability, chaos, spongiform encephalopathy, or “mad cow disease”)
ergodicity, KAM tori, Lyapunov exponents, separatri-epidemics of more than three orders of magnitude
ces, jacobians, bifurcation theory, dissipative systemshow the limits of such methods, which are ill adapted
(strange) attractors, fractals, percolation, solitons, dée extrapolate. Artificial neural networks can also
terministic models, stochastic models, probabilistibe used for predictich Like traditional statistical
models, ODEs, PDEs, perturbation theory, FDEsnethods, they rely on the integration of a large number
coupled lattices, cellular automata, wavelet analysi®f observations, but usually perform better. None of
neural networks, and Monte Carlo methods. these methods gives an understanding of the object
The reader should not be frightened by this liststudied, but sometimes, for short-term prediction and
it is only atoolbox Modelling is the work of a team, optimization, they can be good choices: a good
and the most important thing is not the equations or theodeller will help the natural scientists to define their
computer programs, but the exchange of informationeeds with precision and will identify the appropriate
and ideas between the different specialists (ecoldeols.
gists, biologists, geologists, epidemiologists, etc. and
physicists). It is only after constructive interactions MODELLING: METHODS

between all of these specialists that the modellerg . L
e L - rom now on, we will talk only of explicative (mecha-
(physicist or mathematician by training) can choose .

from their toolbox the relevant tools to make a moderI"St'C) models. To begin with, we can distinguish three

of the problem being addressedhe worst way to steps in the mechanistic modelling of a natural system
. . . _Or process.
make a model is to work with somebody who is a
specialist in one and only one of these mathematical i i
tools, and who will not try to adapt their toolbox to theASk the right question
problem, but will bend reality to be compatible withIn most cases, a global model of the object studied is
the tool they know well. Again, a model is built atnot needed. Often, the question is down to earth, and
the crossroads of different scientific branches and thhe goals are urgent and practical: how to understand
modeller is somebody who listens and catalyses ttend protect a given type of ecosystem, how to save
formation of ideas, relations, datasets and hypotheseghat can be saved, and otherwise, how to use its space
before writing equations. In addition, a scientificand the life on it in an optimal way, and this at a given
model is something that is never finished, as it has talace and a given time. Confronted with such a well
be put into question again whenever new facts eithelefined question which might seem simple but which
contradict it or cannot readily be incorporated into it.in fact is often extremely complex, the physicist has
Many models have been proposed in recent year® collaborate with the specialists of the other disci-
They are often based on compartmental analyses aplihes to determine what are the essential factors and
use a very wide range of methods from physicsjariables, and what are the relations between them.
mathematics, or statistics. It is important to knowin the case of the protection of a local ecosystem
what one wants exactly before selecting which draweor instance, ecologists, botanists, and geologists will
of the toolbox to open first. Differential equa-have to collaborate with economists, geographers, and
tions, coupled lattices, cellular automatons, stochastsociologists, and the modelling processes starts with
processes, statistical estimations, non-parametric tite confrontation of these different points of view.
semi-parametric methods, artificial neural network©nly once a consensus has been reached on what are
analysis or sophisticated Markov chain Monte Carlthe essential ingredients can the choice of the math-
methods can be used in epidemiological or ecologicamatical tools be addressed. It is the same process
modelling, but they will not all answer the same quesin epidemiology: take the case of Rift Valley fever,
tions. There is no universal method to model complefirst described in Eastern Africa in 1927 by Daubney
systems in nature. The problem itself will lead toet al’. The disease appeared in West Africa around
the choice of the method. For instance, multivariabl&€989 and became endemic, although there was no
statistical analysis is by itself a descriptive modelild animal reservoir for the virus. Epidemiologists
from which one can infer underlying mechanismsntomologist$?®, virologists'?, and other specialists
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took part in a joint effort which led to a mechanisticmodelled using a 0-d approach, and for which it has
modef3. been shown that 2-d geometry has to be used (see, e.qg.,
Refs.13,20). When a satisfactory agreement between
observation and model output has been reached, it is
Mechanistic modelling has understanding as the prthen possible to make predictions and to study the
mary goal. In French, “to understand” translategffects of different strategies. Generally, one can
as “comprendre”, from the Latircum-prehendere observe the emergence of self-organization, which is
which means “to take together”. It is in essence a characteristic of complex systems and is the key to
‘complex systems’ approach, which puts together #fe, from the cell to the whole planet (Lovelock’s
as a mechanistic model — the hypotheses about th@aia” conceptl). It is likely that it is because
elementary processes. The mathematical tools ane subconsciously perceive this self-organization that
chosen from a large toolbox. Sometimes a suitable find some kind of beauty in most natural objects
approach is not present, and new theoretical tools hagad landscapes. And if all living systems have a
to be developed specifically to address a new claggeat ability to repair themselves and settle back to
of problems, e.g., small-world modéfs variables an equilibrium after a perturbation (this is called
aggregatiof® 16, “resilience”), it is because of these self-organization
One could ask “what is best?” It is not a goodproperties. But there is always a limit beyond which
guestion, because there is no unique answer. Thepair is no longer possible, thus leading to the death
method should be adapted to the problem being deait an organism, or — at a larger scale - to the disap-
with. To choose a method to model a real natural phg@earance of an ecosystem.
nomenon, be it in ecology, biology, or epidemiology,
the first thing is to properly define the real question§TARTING KIT: SUGGESTED READING
asked, and then to make an inventory of available dat&cientists in the life sciences who are interested in
If a modeller says they need several thousands of nomodelling should try to interest physicists (or math-
measurable parameters to build a model, they will getmaticians with an open mind) in their problems. But
nowhere! Nevertheless, in some cases, additional ddiafore committing to a given scientist, they should be
will have to be collectetf, and in some others, it will able to feel if the choice is good and therefore some
even lead to the invention of new measuring methodsersonal investment on the basics would be helpful.
e.g., see Refl8, or the discovery of unsuspectedTwo good graduate level reminders of mathematics
relations between measured parameéterSecondly, are the manuals by Mathews and Wafgrand by
one has to put together all the hypotheses on th&rfken and Webet®. A good general lecture on mod-
possible mechanisms underlying the system. It islling methods was written recently by Bocc#tait
only then that one can choose a formal mathematicabvers many of the tools mentioned above. An old
framework in which one will build the model. Once classic on modelling in life sciences is that by D’Arcy
again, modelling nature is at the crossroads of marfhomsort®; a recent study on the same topic was
different scientific disciplines, and it is a team effort. conducted by Murra3. Franc et at® provide a good
One should start with as minimal a model agseview of modelling in forest ecology, while Anderson
possible (“small is beautiful”), and then develop it ancand May wrote a good book on epidemiolddy
compare its output with experimental data. The syssome classic papers in epidemiology modelling are
tematic exploration of the model parameter space withose by Kermack, Anderson and May?*°, and
give an understanding of the behaviour of the systeriurd et af'. Ecological Modellingis an interesting
and it will then be possible to compare its output witjournal which gives insights into the recent progress
reality. It is only if the model is unsatisfactory thatof modelling in various fields of life sciences and with
additional components should be added. many different techniques: see, e.g., papers on forest
ecology by Chav#& and Moravie et a, and papers
on epidemiology by Durand et#| Favier et al®, and
Very often, the first model fails to reproduce theSabatier et &. The usefulness of satellite data can be
behaviour of the system studied. It is then necessasgen for instance in Linthicum et3] Roberts et &,
to reconsider the important factors, the mechanisn®&omson et a?, and Thonnon et af.
which link them, and to improve the model, which
sometimes means that other factors and mechanisf&NCLUSION: GOALS
have to be included. A good example is found irifo understand is a noble and important goal, but it is
several problems in epidemiology, which cannot beot the only one. Scientists have a responsibility to

Choose the right tools

Analyse the results
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help decide the best policies. The most obvious goab.

is to keep the climate and the biosphere compatible
with life, and to make sure the planet can feed people
decently. But it is also important to maintain some

protected areas, firstly to conserve biodiversity, butO-

also for purely “aesthetic” reasons, to keep some
“virgin” areas as witness of what the Earth was when
man was less omnipresent. To achieve these goaﬁ
purely predictive tools based on previously accumu-
lated data are likely to err badly when out of the
range of their database. Mechanistic models are better

candidates, as they allow a deep understanding ab.

the complexity of a natural mechanism (e.g., of an
ecosystem), including its self-organization properties
and its resilience to perturbations. Modelling is not

an expensive activity, but it brings very great rewards13.

and it should be actively pursued by scientists in every
country.

Some inspirational reading is to be foundAn-
cadia by Tom Stopparé® from which the following
extract is taken:“It makes me so happy. To be at
the beginning again, knowing almost nothing. Peopl(-*i5
were talking about the end of physics. Relativity and
guantum mechanics looked as if they were going to

clean out the whole problem between them. A theorys.

of everything. But they only explained the very big
and the very small. The universe, the elementary par-
ticles. The ordinary-sized stuff which is our lives, the

things people write poetry about — clouds, daffodils17.

waterfalls — ...these things are full of mystery, as
mysterious to us as the heavens were to the Greeks.”
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