
OPINION   ARTICLE  

doi: 10.2306/scienceasia1513-1874.2009.35.001
ScienceAsia35 (2009): 1–7

Modelling nature: A physicist’s viewpoint
Marc A. Dubois
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ABSTRACT : Recent progress in the life sciences, in the theory of complex systems, and in computers, allow a new
approach to understanding and/or predicting nature, very much inspired by physics. Modelling natural objects has become
possible. Moreover, because of man’s impact on the environment, it has also become a necessity. This note tries to convince
researchers in the life sciences that modelling should not be frightening, and that it can be very useful.

INTRODUCTION

Nowadays, physics is often seen as the science of
the inanimate world, from the very small (particle
physics, quantum mechanics), to the very large (as-
tronomy and cosmology), but this is only a recent
restriction. Etymologically,physicscomes from the
Greek verbφύoµαι which meansI appear and grow
spontaneouslylike a cell or a plant. From this verb
comes the substantiveφύσις, which meansnature
and the related adjectiveφυσική. Hence,physics, or
φυσική επιστ ήµη is the science of nature, and its
object is the totality of the real world. Beyond, begins
the realm ofmetaphysics.

It is the reductionist approach which first permit-
ted some fields of science to obtain results such as
laws and equations: astronomy became a predictive
science when planets were ‘reduced’ to points in the
equations of Kepler and Newton. Because the sciences
dealing with life could not for a long time benefit
from this kind of approach, they were left out of
mainstream physics. But recent progress in three very
different directions – firstly, measuring methods and
data analysis, secondly, theoretical tools, and lastly,
computers – have drastically changed the picture, and
now life sciences can be addressed by the tools of
physics.

Experimental physics has given a large number
of new tools to study nature of which the most no-
table are microscopy,14C radiometric dating, satellite
imagery, and DNA analysis. Simultaneously, statis-
tics and data analysis methods have been developed
making these measurements exploitable. Life sciences
have thus become quantitative sciences.

On the theoretical side, Friedrich Hayek, (1899–
1992, Nobel prize in economics in 1974), was one
of the first to introduce the concept ofcomplexity
in science, and he distinguished the possibility of
predicting the behaviour of asimple systemby using a

law (an equation relating a small number of variables),
from the possibility of predicting the behaviour of a
complex systemby using amodel, and this applied
to such fields as economy, biology, ecology, and psy-
chology. Note that although there is no strict definition
of a complex system, there is some consensus that
it should: (a) have many components (b) have a be-
haviour which is not trivial to predict (c) exhibit some
kind of emerging properties such as self-organization.
Because of the large (and often huge) number of actors
and relations in such systems, it is impossible to find
simple laws describing their behaviour, and a very
large number of equations and variables are necessary,
thus constituting a model. This large number of
equations cannot be solved by hand, and this is where
the third element is crucial: the appearance of comput-
ers renders feasible the study of the evolution of the
sets of equations which constitute the models. Mod-
elling complex systems such as those encountered in
meteorology, climatology, economy, social sciences,
neurosciences, organic chemistry, molecular biology,
psychology, and ecology is now possible using the
methods of physics and supercomputers.

Surprisingly (but is it really a coincidence?), it is
at this same present time that direct human influence
on our planet is becoming worrying. Short term
problems have to be addressed urgently if we want to
maintain the Earth as viable for mankind. And for this,
it is no longer enough to discover, describe, and clas-
sify new species; one needs a realunderstandingof
climate change, of ecosystems dynamics, of emerging
diseases, and so on, in order to predict the impacts of
human activities, and to adapt and optimize them.

Fig. 1shows a few spatio-temporal scales of living
systems (here, forest) and of meteorological phenom-
ena, while the two diamonds show the spatio-temporal
influence range of pre-industrial and modern man,
respectively. This kind of representation (without
man) was introduced in 1986 by C.S. Holling1. The
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Fig. 1 Some scales, in space and time, of natural objects
and natural phenomena, and of human activities.

figure illustrates how human influence on nature has
changed: 10 000 years ago, there were 6 to 7 million
humans. Nowadays, there are more than 6 billion –
a thousand times more. 10 000 years ago, men were
hunter-gatherers, and their action was at the scale of
the leaf, or at most, at the scale of a tree. Nowadays,
300 km2 of tropical forest are cut every day. Worse,
the climate itself is impacted world-wide by human
activity, leading in less than one century to changes
that took thousands of years during past climatic
variations. The biosphere was able to adapt to past
changes because of genetic evolution, but now, the
rate of change is too high to allow adaptive evolution
or the migration of ecosystems along temperature or
hygrometry gradients. Man-induced climate change
also leads to the emergence of new diseases, or their
extension to places where they were not present be-
fore, thus leading to major health concerns2,3.

To address those problems, scientists working in
life sciences have to buildmodelsof the objects they
study, and they have to follow the paths and methods
which have previously been used by physicists to
model and understand inanimate objects. As will be
discussed later, mathematics is but a tool to achieve
this goal.

This article does not intend to provide the reader
with a complete understanding or an exhaustive in-
ventory of existing modelling techniques for natural
sciences, but simply to identify the goals and tools of
modelling, and also its pitfalls. Above all, it attempts
to convince the reader that work in collaboration with
a physicist or a mathematician to build a model will
offer rewards in the form of a better understanding.
Modelling nature is not exclusive to the physicist or

mathematician: it is the result of a team effort, where
natural scientists are major players. Not only are they
the end-users of an abstract product, but they are also
essential in its making.

MODELLING: DEFINITION AND
PRINCIPLES

The definitions of ‘model’ (noun) in theCompact
Oxford English Dictionaryare as follows:
(1) a three-dimensional representation of a person or
thing, typically on a smaller scale
(2) a figure made in clay or wax which is then
reproduced in a more durable material
(3) something used as an example
(4) a simplified mathematical description of a system
or process, used to assist calculations and predictions
(5) an excellent example of a quality
(6) a person employed to display clothes by wearing
them
(7) a person employed to pose for an artist
(8) a particular design or version of a product.
Obviously, what this article deals with is the definition
provided in ‘4’, but ‘3’ is also relevant, as a given
scientific model of a given phenomenon is sometimes
an illustration of a larger class of phenomena (see
for instance the ‘forest fire’ paradigm4). The auto-
matic association of ‘mathematical’ with the activity
of modelling in sciences is not a good one. In
fact, mathematics (and therefore equations) is a tool
used to build a scientific representation of reality.
Modelling is based more on physics (as opposed to
‘metaphysics’) than on mathematics. The distinction
is meaningful and will become obvious later in this
article.

Science always follows a simple three-step pro-
cess: (1) observation of a real phenomenon, e.g., the
motion of planets, a tornado, the spread of a disease,
the growth of a tree (2) elaboration of an abstract
construction to represent or explain the observation;
as seen earlier, it can be an equation, then called a
law (like Newton’s law), a theory (which is basically a
set of laws), or a model (3) comparison of the results
or predictions of this construction with observation.
If there is a strong disagreement, then go back to the
second step.

Two points should be made here. First, the
criterion ofempirical falsifiability, introduced by Karl
Popper, is essential to the scientific method in physics
and many other sciences. A theory or a model
cannot be ‘proven’ but only ‘refuted’ for logical in-
consistency, or shown wrong by experimentation. A
‘good’ theory or model is one which withstands con-
frontations with experimentation. On the other hand,
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a conjecture in mathematics, which does not deal
with physical objects, can be refuted (by a counter
example) but can also be proven (and hence become
a theorem). But a theory or a model can be wrong
(as everybody knows, general relativity has replaced
Newton’s theory of gravity), but can still be useful
(planet orbits can be described with a good degree
of accuracy using classical mechanics). Secondly,
it is very important to make the distinction between
predictionandunderstanding. A model can be purely
descriptive. Models can have good predicting abil-
ities, without incorporating underlying mechanisms
– they are like a ‘black box’ into which one feeds
input quantities, such as initial conditions, and which
produce predicted quantities as output. Conversely,
an explicative model is built from causal mechanisms
and can therefore be termed a theory. Models which
are oriented essentially towards prediction (often,
statistical models) are different from those that are
built mainly to help to understand a phenomenon
(generally, mechanistic models). Nevertheless, once
a good mechanistic model is built, it can also become
useful for prediction.

Some other dichotomies should be defined, as
listed below:

Static versus dynamic

A static model does not involve time, while a dynamic
model does.

Spatial (usually 2-d or 3-d) versus local or
non-spatial (0-d)

If the model is homogeneous (the system has the same
state throughout), the variables are lumped, whereas if
the model is heterogeneous (varying state within the
system), then the variables are distributed or space-
dependent.

Linear versus nonlinear

If all the equations in the model are linear equations,
the model is known as a linear model. If one or
more of the objective functions or constraints are
represented by nonlinear equations, then the model is
a nonlinear model.

Discrete versus continuous

In real life, one tends to consider that space, as well
as time, are continuous. The phenomenon is then de-
scribed by sets of either ordinary or partial differential
equations (ODEs or PDEs). In many cases, however,
models will consider space and/or time as discrete:
time will proceed by jumps (which can be very short –
fractions of seconds, or long – a year or more), while

a surface will be described as a grid of squares and
the variables will be computed on these squares. If
the variables themselves are continuous, one speaks
of finite difference equations (FDEs) (discrete time),
or of coupled networks (discrete space and time). If
the variables themselves take only discrete values, one
will speak of cellular automata.

Deterministic versus probabilistic (stochastic)

A fully deterministic model performs exactly in the
same way for a given set of initial conditions, while
in a stochastic model, randomness is present and
even when given an identical set of initial conditions,
results may in some cases vary greatly (this would be
the case for the outbreak of an epidemic started by one
infected mosquito – if it dies before biting a host, there
will be no incidence of the disease, whereas in another
run of the model, the disease could reach the entire
population). In other cases, the results have a limited
dispersion, at least for averaged output variables (e.g.,
the epidemiological status of a given individual may
vary from run to run, but the percentage of infected
hosts would stay the same). The model is then said to
be robust.

It is to be noted that mechanistic models can
incorporate some randomness (for instance in the
expression of transition rates between different states).
They are then no longer fully deterministic, but if
care is taken to verify the robustness, they can still be
considered as explicative and mechanistic.

Top-down versus bottom-up

In many cases an idea or a theoretical model has been
conceived before envisaging a specific application to
a natural object. Reaction-diffusion equations and
cellular automata were studied long before they were
applied to morphogenesis of the patterns observed on
shells and animal pelts (see, e.g., Ref.5) or “tiger
bush” in Niger6. This is also the case for collective
behaviour theories, which were developed before their
application to flocks of bird and schools of fish7. Such
an approach can be classified as being “top-down” –
from abstract concepts to practical application.

But often the problem comes first, and there
exists no ready-made model or theory. The choice of
modelling tools has to be decided after the question
has been precisely formulated. It is then a “bottom-
up” approach, from a practical problem towards an
abstract formalization. Of course, once the modelling
goal is reached, the physicist can try to find regular-
ities and generalizations which can be compared to
what is observed in more traditional physics.
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MODELLING: TOOLS

A good modeller should be familiar with a number of
concepts and methods. If one makes a short – and far
from exhaustive – list, it should at least include the
following: Hamiltonian theory, integrability, chaos,
ergodicity, KAM tori, Lyapunov exponents, separatri-
ces, jacobians, bifurcation theory, dissipative systems,
(strange) attractors, fractals, percolation, solitons, de-
terministic models, stochastic models, probabilistic
models, ODEs, PDEs, perturbation theory, FDEs,
coupled lattices, cellular automata, wavelet analysis,
neural networks, and Monte Carlo methods.

The reader should not be frightened by this list:
it is only a toolbox. Modelling is the work of a team,
and the most important thing is not the equations or the
computer programs, but the exchange of information
and ideas between the different specialists (ecolo-
gists, biologists, geologists, epidemiologists, etc. and
physicists). It is only after constructive interactions
between all of these specialists that the modeller
(physicist or mathematician by training) can choose
from their toolbox the relevant tools to make a model
of the problem being addressed.The worst way to
make a model is to work with somebody who is a
specialist in one and only one of these mathematical
tools, and who will not try to adapt their toolbox to the
problem, but will bend reality to be compatible with
the tool they know well. Again, a model is built at
the crossroads of different scientific branches and the
modeller is somebody who listens and catalyses the
formation of ideas, relations, datasets and hypotheses,
before writing equations. In addition, a scientific
model is something that is never finished, as it has to
be put into question again whenever new facts either
contradict it or cannot readily be incorporated into it.

Many models have been proposed in recent years.
They are often based on compartmental analyses and
use a very wide range of methods from physics,
mathematics, or statistics. It is important to know
what one wants exactly before selecting which drawer
of the toolbox to open first. Differential equa-
tions, coupled lattices, cellular automatons, stochastic
processes, statistical estimations, non-parametric or
semi-parametric methods, artificial neural networks
analysis or sophisticated Markov chain Monte Carlo
methods can be used in epidemiological or ecological
modelling, but they will not all answer the same ques-
tions. There is no universal method to model complex
systems in nature. The problem itself will lead to
the choice of the method. For instance, multivariable
statistical analysis is by itself a descriptive model
from which one can infer underlying mechanisms

and relations. Combined with multiple regression,
it can be used to build predictive models which will
be operational in the range of parameters covered by
the data they use. But recent examples, such as the
shameful dispersion in the predictions of BSE (bovine
spongiform encephalopathy, or “mad cow disease”)
epidemics of more than three orders of magnitude
show the limits of such methods, which are ill adapted
to extrapolate. Artificial neural networks can also
be used for prediction8. Like traditional statistical
methods, they rely on the integration of a large number
of observations, but usually perform better. None of
these methods gives an understanding of the object
studied, but sometimes, for short-term prediction and
optimization, they can be good choices: a good
modeller will help the natural scientists to define their
needs with precision and will identify the appropriate
tools.

MODELLING: METHODS

From now on, we will talk only of explicative (mecha-
nistic) models. To begin with, we can distinguish three
steps in the mechanistic modelling of a natural system
or process.

Ask the right question

In most cases, a global model of the object studied is
not needed. Often, the question is down to earth, and
the goals are urgent and practical: how to understand
and protect a given type of ecosystem, how to save
what can be saved, and otherwise, how to use its space
and the life on it in an optimal way, and this at a given
place and a given time. Confronted with such a well
defined question which might seem simple but which
in fact is often extremely complex, the physicist has
to collaborate with the specialists of the other disci-
plines to determine what are the essential factors and
variables, and what are the relations between them.
In the case of the protection of a local ecosystem
for instance, ecologists, botanists, and geologists will
have to collaborate with economists, geographers, and
sociologists, and the modelling processes starts with
the confrontation of these different points of view.
Only once a consensus has been reached on what are
the essential ingredients can the choice of the math-
ematical tools be addressed. It is the same process
in epidemiology: take the case of Rift Valley fever,
first described in Eastern Africa in 1927 by Daubney
et al9. The disease appeared in West Africa around
1989 and became endemic, although there was no
wild animal reservoir for the virus. Epidemiologists10,
entomologists11, virologists12, and other specialists
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took part in a joint effort which led to a mechanistic
model13.

Choose the right tools

Mechanistic modelling has understanding as the pri-
mary goal. In French, “to understand” translates
as “comprendre”, from the Latincum-prehendere
which means “to take together”. It is in essence a
‘complex systems’ approach, which puts together –
as a mechanistic model – the hypotheses about the
elementary processes. The mathematical tools are
chosen from a large toolbox. Sometimes a suitable
approach is not present, and new theoretical tools have
to be developed specifically to address a new class
of problems, e.g., small-world models14, variables
aggregation15,16.

One could ask “what is best?” It is not a good
question, because there is no unique answer. The
method should be adapted to the problem being dealt
with. To choose a method to model a real natural phe-
nomenon, be it in ecology, biology, or epidemiology,
the first thing is to properly define the real questions
asked, and then to make an inventory of available data.
If a modeller says they need several thousands of non-
measurable parameters to build a model, they will get
nowhere! Nevertheless, in some cases, additional data
will have to be collected17, and in some others, it will
even lead to the invention of new measuring methods
e.g., see Ref.18, or the discovery of unsuspected
relations between measured parameters19. Secondly,
one has to put together all the hypotheses on the
possible mechanisms underlying the system. It is
only then that one can choose a formal mathematical
framework in which one will build the model. Once
again, modelling nature is at the crossroads of many
different scientific disciplines, and it is a team effort.

One should start with as minimal a model as
possible (“small is beautiful”), and then develop it and
compare its output with experimental data. The sys-
tematic exploration of the model parameter space will
give an understanding of the behaviour of the system,
and it will then be possible to compare its output with
reality. It is only if the model is unsatisfactory that
additional components should be added.

Analyse the results

Very often, the first model fails to reproduce the
behaviour of the system studied. It is then necessary
to reconsider the important factors, the mechanisms
which link them, and to improve the model, which
sometimes means that other factors and mechanisms
have to be included. A good example is found in
several problems in epidemiology, which cannot be

modelled using a 0-d approach, and for which it has
been shown that 2-d geometry has to be used (see, e.g.,
Refs.13,20). When a satisfactory agreement between
observation and model output has been reached, it is
then possible to make predictions and to study the
effects of different strategies. Generally, one can
observe the emergence of self-organization, which is
a characteristic of complex systems and is the key to
life, from the cell to the whole planet (Lovelock’s
“Gaia” concept21). It is likely that it is because
we subconsciously perceive this self-organization that
we find some kind of beauty in most natural objects
and landscapes. And if all living systems have a
great ability to repair themselves and settle back to
an equilibrium after a perturbation (this is called
“resilience”), it is because of these self-organization
properties. But there is always a limit beyond which
repair is no longer possible, thus leading to the death
of an organism, or – at a larger scale - to the disap-
pearance of an ecosystem.

STARTING KIT: SUGGESTED READING

Scientists in the life sciences who are interested in
modelling should try to interest physicists (or math-
ematicians with an open mind) in their problems. But
before committing to a given scientist, they should be
able to feel if the choice is good and therefore some
personal investment on the basics would be helpful.
Two good graduate level reminders of mathematics
are the manuals by Mathews and Walker22, and by
Arfken and Weber23. A good general lecture on mod-
elling methods was written recently by Boccara24: it
covers many of the tools mentioned above. An old
classic on modelling in life sciences is that by D’Arcy
Thomson25; a recent study on the same topic was
conducted by Murray5. Franc et al26 provide a good
review of modelling in forest ecology, while Anderson
and May wrote a good book on epidemiology27.
Some classic papers in epidemiology modelling are
those by Kermack28, Anderson and May,29,30, and
Hurd et al31. Ecological Modellingis an interesting
journal which gives insights into the recent progress
of modelling in various fields of life sciences and with
many different techniques: see, e.g., papers on forest
ecology by Chave32 and Moravie et al33, and papers
on epidemiology by Durand et al34, Favier et al13, and
Sabatier et al35. The usefulness of satellite data can be
seen for instance in Linthicum et al36, Roberts et al37,
Thomson et al38, and Thonnon et al10.

CONCLUSION: GOALS

To understand is a noble and important goal, but it is
not the only one. Scientists have a responsibility to
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help decide the best policies. The most obvious goal
is to keep the climate and the biosphere compatible
with life, and to make sure the planet can feed people
decently. But it is also important to maintain some
protected areas, firstly to conserve biodiversity, but
also for purely “aesthetic” reasons, to keep some
“virgin” areas as witness of what the Earth was when
man was less omnipresent. To achieve these goals,
purely predictive tools based on previously accumu-
lated data are likely to err badly when out of the
range of their database. Mechanistic models are better
candidates, as they allow a deep understanding of
the complexity of a natural mechanism (e.g., of an
ecosystem), including its self-organization properties
and its resilience to perturbations. Modelling is not
an expensive activity, but it brings very great rewards,
and it should be actively pursued by scientists in every
country.

Some inspirational reading is to be found inAr-
cadia by Tom Stoppard39 from which the following
extract is taken:“It makes me so happy. To be at
the beginning again, knowing almost nothing. People
were talking about the end of physics. Relativity and
quantum mechanics looked as if they were going to
clean out the whole problem between them. A theory
of everything. But they only explained the very big
and the very small. The universe, the elementary par-
ticles. The ordinary-sized stuff which is our lives, the
things people write poetry about – clouds, daffodils,
waterfalls – . . . these things are full of mystery, as
mysterious to us as the heavens were to the Greeks.”
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