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ABSTRACT: Landsat 7 Enhanced Thematic Mapper Plus image data was used to identify and map lateritic soil zones 
in the Phrae basin which is one of the largest intermountain basins in northern Thailand.  The lateritic soil zones were 
discriminated using band ratio and principal component analysis.  The lateritic soil detection images were processed by 
band ratio (band 3 / band 1), principal component analysis of bands 1 and 3, and principal component analysis of bands 1, 
3, 4, and 5.  The results of these three indices were superimposed using GIS to define a preliminary lateritic soil image of 
the study area.  A threshold method was used for converting a grey scale image into a binary image.  Different threshold 
values were used to find the most probable areas of lateritic soil zones in the image.  The threshold values were determined 
from a published geological map and known lateritic soil areas with good exposure in the image.  The quality of the results 
was evaluated by the normalized difference vegetation index. Field investigation was carried out to substantiate the remote 
sensing investigation and the laboratory GIS analysis. This method can also be applied to other lateritic soil and iron oxide 
regions.
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INTRODUCTION

This paper demonstrates how to identify 
and map lateritic soil using remote sensing data at 
low cost.  Lateritic soils are used extensively in the 
tropical areas as traditional construction materials and 
roads.  They occur mostly in humid tropical climates 
between 30º N and 30º S1.  Lateritic soils consist 
mainly of the minerals kaolinite, goethite, hematite, 
and gibbsite, and are rich in silica, aluminium, and 
iron oxides (hematite and goethite). Primary minerals 
are altered to characteristic assemblages of the 
secondary minerals, kaolinite, hematite, goethite, and 
residual quartz2.

The genesis of laterization involves leaching 
of silicates, formation of colloidal sesquioxide, 
precipitation of oxides with increasing crystallinity, 
and dehydration as the soil weathers.  Primary 
minerals in the parent rock, such as feldspar, quartz, 
and ferro-magnesia minerals are converted into 
diffuse goethite, followed by well-crystallized 
goethite, and finally hematite.  In the advanced stages 
of weathering, crystallization leads to the formation 
of iron and/or aluminium oxide concretions.  During 
laterization, iron oxide and aluminium coat and bind 

the clay particles leading to a change in the micro-
structure of the soil3. 

Facies maps of lateritic soils are important.  
They can be used to plan for material supply for 
infrastructure construction, to target mineral deposits, 
and for safe water supplies.  Lateritization produces 
infertile, poor draining.  Goethite, formed during 
laterization, concentrates arsenic which can affect 
localized ground water4. Also, magnesium sulphate 
and sodium chloride in groundwater from lateritized 
basement causes diarrhoea.  However, epsomite in 
drinking water may be beneficial in countries where 
drugs are expensive, as magnesium sulphate benefits 
women with eclampsia or pre-eclampsia and their 
babies5.

Studies of laterites are important because 
of their economically viable concentrations of 
iron, nickel, gold, phosphate, aluminium, titanium, 
manganese, and rare earth elements6.  Laterite is an 
indicator of soil fertility, the usability of an area to 
cultivate specific crops, and geological age.  Lateritic 
soil is conductive to plant root hairs and is able to 
absorb other diffused nutrients from the water. It can 
be used for aquarium plant fertilizers and aquarium 
plant food.  Fish ponds in lateritic soil zones exhibit 
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low availability of phosphorus, resulting in a restricted 
accumulation of various fish food organisms7.

The study area covers the Phrae basin 
which is one of the largest intermountain 
basins in northern Thailand (18º 00’–18º 30’ N, 
100º 05’–100º 20’ E). The basin is 15–25 km wide,  
50–60 km long, and covers approximately 1,000 km2. 
The Yom River flows from north to south following the 
basin axis, and is regarded as a very important channel 
for transporting sediments into the basin. Hematite is 
the major iron bearing mineral in the area. The lateritic 
soil is present in low and high terrace deposits and 
colluvial sedimentary units8. Determining the spatial 
distribution of different types of iron with traditional 
fieldwork and laboratory analysis is time-consuming 
and expensive. This study proposes to demonstrate 
that remote sensing mapping is a useful and cheaper 
tool to determine the presence of lateritic soil.

Geology of the Phrae basin
The geology of the Phrae basin and its 

surroundings is shown in Fig. 1.  Most of the previous 
studies were mainly restricted to the geological reports 
and maps provided by the Geological Survey Division, 
Department of Mineral Resources of Thailand9.  
Based on these maps10 (at scales of 1:250,000), the 
eastern and western sides of the basin is characterized 
by Permian and Triassic rock units.  The rock units 
in the eastern side of the basin are largely composed 
of conglomerate, sandstone, siltstone, and shale.  
The rock units in the western edge of the basin are 
dominated by volcanic rocks (e.g. rhyolite and 
volcanic tuff), shale, siltstone, and mudstone. 

Sinsakul11 studied Quaternary geology in the 
Phrae basin and classified the Quaternary units into 
four distinctive units. The units are, in descending 
order, high-terrace, stream-valley, low-terrace 
(including old alluvial plain), and active Yom River 
alluvial deposits. So far, no age determination has 
been done for these Quaternary deposits of the basin.  
Maneenai12 reported that the high terrace of the 
Phrae basin probably belongs to the late Pliocene by 
correlation with that of the Lampang basin, the age of 
which has been documented.  Maruoka et al13 proposed 
that the Phrae formation is of Tertiary deposits which 
are unconformably overlain by Quaternary alluvial 
deposits. 

Srisuwan et al14 proposed five sedimentary 
cycles for the Cenozoic stratigraphy of the Phrae 
basin based on seismic, lithological, and field data.  
For each cycle, deposits are dominated by braided 
channel and flood plain deposits in the early stage, 
subsequently change to shallow swamp lake and 

lake-margin deposits, and end with a small delta (or 
crevasse sprays). Based on palynological data, they 
suggested that the age of the Phrae basin was probably 
Late Oligocene to Early Miocene.  Won-in8 proposed 
six quaternary units on the basis of geomorphologic 
evidence and the sedimentary deposit age (using the 
TL dating method). The six quaternary units were 
identified in descending order as flood plain and active 
river deposits (6 ka to recent), low terrace deposits 
(40–12 ka),  alluvial fan deposits (16–10 ka and  
160–100 ka), middle terrace deposits (88–37 ka),  
colluvial deposits (>270 ka), and  high terrace deposits 
(990–170 ka).    

METHODS 

This study used remote sensing digital image 
processing techniques and the Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) image data. Data 
analysis was carried out using TNTmips version 7.0. 
The preliminary lateritic soil map is the output 
derived from using all the evidence from fieldwork in 
the Phrae basin area. In order to map lateritic soil, two 
different image processing techniques were performed. 
These techniques are called band ratio and principal 
component analysis.  After using either technique to 
process the images, a thresholding method was used 
by applying a simple Boolean logic algorithm. The 
threshold values were determined according to known 
lateritic areas / good exposure areas (Phae Muang Phi 
National Park and the Phrae city landfill, see Fig. 1).  
Typically, an object pixel is given a value of 1 while 
a background pixel is given a value of 0. The quality 
of the final result was evaluated by the normalized 
difference vegetation index (NDVI) image. Field 
investigation was carried out to confirm the satellite 
analysis. The final result was marked and digitized 
based on the lateritic pixel density area. 

Pre-processing of Landsat 7 ETM+ image
A Landsat 7 ETM+ image (path 130/ row 047) 

of Phrae basin was acquired on 25 Dec 1999.  This 
image has a solar incidence angle of 40.83º and an 
azimuth angle of 148.05º.  The scene is georeferenced 
in the UTM projection and the WGS-84 ellipsoid.  
The data was radiometrically converted to sensor 
reflectance using an image-based correction method.  
Processing of the image included radiometric 
correction to remove atmospheric effects. 

Reflectance is an intrinsic property of materials 
and is independent of illumination conditions, slope, 
sensor, and atmospheric effects.  The reflectance data 
extracted from the digital number (DN) for the VNIR 
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Fig. 1  Geological map of Phrae basin (modified from Refs. 8,9).

and SWIR spectral ranges was processed according 
to the following procedure.  Each digital number 
represents a range of intensity from 0 to 255, where 
the value 254 corresponds to the maximum intensity 
and the value 255 corresponds to the saturation value 
of the sensor.  First, DN was converted into a radiance 
value Lλ (in W/m2 sr µm) using

where QCALMIN is set to 1, QCALMAX has a 
value of 255,   Lmax and Lmin are determined by the 
date of acquisition sensor band calibration, and DN 
is the digital number15. Second, once converted to 

L
)-(

)  -( minmax

QCALMINQCAL

LL
 (DN -  QCALMIN) + minL (1)
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units of radiance, the Landsat 7 ETM+ imagery 
can be converted into units of the top of atmosphere  
reflectance using

 

where Pρ denotes the unitary planetary reflectance, 
d denotes the Earth Sun distance in astronomical 
units, ESUNλ denotes the mean solar exoatmospheric 
irradiances (W/m2 μm) for each band [B1= 1,969; B2= 
1,840; B3= 1,551; B4=1,044; B5= 225.7; B7= 82.07; 
B8= 1,368], and Qs denotes the solar zenith angle.

Vegetation index
Vegetation indices derived from satellite data 

are widely used to interpret the surface vegetation 
information.  Some studies of semi-arid shrublands 
have successfully used these vegetation indices for 
vegetation abundance estimation16.  The main problem 
in the identification of minerals is interference 
from vegetation.  High vegetation cover decreases 
the prediction accuracy of lateritic soil mapping17.  
Therefore, the quality of the final result was evaluated 
by the normalized difference vegetation index 
(NDVI).  The NDVI is calculated using18

                                                          

where ρ (λNIR) denotes the reflectance in the near 
infrared band and ρ (λred) denotes the reflectance in 
the red band of the Landsat ETM+ image data.  The 
NDVI gives a measure of vegetative cover on the land 
surface over wide areas.  Dense vegetation shows up 
very strongly in the image, and areas with little or no 
vegetation are also clearly identified.  The NDVI is a 
measure of the difference in reflectance between these 
wavelength ranges, and  takes values between  –1 and 1. 
Values more than 0.5 indicate dense vegetation and 
negative values indicate no vegetation. 

Band ratio method
Band ratio is a technique that has been used for 

many years in remote sensing to effectively display 
spectral variations19. Image division or spectral 
band ratio is one of the most common mathematical 
operations applied to multi-spectral image data.  Ratio 
images are calculated by dividing the DN values in 
one spectral band by the corresponding pixel value 
in another band. Each object has a unique spectral 
reflectance pattern19. The band ratio operation 
which transforms data and reduces the effects of 
such environmental conditions can provide unique 
information not available in any single band which 

is very useful for determining the nature of surface 
materials20.  The band ratio method uses 

      

where BVi, j, r is the output ratio for the pixel at row 
i, column j, BVi, j, k is the brightness value at the same 
location in band k, and BVi, j, l is the brightness value 
in band l. The range of BVi, j, r is theoretically from 0 
to ∞. 

Principal component analysis method
Principal component analysis (PCA) is 

a multivariate statistical technique that selects 
uncorrelated linear combinations (eigenvector 
loadings) of variables in such a way that each 
successively extracted linear combination or 
principal component (PC) has a smaller variance21.  
The eigenvector matrix used to perform PCA for 
each subset was examined to identify which PC 
contained the target (mineral) information.  This 
technique indicates whether the materials are 
represented as bright or dark pixels in the principal 
components according to the magnitude and sign of 
the eigenvector loadings.  Feature oriented principal 
components selection is based on the examination 
of PCA eigenvector loadings to decide which of 
the principal components will extract information 
directly related to the theoretical spectral signatures 
of specific targets22.  This technique indicates whether 
the materials are represented by bright or dark pixels 
based on the sign and magnitude of the eigenvectors.

RESULTS AND DISCUSSION

The vegetation mapping using NDVI has 
shown both areas of healthy vegetation and areas of 
sparse or no vegetation (Fig. 2).  Vegetation shows 
absorption features from 450–680 nm and high  
reflectance in the near infrared (1,600–2,200 nm) 
due to the chlorophyll absorption.  The absorption 
bands at 1,400–1,900 nm are related to the water 
content.  Iron oxides and vegetation show similar 
reflectance in Landsat 7 ETM+ band 1 (450–520 nm) 
and band 2 (520–600 nm).  Therefore these bands are 
not very useful for separating these materials.  On 
the other hand, band 3 (630–690 nm) shows high  
reflectance for  the iron oxides and a strong absorption   
for vegetation. This is useful to differentiate oxides 
from vegetation (Figs. 3A and 3B).

Thematic Mapper bands are too wide to allow 
the identification of single minerals. Nevertheless, 
bands in the near and middle infrared serve to identify 

(2)
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Fig. 2  Landsat 7 ETM+ Normalised Difference Vegetation 
Index (NDVI) image of Phrae basin shows by colour index 
map (red: the dense vegetation area, blue: bare soil or low 
vegetation areas).

groups of minerals belonging to the hydroxyl and 
sulphate groups which can be used for exploration 
purposes. Iron oxide and hydroxyl minerals have 
spectral features in the visible and infrared parts16 
(400–2,500 nm) (Figs. 3A and 3B). In general, lateritic 
spectra present lows at 400–500 nm and 920 nm, 
a 650 nm shoulder, and a higher broad reflectance 
at longer wavelengths (Fig. 3B).  These spectral 
characteristics are indicative of the predominance of 
goethite as the source of ferric oxide as confirmed by 
X-ray diffraction analysis23.  According to the laterite 
spectral signature, a notable reflection occurred in the 
band 3 of ETM+ at 700 nm as well as a considerable 
absorption in band 1 at 400 nm.  Band 4 (760–900 nm) 
is used for vegetation identification, but also contains 
an absorption band for iron oxides at 900 nm.  Both 
features can be used to separate oxides from vegetation 
(Fig. 3B).  Absorption anomalies at wavelengths less 
than 900 nm are a good indication of hematite.  When 
the anomalies are at wavelengths above 900 nm, 
jarosite or goethite are more abundant24.

The maximum and minimum reflection orders 
of the lateritic soil characteristic are easily isolated 

among the other objects in the image.  Laterite gives 
high reflectance values in band 3 and low values in 
band 1.  The most effective index used to extract the 
lateritic soil areas is the ratio of band 3 to band 1.  
When this index was applied to the Phrae basin image 
data, the highest band ratio values clearly coincided 
with the lateritic soil situated at the national park  
(Fig. 4A).  The use of this index can be affected by 
band 3 absorption around 660 nm which is due to 
chlorophyll and other pigments contained in green 
vegetation.  This fact has been ignored in this study 
because the vegetation mapping based on NDVI has 
shown little or no vegetation in the areas considered.  
Fig. 3A shows that iron oxide minerals have a higher 

 

500 1000 1500 2000 2500
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

an
ce

1 2 3 4 5 7
Landsat 7 ETM+ channels

laterite

visible VNIR

jarosite

SWIR

goethite

hematite

500 1000 1500 2000 2500
Wavelength (nm)

visible VNIR SWIR

R
ef

le
ct

an
ce

 (o
ff

se
t f

or
 c

la
rit

y)

green
vegetation

alunite

kaolinite

calcite

quartz

1 2 3 4 5 7
Landsat 7 ETM+ channels

(B)

(A)

Fig. 3  (A) Spectral reflectance of hydroxyl minerals and 
vegetation.  (B) Spectral reflectance of lateritic soil minerals. 
(modified from Refs. 23,24). 



ScienceAsia  34  (2008)  

www.scienceasia.org

312

reflectance at bands 5 and 7 than at band 3.  However, 
this study did not use the band ratio method with SWIR 
wavelengths (bands 5 or 7).  These ratio images can 
sometimes be confused with OH absorption minerals 
(kaolinite, alunite) and carbonate absorption (calcite) 
in minerals (Fig. 3A).  

For lateritic soil mapping, the band ratio 3/1 
image showed the best results and coincided with 
known lateritic soil outcrops (Table 1).  The ratio 
between band 4 and 3 showed the thick vegetated 
terrain as bright pixels.  The ratio between bands 5 and 7 
showed the clay mineral content.  The ratio between 
bands 5 and 4 gave differences between iron oxide 
dominance and hydroxyl with areas of high oxides 
giving brighter pixels due to stronger absorption of 
the band 4.

PCA has been applied to bands 1 and 3 of 
Landsat ETM+ image data.  The general statistics and 
principal component eigenvectors and eigenvalues are 
calculated in Table 2.  The resulting images produced 
by PCA were found to be accurate in the lateritic 
soil zone.  Feature-oriented principal components 
selection is based on the examination of PCA 
eigenvector loadings to decide which of the principal 
components will extract information directly related to 
the theoretical spectral signatures of specific targets.  
The lateritic soil minerals give high reflectance values 
in band 3 and low in band 1.  We therefore identify 
the principal component in which the difference of 
reflectance is large (Table 2).  In PC1 both bands 
have positive eigenvalues which are not useful for 
separating bands 1 and 3.  Eigenvalues of opposite 
signs in bands 1 and 3 in PC2 makes the bands 

separable.  According to the spectral characteristics 
of the laterite, the second component of the principal 
component analysis of band 3 (0.4219) and band 1 
(–0.9066) include the biggest difference (1.3285) 
between these two bands.  This component enables 
discrimination between the lateritic soil and iron 
oxides.  PC2 has a high and negative loading from 
band 1 (–0.9066) and high and positive loading from 
band 3 (0.4219).  PC2 is selected as the lateritic soil 
image and the brightest pixels represent the lateritic 
soil rich areas (Fig. 4B). 

The same PCA technique was applied to bands 
1, 3, 4, and 5 based on the spectral characteristics of 
iron oxides (ferric oxide absorption and reflectance at 
bands 1 and 3 and ferrous iron mineral absorption and 
reflectance at bands 4  and 5) and vegetation (Table 3). 
PC1 had a high loading from band 4 (73 % of the 
data variance) and this was attributed to albedo, 
whereas PC2 gave vegetation as bright pixels due to 
the positive contribution from band 4 and negative 
contribution from bands 1 and 3.  According to the 
eigenvector statistics (Table 1B), PC4 has a higher 
negative loading of band 3 (–0.4750) and high and 
positive loading from band 1 (0.8790), and includes 

Table 1 Band ratios for lateritic soil and green vegetation based on Landsat 7 ETM+ wavebands.

Table 2  Eigenvector loadings for lateritic soil mapping 
based on bands 1 and 3 for Landsat 7 ETM+ of Phrae 
basin.
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Fig.  4  (A) band 3/band 1 ratio image (bright pixels: lateritic soil area).  (B) PC2 image from Landsat 7 ETM+ bands 
1 and 3 (bright pixels: lateritic soil area).   (C) PC4 image from Landsat 7 ETM+ bands 1, 3, 4 and 5 (dark pixels:  
lateritic soil area).

the biggest difference (1.3540) between these two 
bands.  PC4 gave strong negative loading for band 3 
and a relatively strong positive loading for band 1. It 
was therefore assumed to show lateritic soil pixels as 
dark pixels (Fig. 4C).

The three analyses of lateritic soil mapping 
showed mostly the same results.  After applying three 
indices, band ratio image (3/1), PC2 (1, 3), and PC4 
(1, 3, 4, 5), the different threshold values were used 
to find the most probable area of lateritic soil in the 
image.  Thresholding, the simplest method of image 
segmentation, is an image processing technique for 
converting a greyscale or colour image into a binary 
image based upon a threshold value25.  The threshold 
values were determined according to known lateritic 
areas in the image (areas covered mostly by shrubs or 
grass, i.e. Phae Muang Phi National Park and landfill 
of Phrae city shown in Fig. 1).  For each image a 
sub-layer image was created. If a pixel in the original 

image has an intensity value less than the threshold 
value, the corresponding pixel in the sub-layer image 
is set to black (value 0), otherwise, it was set to white 
(value 1)26. Thus

 

where ƒ(i, j) is the pixel value in each layer of ratio 
image (3/1), PC2 (1,3) or PC4 (1,3,4,5), T is the 
threshold value, and g(i, j) is the corresponding pixel 
value in the sub-layer.  The results of these three 
indices were overlaid on top of each other using GIS 
to define the preliminary lateritic soil image.  The 
three extracted lateritic soil layers in binary format 
were then added together in order to form the final 
lateritic soil threshold layer (Fig.  5). When using 
the thresholding method, we could adjust the result 
from the field GPS data of lateritic soil for the known 
outcrops.

Table 3  Eigenvector loadings for lateritic soil mapping based on bands 1, 3, 4 and 5 of Landsat 7 ETM+ of 
Phrae basin.

1; if  ƒ (i, j) 

 0; if ƒ (i, j) < T
g (i, j) =   

T
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Lateritic soil area discrimination is not possible 
when vegetation is present.  Therefore, the quality of 
the final results was evaluated by the NDVI image 
and field investigation (Fig. 6A).  A mask included all 
these objects applied on the final lateritic soil layers 
to remove  noise and false anomalies.  Then, the 
visual interpretations using the geological maps are 
incorporated to eliminate the remaining noise to form 
the final laterite layer.  Fig. 6A shows the lateritic soil 
mapping thresholding results on top of the NDVI 
image.  The final result is marked and digitized based 
on the lateritic pixel density area (Fig. 6B).

The uses of Landsat TM images for soil mapping 
has always been hindered by vegetation cover and 
complex methods are required to remove the influence 
of vegetation27.  The above results show that there are 
differences in the spectral signatures of vegetated 
areas, but the results do not show compositional 
differences and thus provide little information on the 
soil physical properties.  The techniques were based 
on separation of the areas based on the presence of 
lateritic soil and vegetation cover.  The results showed 
lateritic soil mapping based on spectral and spatial 
analysis using the remote sensing application of 
Landsat 7 ETM+ data.

The presence of vegetation interfered with 
the spectral response of iron oxide minerals and 
hence the band ratios did not yield good results.  
Nevertheless, the band ratio method is easy and 

useful.  The identification of lateritic soil was best 
accomplished with the principal components analysis.  
The minimization of the vegetation interference was 

Fig. 5  After final thresholding image result (this image 
comes from three lateritic soil indexes image).

Fig. 6   (A) Lateritic soil mapping result (dark pixels) 
marked and draped on Normalised Difference Vegetation 
Index (NDVI) image of Phrae basin area, northern Thailand. 
The gray color presents dense vegetation area and light 
color area presents low vegetation area.   (B) Lateritic soil 
mapping results marked and draped on Landsat 7 ETM+ 
band 8 (15 m resolution) panchromatic image.

(A)

(B)
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obtained with the results of the principal components 
analysis, which identified the lateritic soil.
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