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ABSTRACT:     The exact solutions to the time-dependent Schrodinger equation for a harmonic oscillator with
time-dependent mass and frequency were derived in a general form. The  quantum mechanical propagator
was calculated by the Feynman path integral method, while the wave function was derived from the spectral
representation of the obtained propagator. It was shown that the propagator and the wave function depended
on the s solution of a classical oscillator, in which the amplitude and phase satisfied the auxiliary equations.
To demonstrate the derivation of  the solution from our auxiliary equations, exponential and periodic
functions of mass with constant frequency were imposed to evaluate the propagator and wave function for
the Caldirola-Kanai and pulsating mass oscillators, respectively.
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INTRODUCTION

In recent years, the study of Hamiltonian with
explicitly time-dependent coefficients becomes very
popular.1-11 The mathematical challenge and important
applications in various areas of physics, such as
quantum optics,12 cosmology,13 and nanotechnology,14

are the main reasons for intensive studies. The most
common problem in this area is the harmonic oscillator
with time-dependent frequency and/or mass. The
harmonic oscillator with time-dependent frequency is
the first exactly solved problem.15 The standard method
for solving the time-dependent problems is the Lewis-
Riesenfeld (LR) invariant operator method.2,3,5,11,15 This
method is based on constructing an invariant operator
and writing Schrodinger’s wave function in terms of
invariant operator eigenstates connecting with time-
dependent phase factor.

    However, in the case of a harmonic oscillator
with time-dependent frequency and mass the LR-
invariant operator method has some difficulty.16-17 In
1992, Dantas and et al.16 constructed an invariant
operator from the canonical transformation variables
and transformed the invariant operator to a simple
harmonic oscillator operator by unitary
transformation. However, their wave functions satisfied
the Schrodinger’s equation only in the case of constants
mass, but were not applicable in general case of  time-
dependent mass. Later in 1997, Pedrosa17 revised this

problem by modifying the invariant operator and used
another unitary operator to include the time-dependent
mass parameter. His result presented the first wave
function for the harmonic oscillator with time-
dependent mass and frequency. Finally, Ciftja18

proposed an alternative method by assuming the
Schrodinger’s wave function in terms of  the Gaussian
function with time-dependent coefficients and using
the space-time transformation to reduced the problem
to a simple harmonic oscillator. He suggested that there
should be some attempt to develop an easier method
than the LR-invariant operator method to tackle the
time-dependent problem.

The aim of this paper is to derive the propagator
and wave function for a harmonic oscillator with time-
dependent mass and frequency in any function form as
described by the Hamiltonian

             
2

2 21
( ) ( ) ( ) ,

2 ( ) 2

p
H t m t t x

m t
ω= +                                   (1)

where ( )m t  and ( )tω  are the time-dependent mass
and frequency, respectively.

Our developed method is not based on the
Hamiltonian and solving the differential equations as
described in previously reported articles,16-18 but base
on the Lagrangian and solving the integral equation by
the Feynman path integral approach.19 In this
formulation the time-dependent Schrodinger’s equation
is replaced by integral equation
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( , ) ( , ; , ) ( , ) ,x t K x t x t x t dxψ ψ′′ ′′ ′′ ′′ ′ ′ ′ ′ ′= ∫                           (2)

where kernel Κ or propagator represents the
transition probability amplitude for the initial wave
function ψ(x′,t′) propagating to the final wave function
ψ(x′′,t′′)  in the space-time configuration.

As first stated by Feynman,19 the propagator can be
defined by the path integral of

[ ( )]
( , ; , ) [ ( )],

i
S x t

K x t x t e D x t′′ ′′ ′ ′ = ∫                             (3)

where the measure D[x(t)] denotes the sum over all
path between (x′,t′)  and ψ(x′′,t′′).  The function S[x(t)]
is an action defined by

[ ( )] ( , , ) ,t

tS x t L x x t dt′′
′= ∫                                                          (4)

where ( , , )L x x t  is the Lagrangian of  the system.
 The propagator can be related to the time-

dependent Schrodinger’s wave function by

                               (5)

To solve this formulation, the propagator from the
Feynman definition in Eq. (3) is calculated and then the
spectral representation of propagator in Eq. (5) is
applied to derive the time-dependent Schrodinger’s
wave function. It is well known that the quantum
solutions for the time-dependent problems16-18 depend
on the undetermined auxiliary equation. Hence, to
demonstrate the derivation of the explicit form of the
propagator and wave function, the exponential and
periodic function of mass with constant frequency is
employed as an example in the cases of a Caldirola-
Kanai oscillator and a harmonic oscillator with strongly
pulsating mass respectively.

In section 2, our derivation of the path integral for
a harmonic oscillator with time-dependent mass and
frequency is described. In section 3, the wave functions
for a harmonic oscillator with time-dependent mass
and frequency are derived in a general form. To
demonstrate particular cases, our general solutions
are applied to derive the propagator and wave functions
for the well-known Caldirola-Kanai oscillator and the
harmonic oscillator  with strongly pulsating mass in
section 4 and 5, respectively, and the conclusion is
given in section 6.
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The Lagrangian associated to the Hamiltonian in
Eq. (1) is

2 2 21 1
( ) ( ) ( ) .

2 2
L m t x m t t xω= −                                                                                                                                                                                                                        (6)

The quadratic Lagrangian propagator can be
separated into a pure function of time F(t′′,t′) and the
exponential function of classical action  S

cl
(x′′, t′′; x′, t′)

as suggested in Ref. 19

( , ; , ) /( , ; , ) ( , ) .cliS x t x tK x t x t F t t e ′′ ′′ ′′′ ′′ ′ ′ ′′ ′=                                (7)

Calculation of the function F(t′′,t′) presented by
Pauli, Morette, or Jones and Papadoupoulos20-22 can be
performed by the semiclassical approximation of path
integral formula and then applied to Eq. (3)

                         (8)

   Therefore, the crucial issue in propagator
calculation in this system is to obtain the classical action
S

cl
(x′′, t′′; x′, t′).  By using the Euler-Lagrange equation for

the Lagrangian in Eq. (6), the equation of motion can
be written as

22 ( ) 0,x x t x
η ω
η

+ + =                                           (9)

where we define ( ) ( ).t m tη =

For physical reasons, let consider the solution to
the equation of  the motion in the form

x(t) = ρ(t) [A cosγ(t) +  B sinγ(t)],                                 (10)
where ρ(t) = α(t) /η(t), γ(t) refers to the amplitude

and phase of the classical oscillatos and A  and B  are
constants. The functions α(t), γ(t) and η(t) can be
determined by substituting Eq. (10) into Eq. (9) and

{ }
2 2

2

( )
cos sin

t
A B

α αη αγ αω γ γ
η η η η
⎡ ⎤

− − + +⎢ ⎥
⎣ ⎦

     (11)

Since constants A and B can not vanish
simultaneously, the functions α(t), γ(t) and η(t) have to
satisfy the following auxiliary equations

                                  (12)

and
2

0.
αγγ
α

+ =        (13)

The constants A and B  in Eq. (10) can be determined
by imposing the boundary conditions of x(t′) = x′ and
x(t′′) = x′′. The classical path that connects the point of
(x′,t′)  and (x′′,t′′) can be written as

       (14)

( )( )
( ) sin( ) sin ,

( )sin( )cl

t x x
x t

t

α η ηγ γ γ γ
η γ γ α α

′ ′ ′′ ′′⎧ ⎫′′ ′= − − −⎨ ⎬′′ ′ ′ ′′− ⎩ ⎭

*

0
( , ; , ) ( , ) ( , ).n n

n
K x t x t x t x tψ ψ

∞

=
′′ ′′ ′ ′ ′ ′ ′′ ′′= ∑

( )
1

2 2

( , ) , ; , .
2 cl

i
F t t S x t x t

x xπ
⎡ ⎤∂′′ ′ ′′ ′′ ′ ′= ⎢ ⎥′ ′′∂ ∂⎣ ⎦
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− + − =⎢ ⎥
⎣ ⎦
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( ) 0
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t
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t

ηα γ α ω α
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⎡ ⎤
− + − =⎢ ⎥

⎣ ⎦
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where the notations γ′ , α′  and η′   refer to γ(t′), α(t′)
and η(t′) respectively. The action can be calculated
from the time integration of the Lagrangian from t′ to
t′′.

 ( , ; , ) ( , , ) .t

tS x t x t L x x t dt′′
′′′ ′′ ′ ′ = ∫                                (15)

For the action of our general system, the Lagrangian
in Eq. (6) is substituted into Eq. (15), and then integrated
by parts of the first term on the right hand side of Eq.
(6) using the equation of motion in Eq. (9).

The classical action can be written as

( , ; , ) .
2 2cl cl cl cl cl

m m
S x t x t x x x x

′′ ′′′ ′′ ′′′ ′′ ′ ′ ′= −   .                 (16)

Substituting the classical paths of Eq. (14) into Eq.
(16), the classical action becomes

       (17)

    By substituting the above classical action into Eq.
(8), the pre-exponential factor can be obtained as

( )

1

2

( , ) .
2 sin

F t t
i

η η γ γ
π γ γ

⎛ ⎞′ ′′ ′ ′′
′′ ′ = ⎜ ⎟⎜ ⎟′′ ′−⎝ ⎠

                                (18)

From Eqs. (7), (17) and (18), the propagator for the
harmonic oscillator with a time-dependent mass and
frequency can be expressed by

       (19)
This result can be verified by assuming

.m constη η′ ′′= = =  This reduces to the propagator
for a harmonic oscillator with time-dependent
frequency and constant mass as

       (20)

This propagator is in agreement with the result of
Khandekar and Lawande23 by using the Feynman
polygonal method and more recently with the result of
Yeon24 et al. by expanding the wave function obtained

from the LR-invariant method. Furthermore, this result

can be reduced to the case of the simple harmonic

oscillator propagator, by setting α,  ω  and mη η′ ′′= =
to be constants. The auxiliary equations become

2 2 0γ α ω α− + =   or   γ ′′ − γ ′   = ω(t′′ −  t′).                                    (21)

   Substituting these parameters into Eq. (19), the
well-known propagator for a simple harmonic
oscillator, as appearing in Feynman and Hibbs,19 can be
obtained as

       (22)

WWWWWave Function For a Harave Function For a Harave Function For a Harave Function For a Harave Function For a Harmonic Oscillator withmonic Oscillator withmonic Oscillator withmonic Oscillator withmonic Oscillator with
Time-Dependent Mass and FrequencyTime-Dependent Mass and FrequencyTime-Dependent Mass and FrequencyTime-Dependent Mass and FrequencyTime-Dependent Mass and Frequency

In this section, the time-dependent Schrodinger’s
wave function is calculated from the spectral
representation of the propagator in Eq. (5) by defining

                   φ    =  γ ′′ −  γ ′ ,                       (23)

21
cos ,

2

z

z
φ +
=        (25)

,
m

a x
γ′′ ′′ ′′=         .

m
b x

γ′ ′ ′=                                       (26)

    The general propagator in Eq. (19) can be written
as

2 2

( , ; , )
2 2cl

m x m x
S x t x t

α η α η αη αη
α η αη

′′ ′′ ′′ ′′ ′′ ′′ ′ ′ ′ ′ ′ ′⎛ ⎞ ⎛ ⎞− −′′ ′′ ′ ′ = −⎜ ⎟ ⎜ ⎟′′ ′′ ′ ′⎝ ⎠ ⎝ ⎠
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( )
1

12
2 2( , ; , ) 1

z
K x t x t z

η η γ γ
π

−⎛ ⎞′ ′′ ′ ′′
′′ ′′ ′ ′ = −⎜ ⎟⎜ ⎟

⎝ ⎠
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                                 (27)

Now using the identity

( )
2 2

22

1 1
,

2 12 1

z z

zz

+
= +

−−
                                          (28)

the propagator can be rewritten as

( )
1

12
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⎝ ⎠
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i
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2
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z
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   (29)

    By exploying the Mehler’s formula25

( ) ( )2 2 21
2 2

2

2
1 exp

1

abz a b z
z

z

− ⎡ ⎤− +
⎢ ⎥−

−⎢ ⎥⎣ ⎦

0
( ) ( ) ,

2 !

n

n n n
n

z
H a H b

n

∞

=
= ∑                               (30)

where ( )nH x  is the Hermite polynomial, the
propagator becomes

       (31)

Comparing the propagator in Eq. (31) with Eq. (5),
the wave function for a harmonic oscillator with time-

dependent mass and frequency can be expressed as
1

1 2
21 ( ) ( ) 1

( , ) exp ( )
2 ! 2n n

m t t
x t i n t

n

γψ γ
π

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

       (32)

Since each ( , )n x tψ  satisfies the time-dependent
Schrodinger’s equation, the general solution can be
written as

0
( , ) ( , ),n n

n
x t C x tψ

∞

=
Ψ = ∑                       (33)

where nC  are constants.

 The general wave function in Eq. (32) can be verified
by setting , , mα ω η η′ ′′= = to be constant in the
auxiliary equation as mentioned in Eq. (21).

The wave function can be reduced to
1

1 2
21 1

( , ) exp
2 ! 2n n

m
x t i n t

n

ωψ ω
π

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

2exp ,
2 n

m m
x H x

ω ω⎛ ⎞⎡ ⎤× − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
                (34)

which is the wave function for a simple harmonic
oscillator appearing in the text-book on quantum
mechanics.26-27

It should be noted that the general wave function
in Eq. (32) is slightly different from reported by the
result of Pedrosa17 and Ciftja18 because of different

notations. In order to comparing, let 
( )

( )
( )

t
t

t

α ρ
η

=  and

0 2

1
( )

( ) ( )
tt dt
m t t

γ
ρ
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Eq. (12) becomes
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ρ ρ ω ρ
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+ + =             (35)

and the wave function can be written as
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       (36)

which agrees with their results.17-18

The Caldirola-Kanai OscillatorThe Caldirola-Kanai OscillatorThe Caldirola-Kanai OscillatorThe Caldirola-Kanai OscillatorThe Caldirola-Kanai Oscillator
In this section, the application of the solution of our

auxiliary Eqs. (12) and (13) is demonstrated for deriving
the explicit form of the propagator and wave function.
The system selected as an example is the quantum
damped harmonic oscillator or the Caldirola-Kanai
oscillator.28-29 By introducing the mass law, the time-
dependent mass can be written as

m(t) = mert   ,        (37)
where m is the constant mass and r is the constant

damping coefficient.
The Caldirola-Kanai Hamiltonian can be obtained

by the Hamiltonian in Eq. (1) with constants ω

2
2 21

( ) .
2 2

rt rtp
H t e m e x

m
ω−⎛ ⎞

= +⎜ ⎟
⎝ ⎠

                                 (38)

In order to obtain the propagator of this system, the
explicit forms of the function α(t) and γ(t) in Eq. (19)
have to be derived. By substituting the time-dependent
mass in Eq. (37) into the auxiliary Eqs. (12) and (13), it
can be derived that

                                        
1α =
Ω              and                                    (39)

                          γ(t) = Ωt    ,                                          (40)

 where Ω is the reduce frequency defined by
2

2 2 .
4

rωΩ = −                                                     (41)

     By substituting Eqs. (37), (39), (40) and

( ) ( )t m tη =  into Eq. (19), the propagator for the

Caldirola-Kanai oscillator can be obtained as
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1
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⎩ ⎭
                                    (42)

The wave function for this system can be calculated
by Eq. (32) as
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x t i n t

n
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π
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1

22 2exp .
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n

m ir m
e x H e x

⎡ ⎤Ω⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥× − Ω+⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
                    (43)

The obtained propagator and wave function in Eq.
(42) and (43) are in the same form as that reported by
Jannusis et al.30

The Harmonic Oscillator with Strongly PulsatingThe Harmonic Oscillator with Strongly PulsatingThe Harmonic Oscillator with Strongly PulsatingThe Harmonic Oscillator with Strongly PulsatingThe Harmonic Oscillator with Strongly Pulsating
MassMassMassMassMass

The other well known example of a time-dependent
mass oscillator is a harmonic oscillator with strongly
pulsating mass.31 This oscillator can be applied in
connection with the electromagnetic field in a Fabry-
Perot cavity in contact with a reservoir of resonant
two-level atoms. The periodic release and reabsorption
of photon can be represented by an oscillator of
periodically fluctuating energy. In other words, it can
be represented by a periodically varying mass as

m(t) = m cos2 ν t  ,                                               (44)

where ν  is the frequency of mass. In this case the
Hamiltonian becomes

2
2 2 2 21

( ) sec cos .
2 2

p
H t t m t x

m
ν ν ω= +                        (45)

  By substituting the mass law into the auxiliary Eqs.
(12) and (13), we can get

1α =
Ω               and                                          (46)

γ(t) = Ωt    ,                                                      (47)

where the augmented frequency Ω is defined by

Ω2  =  ω2  + ν 2 .        (48)

By substituting these Eqs. (44), (46) and (47) into
the general propagator in Eq. (19), the propagator for
a harmonic oscillator with strongly pulsating mass can
be derived as

1

4

2

0 2

2
2

1 1
( , )

( )2 !

1
exp

2 ( ) ( )

( ) ( )
exp

2 ( ) ( ) ( )

1
,

( )

n n

t

n

x t
tn

dt
i n

m t t

im t t i
x

t m t t

x
H

t

ψ
π ρ

ρ

ρ
ρ ρ

ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
′⎡ ⎤⎛ ⎞× − + ∫⎜ ⎟⎢ ⎥′ ′⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
× +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎛ ⎞

× ⎜ ⎟⎜ ⎟
⎝ ⎠

( )( )
( )

( )

/2
2 2 2

exp cot
2 sin

r t t
rt rtim x x e

t t e x e x
t t

′′ ′+
′′ ′

⎧ ⎫⎡ ⎤′ ′′Ω⎪ ⎪′′ ′ ′′ ′× Ω − + −⎨ ⎬⎢ ⎥′′ ′Ω −⎪ ⎪⎣ ⎦⎩ ⎭ ( )

1

2cos cos
( , ; , )

2 sin

m t t
K x t x t

i t t

ν ν
π

⎛ ⎞′ ′′Ω′′ ′′ ′ ′ = ⎜ ⎟⎜ ⎟′′ ′Ω −⎝ ⎠
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       (49)

This propagator can be simplified by setting ν  = 0,
and Ω  = ω. The result is reduced  to the simple harmonic
oscillator propagator.

    By substituting Eqs. (46) and (47) into Eq.(32),
the wave function for a harmonic oscillator with
strongly pulsating mass can be obtained as

1

41 ( ) 1
( , ) exp

22 !
n n

m t
x t i n t

n
ψ

π
Ω ⎡ ⎤⎡ ⎤ ⎛ ⎞= − + Ω⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

( ) 2( ) ( )
exp tan .

2 n

im t m t
t i x H xν ν

⎛ ⎞Ω⎡ ⎤× + Ω ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
   (50)

This result agrees with the wave function of
Colegrave and Abdalla.31

CONCLUSION

In this paper we successfully calculated the exact
propagator and wave function for a harmonic oscillator
with time-dependent mass and frequency by the
Feynman path integral formulation. The resulting
propagator in Eq. (19) can be reduced to the propagator
for a harmonic oscillator with time-dependent
frequency and constant mass which agrees with the
result of  Khandekar and Lawande23 and Yeon et al.24 as
shown in Eq. (20). Moreover, our propagator in Eq.
(19) can be reduced to the simple harmonic oscillator
propagator19 by setting the mass and frequency to be
constants as shown in Eq. (22). The resulting wave
functions in Eq. (32) can be also reduced to the simple
harmonic oscillator wave functions26-27 by setting the
time-dependent mass and frequency function to be
constants.

The crucial result in our calculation is to express the
general solution of a time-dependent mass and
frequency oscillator as  mentioned in Eq. (10). This
solution in Eq. (10) has the time-dependent phase and
amplitude which satisfy the auxiliary Eqs. (12) and (13).
By modifying the notations, the auxiliary Eq. (12)
become the well known Pinney equation32 as shown in
Eq. (35). In sections 4 and 5, we have shown the

usefulness of auxiliary equations for deriving the explicit
form of the propagator and wave function in the case
of the Caldirola-Kanai and strongly pulsating mass
oscillator.

In order to compare our approach with other works,

the amplitude ( )tρ  in Eq. (10) corresponds to the

space transformation of ( )x t yρ= , and the phase

factor 0 2
( )

( ) ( )
t dt

t
m t t

γ
ρ
′

= ∫ ′ ′  is the time transformation,

both of the Ciftja approach.18 In the Pedrosa 17 approach

the amplitude ( )tρ  is the crucial factor to construct an

invariant and unitary operator. Surprisingly, by the

different formulations of mathematics, the ( )tρ
function in the three approaches can satisfy the same
nonlinear differential equation or the Pinney equation.
Finally, it can be concluded here that the path integral
is the effective and straight forward method for solving
the time-dependent problems because it requires the
same procedure in solving time-independent problems
without employing any transformation compared with
the other methods.
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