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ABSTRACT: The dynamical behavior of time delay herbivore-plant-pollinator ecosystem is studied.  The time
delay arises from the fact that it takes time for a pollinated flower to develop into a new plant.  A dynamical
analysis is used to show that a stable steady state undergoes a Hopf bifurcation to a limit cycle behavior as the
delay time crosses a critical value. This prediction is verified by numerically solving the set of first order
differential equations.  One finds that the trajectory which is spiraling into the steady state point when τ <τ

o

becomes a trajectory into a limit cycle about the state when τ > τ
c
.

KEYWORDS:      Herbivore-plant-pollinator ecosystem, time delay, Hopf Bifurcation.

INTRODUCTION

Very recently, Bandyopadhyay, Bhattacharyya and
Mukopadhyay (BBM)1, studied the dynamics of an
autotroph-herbivore ecosystem with nutrient
recycling.  They considered both the case where there
is no time delay and the case where there is a delay.  For
the former case, they found that when the rate of
increase of the nutrients attained a certain threshold
value, the system became stable.  The autotroph and
herbivore populations would oscillate about an interior
steady state point.  Below the threshold value, the
system became unstable.  Note that in the absence of
nutrient replenishing, the nutrients would eventually
disappear from the soil and the autotrophic state would
go to zero.  For the latter case, BBM found that a
sufficiently large delay in the time needed to convert
dead organic matter into the nutrients, would cause
the stable state to become unstable.  Using Hopf
Bifurcation analysis2, they established the conditions
for the switching of the stability.

Jang3 has studied the dynamics of a herbivore-plant-
pollinator ecosystem.  Jang’s model is somewhat
different from that of BBM.  He looked at the roles of
the energetic rewards of the interactions between the
plant and the pollinator and of the specificity of the
pollinator to the plant. Jang was particularly interested
in how the reduction of the visitation rate of the bee to
the plant caused by the action of the herbivore affected

the ecosystem.  A Hopf Bifurcation analysis was again
used to determine the stability of the steady states.
Jang did not include any time delay4,5  into his model.

The purpose of the present paper is to determine
the effects of a time delay in Jang’s model.  Unlike the
BBM model, where the time delay should be inserted is
obvious, it is not in Jang’s model.  We believe that it
should be inserted into the term describing the birth
rate of the plant;

(1)

where X and Y are the bee and plant populations,
respectively; k

1
, number of ovules fertilized per visit of

the bee; σ, the probability of an encounter between the
flower and the bee; ϕ, reciprocal of the time it takes the
bee to extract the nectar (or pollen); and µ , the energetic
reward to the bee when it encounters the flower. This
gives the number of flowers fertilized at time t.  It then
takes time for the fertilized ovules to develop into
seeds and fall to the ground. The number of new plants
that will begin to flower at time t     will depend on the
number of ovules that were fertilized at time t-τ,     where
τ is the time delay. In Section II, we introduce the Jang
model and present some of his results. We put the time
delay into the model in Section III, and carry out a Hopf
Bifurcation analysis.  In Section IV, we present our
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numerical solution. In Section V, we present an
extension of our model and discuss how it can be used
to provide quantitative predictions for the farmers.

II. lang's Model.
The herbivore-plant-pollinator ecosystem

considered by jang consists of three first order
differential equations;

x = bX(K -X)+ g(Z)kp,u'XY
1 + r/Ja-,u'y

Y - k,a-,ug(Z)XY m Yz- yy jl+r/Ja-,u'y - a+ Y

Z = m,YZ -oZ
a+Y

(2a)

(2b)
and

(2c)

where Z denotes the herbivore population; g(z)
represents the loss in attractiveness of the flower to the
bee due to the damage caused by the herbivore;

m2Y
- (3)
a+Y

is the visitation rate of the herbivore to the plant; mj and
m2, the maximal ingestion rate and the leafhopper
maximal growth rate with a < m2 :::; mj, respectively; 'a',
the half - saturation constant; <\' the maximum per
capita birth rate of the bees; A and 0, the death rate of
the bees and herbivore, respectively; 'b', the density
dependent regulation constant of bee, and K is the
measure of the diversity of bee to the plant (K=(Oj-A)1
b). In the present model, the flower on the plant becomes
pollinated and after awhile, the plant dies. The life cycle
begins again when the seed developed from the
pollinated flower falls off the plant and germinates in
the soil. All of the population classes must be positive
at all times, i.e.,

X(t), yet), Z(t) 3;::: a .

Setting the RHS of eqns. (2a) - (2c) to zero, we obtained

- K g(z)k2J..l20-Y (4 )ffi, x= + a
bCl + ~crJ..l2y)

y=~,m2 >8 (4b)
and m2-8

- a+y [ kjk21-t302y (- )2 kjl-toK (-
) ](4 )z=- gz + gz-y C

m] b(1+$oI-t2y)2 1+$oI-t2y

at one of the steady states (x,y,z). To determine when

the state is stable ornot, wefirst diagonalize thejacobian
of eqns. (2a) to (2c) at the steady state. We then check
to see if all the eigenvalues have negative real parts.
When this happens, the state is stable. Diagonalizing
the jacobian, we obtain the following characteristic

equation

'A 3 + (P1 - 5])'A 2 + (P2 - 52 )'A + (P3 - 53) = 0 (5)
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where
PI = Y + 8 - bK + 2bx - ffi,hCy) - k,flfCy)gCz ) + ffilZh'Cy) ,

P2 = yo - bKo - bKy + 2byx + bKh(y)m2 - yh(y)m2 - 2bh(y)xm2

+2box - yf(y)k2Ilg(z) - of(y)k2Ilg(z) + f(y)h(y)k,m,llg(z)

-bKzm,h'(y)+ ozm,h'(y) + 2bxzm, h'(y) -f(y)z k2 ffilflg(z )h'(y),

P3 = 2b,ox - bK,o + bK'yh(y)m2 - 2b')'h(y)xm, - yoh(y)k,l!g(z)

+yf(V)h(V)k2ill2Ilg(z) - bK8zilljh'(V) +2b8 XZilljh'(V)

-8f(V)Zk2illjllg(z)h'(V),

Sj = g(Z)X kjf'(V),

S2 = -bKg(z)xkr(V) + 8g(z)x kJ'CY )+ 2bg(z)x 2kJ'(y)

-g(z)h(y )x kjill2f'CY)+f(V)X: Zk1ill2g'(z)h'(V)

and
S3 = 2bOg(Z)x\r'Cy) - bKOg(Z)"Xkjr'(y)+2b fey) x2 Z k1ill2g'(Z) h'(V)

+bK g(Z) hey) X kjill2 fey) - 2b g(z) hey) x:2kjill2 f'(V)

-bK fey) x: Zkjill2 g'(z) h'(V) (6)

Equation (5) has negative real roots if and only if
(Theorem 1, Appendix)

PI-51> 0, P3-53> o and (PI-51)(P r5,)-(P3-53»0. (7)

When the above conditions are satisfied

steady state will be stable.

IlL Effect of Time Delay. -
IlIa. The Stability of E = (x, y, z)

Delay.
A time delay in the herbivore-plant-pollinator

system arises because a new flower only arrives after
the pollinated flower develops into a seed, falls off the
plant, germinates into a new plant and then grows into
the flowering stage of the new plant. To include the
effects of the time delay, we need to replace eqn. (2b)

by

(x,y,Z) , the

with Time

k1/lag(z(t - 't))X(t - 't)y(t - 't)

1+~a/l2y(t-'t5
ffilYZ

a+y
y yy (lb')=

The Jacobian matrix for eqns. (2a), (2b') and 2c)

evaluated at the steady state point E = (x,y,z) is

[bK - 2bx + k2 /.tg(z ) fey)

kl g(z) fey) e -an

0

k2 Ilg(z) f'(y) x

h/(y)+ kl g(z) x

ffi2 Z h/(y)

£'(5') e --o:rr
-y-ml Z

fey )e -ffi' ]
k2J.lg' (z) fey) x

-fil hey ) + kl g'(z ) X

fi2 hey) - 0
(8)
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Diagonalizing the above matrix, we obtain the following
characteristic equation5

3 2 -roT ( 2 ) (9)0) +P10) +P20)+P3 =e 510) +520)+53

We now suppose that two of the eigenvalues of eqn. (9)
are a pair of complex conjugates
i.e., ()h= u( ,) :!: iv( ,). Substituting w+ into eqn. (9) and
separating the real and imaginary parts, we get

3 2 2 2U -3uv +Pl U -Plv +P2 u+P3

= e -m; (sl u2cos( vr) - sl icos( vr) + s2ucos( vr) +s3cos(vr)}

+2S1 UV Sin(vT)+s 2 v sin(vT)

and

3u2v-V3 +2pjUV+P2V

= e-ur (2sjuy cos( VT) +S2Y cos( VT) -SjU2 sin(vT)

+SjV2 sin ( VT) -S2U sin ( VT) -S3 sin( VT)} 01)

where. is chosen to be the Hopfbifurcation parameter.

For a Hopf bifurcation to occur, three conditions
mustbemetatthecriticalvalue(. );o)u(. )=0,(2)v(.)
'" 0 and (3) u'(.) > 0 (Theorem 2., Appendix). To see if
the eigenvalues of thejacobian evaluated at the steady
state point E = (x,y,z) satisfy these conditions, we first
assume that the critical value defined by u(.) = 0 exist.

However, we do not use this condition to find. . Instead
we substitute the condition into eqns. 00) anlO1) and
see whether a non-zero value ofv(. ) exist. 6 To do this,
we set u (.) = u * = 0 into the two eOquations to get

_pjV'2 + P3 = (S3-SjV'2)cOS(Y' '0) + s2y'sin (y' '0) 02)

_y'3 + P2 y' = S2 y' cos( y' '0) - (S3-Sj y"2)sin( y' '0) (13)

Squaring the two equations and adding the squares
together, we obtain

2 2 A 2 2.2 BD-EC - 2[ 4 2 2 2 2 2
+(I1-2P2-S1)v +(P2-2P1P3-S2+2s1S3)v +(p~-S~)=O -vO 3vO +2vO(P1 -2P2 -51)+(P2 -2P1P3 -52 +25153)]

(21)

.0
v

(14)

,'2,1] eqn. (14) becomes the following cubic

5(11) = 1]3 + dj1]2 + d21] + d)= 0 (15)

where 2 2
dl = Pi - 2P2 - 51 (16a)

2 2d2 = P2 - 2P1P3 - 52 + 25153 (16b)

2 2d3 = P3 - 5} (16c)

Forv( 1") to exist, the roots of eqn. (15) must be real and

Letting v

equation
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positive. This can be determined by using the results
of the lemma stated in the Appendix. We now assume
that a set of values for the parameters can be found
which satisfies the conditions of Lemma 1.

Next we need to show that for the present U(T), the
following is true - I

dU

Id. .=.0
This is done by differentiating eqns. 00) and 01) with
respect to, and then set, = '0' Doing this, we get

clul dv B- + C-

clT 7=70 d7 T=To

>0
(17)

=D (l8a)
00)

du dv
l-c- + B- = E (l8b)

dT 7=70 dT 7=70
where

B = [ -3v~ + P2 - s2cos(v 0'0) - 2s1 v osin(v 0'0) + s3'Ocos(v 0'0)

-Sl v6'ocos(v 0'0) + S2 v o'osin(v o'o)J

C = [ -2P1 v 0 + 2s1 v ocos(v 0'0) + s3'osin(v 0'0) - Sl v6'osin(v 0'0

-52 sine v 0 '0) - 52 V 01:0 cas( V 01:0)]

D = (Slv~ -s3vO)sin(votO)+s2v~cos(voto)

and

E = (Slv6 - s3vO)cos(vO'tO)-s2v~sin(vO'tO) (19)

du

dT T=TO

Solving for we get

du

dT r=rO

BD - EC

B2 + C2
(20)=

where

Therefore, we have

2du Vo 4 2 2 2 2 2
- =::::r-:L[3vO +2vO(P1 -2P2 -sl)+(P2 -2P1P3 -s2 +2s1s3)J
d B +C1 1=10 (22)

Noting that

dS 2 2 2 2 2
-=3Tj +2(P1 -2P2 -sl)Tj+(P2 -2P1P3 -s2 +2s1s3)

dTj

(23)

where 5 is defined byeqn. (15), eqn. (22) can be written as
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2 I . Vo dS
~ 2 2-

B + C d1'J 1'J=v5

du

ld1: 1:=1:0

The condition A< 0 in part A of Lemma I requires the
two turning points of S( 11) not be a positive real root of

S(l1), otherwise A would be equal to zero. The two
turning points of S( 11) ,1>1 and 1>2 (eqn. A2), are the zeros
of eqn. (23). Since vo2", 1 1>1,2' the following must be true

dS
I '" 0 (25)

d~ 'l;V~

Thus
2

Idu Vo dS
~ =~~ 26)
d,I,=,o B + C dTj Tj=v~ (

and condition 3 of the Hopf bifurcation theory is
satisfied. Therefore the system undergoes a Hopf
bifurcation.

IIIb.Critical Time Delay.
The critical delay time can be found by using the

method introduced by Tam. 6 We rewrite eqns (12) and

(13) as
Mcos(v * 1" 0) + Nsin(v *1" 0) = P (27a)

Ncos(v * 1" 0) - Msin(v *1" 0) = Q (27b)

where
M = 5} - 5jV,2 (28a)

N = SlY' (28b)

p = - PjV.2 + P3 (28e)

and
Q = - V.3 + P 2 v' (28d)

Eqns. (27a) and (27b) leads to

M' + N' = p' + Q' = G' , where G> O. (29)

M and N can be rewritten as

M = G cas ()
N = G sin () (30)

This allows us to determine a eEl O. 21t) uniquely. With
this value of 8, eqns. (27a) and (28b) become

GCOS(TO v *)cosB+ GSin(To v)sinB= P (31)

GCOS(To v *)sinB- Gsin(To v *)cosB= Q (32)
or

Gcos('to V *- 8) = P (33a)

Gsin('to v *- 8) = Q C33b)

From this we get as the critical value

1 -1 Q
'a = -.- {tan ( - ) + 9}

v p
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(24) Iv. Numerical Solution.
Na. Numerical Parameters.
The numerical values of the parameters in the

herbivore-plant -pollinator ecosystem for a given plant
are scarce. One has to guess at them since many of
them will depend on which plant we are interested in,
what is the locality (or country) or what time of the year
it is. To gain ideas of the range of values the parameters
can take, we look at the Mango tree, even though the
present model is not an appropriate model for this
plant. The model is developed for a flowering plant
which after becoming pollinated, dies. Most Mango
trees exhibit biannual flowering, once between May
and June and again in December-January. This flowering
is repeated every year for many years. Nevertheless,
we have used the data available for the Mango trees to
be typical of most plants.

Jarnjanya7 has looked at the increase in leafhopper
population in two varieties of mango trees, On-som
and Na thub. He found that leafhopper infestation on
the Na-thub mango tree increased by 270% in a day,
while the leafhoppers infestation on the On-som mango
tree increased 63% in a day. This implies that m2 can
vary between 0.63 - 2.7 daTI depending on the type of

Mango tree. Boongird8 has measured the probability
that a bee will visit a Namdokmaimango tree in Thailand.
He found (J to be 79.55%. In Trinidad, the probability
that a bee will visit the mango is about 21 %9 We take
(J, the probability of encounterto be in the range 0.21
- 1. O. The extraction rate ofthe nectar by the bee range

between 0.31ll/sec in grove and 2.0 Ill/sec in pool.lO<p,
which is reciprocally related to the speed of nectar
extraction, is set to be in the range 1. 93 x 10-5 - 3.86 X
10-5 (Ill/day)-I. Other studies find that a bee will visit 8-
10 flowers per visit.]] Since only about 5 - 75 % of the
flowers are perfect, the number of ovules fertilized per
visit, k], will be in the range of 0.4 - 7.5 flowers per visit.

The normal death rate of the bees has been changing.
The French National Bee Surveillance Unit12 has stated
that the death of the bees during the winter months was
one out of ten in previous years. Now, the death rate
is six out often. This means that 'Ais in the range 0.001
- 0.006. For the birth rate ofthe bees, i\, we assume
that the queen bee lays about 1200 - 2000 eggs/day.
For a typical small hive containing perhaps 20,000
bees,9.l3 the birth rate of the bees would be in the range,
0.06- 0.1 daTI. The estimated values of the parameters
are listed in Table 1.

Nb. Numerical Solutions.
For the purpose of getting an idea of what might

occur, we have set the values of the parameters at:
a =500, b = 1/8, 'A = 0.0035, k] = 3.95, k2 = 0.00005,
m] = 7.5, m2 = 1.6, <p = 0.0000386,0- = 0.25, y= 0.0111,
J.l= 23 and Ih 0.05. Substituting the above values into
eqns. (4aH 4c), we get the steady state

(34)
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Table 1. Parameter values

Parameters Units parameter range

a no. of flower 500
b l/(bee day) 118

0]- IeK no. of bee ~
k] mango/thee visit) 0.4 - 7.5
f.l microliter/visit 22.72-63.63
<p (microliter/day)-] 1.93xl0-s - 3.86xl0-s
c; 0.21 - 1.0
0] daT' 0.06 - 0.1
Ie day-] 0.001 - 0.006
k, microliter] >1.48xl0.6
y day.] 0.0111
m] mango/day 10.93-910.75
m, day.] 0.63 - 2.7
0 day.] 0.01-0.05

E(0.637873, 16.129,29.4689). (35)
Substituting the values of (x,y,z) given by eqns.
(4a)-( 4c) and the values of the parameters into eqn. (7),
we find that the Routh - Hurwitz conditions are met and
the steady state is stable. Substituting the same values
in eqn. (34), we find that the critical value is

1 = 1.13 days (36)
As 1 crosses this val~e, the steady state should become
unstable. To see if this happens, we have solved eqns.
(2a), (2b') and (2c) (for a delay time of 1 day) using the
values of the parameters given above. In Figure 1, we
see the trajectory of the solution spiral into the
equilibrium state, eqn. (35). This would be expected
since1<"Co' We then changed the value of the time delay
to be 1.13 days. The trajectory is now a limit cycle
(See Figure 2). As we have pointed out, the conditions
for the system to undergo a Hopfbifurcation to a limit
cycle are met with the values of the parameters used.
Finally, we pick 1 = 10 days. In Figure 3, we see
the trajectory spiraling away from the steady state
E(0.637873, 16.129,29.4689). The trajectory initially
starts at the left face of the cube, heads towards the
steady state and then spirals away from the steady
stater. This implies that the steady state has become
unstable.

To understand why this happens, let us look at the
biology. A nonzero steady state with y*-O would be
possible if a new plant would begin to flower while
some of the original flowers are still present. This
would require that a flower, pollinated at the beginning
of the flowering season, would quickly develop into a
seed. The seed must then fall to the ground and germinate
into a plant that develops new flowers before the original
flowers dry up and die. This does not usually happen
in nature. Each step in the developmental stage of the
plant takes time. Since the new plants do not usually
arrive until the next year, the delay time appearing in
eqn. (2b') would be one year. Between the period the
time the last flowers of the season die and the new ones
arrive, there would be no flowering plants present.
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~
~

15.5mango 0.63
bee

Fig 1.Numerical solution of equations (2a), (2b') and (2c) for
a time delay of t = 1 (t<to)' The graph shows the trajec-

tory in the 3-D phase plane. The motion spirals toward
the steady state solution aO.637873, 16.129,29.4689).
The parameters used are: a=500, b=l/8, d1=0.08,

1=0.0035, k1=3.95, k2=0.00005, ml=7.5, m2=1.6,
j=0.0000386, s=0.25, g=O.Olll, m=23, d=0.05

mango
bee

Fig 2.Numerical solution of equations (2a), (2b') and (2c) at
the critical time delay to= 1.13 days. The parameters
used are: the same as used for Figures 1. The trajectory
projected on 3- dimensional phase plane. The motion is
a limit cycle.
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Fig 3.Numerical solution of equations (2a), (2b') and (2c) for
a time delay of t=lO (t>to) days. The graph shows the
trajectory in the 3-D phase plane. The trajectory moves
away from the steady state solution. The parame-ters
used are the same as those used to obtain Figs. 1 and 2.



198

This would happen if the time delays are greater than
the lifetime of the flower, which we have taken to be
nine days.

IVc. Real Applications.
To see how the present model might be of use to

the farmers, we have modified the model to more
accurately describe the production of mangos. We
have inserted into eqn. (2b'), the added term <1>i5(t-t) to
represent the appearance of non pollinated flowers on
the tree at time t. <1> is the number of flowers that
appear on day t" We have assumed that the time delay
is six months which is greater than the critical delay
time. Therefore there will be no contribution from the
term given byeqn. (1) ineqn. (2b'). We now look to see
what would happen if the farmer has more bees on his
farm. To see this, we have solved eqns. (2a), (2b') and
(2c) using K values of 1000, 1,500 and 2000. The
values of the other parameters are given on the figure
captions. In Figure 4, we plot the number of flowers
on a single tree that get pollinated each day after day
to, the day the flowers began to bloom. The initial
conditions for the starting day of the computer
simulation, are yeO) = 0, andXeO) and yeO) are arbitrary.
As the time passes, the number of bees begins to increase
until it reaches the saturation value K. On the 1 OOth, the
flowers bloom. The figure shows that only for a short
period do pollinated flowers get produced. The reason
for this is that only during these nine days are the non
pollinated flowers present. After this period, the flowers
dried up and died. This leads to y = O. We also see that
the number of flowers that get pollinated increases as
the number of bee increases. The three plots provide
a quantitative measure of how much more mangoes
can be obtained by increasing the number of bees

x 10'
3.5

3

13
~.g 2.5

'0"
N
F... 2
;::
~

'0,.5
..."

,<:J

i:: 1 !
::1 II

Z .'

0 <.,-.
1234567891011

Time (day)
Fig 4.Number of flowers pollinated per day per tree for K

equal to 1,000, 1,500 and 2,000. The number of flow-
ers appearing on day to is F=1O,500,000. The values of
the other parameters are the same as used to obtain figs.

1,2and3.
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available.
Another practice that can be carried out by the

farmer is to decrease the number of leafhoppers.
Spraying insecticides or introducing biological pests of
the leafhoppers to kill them would accomplish this.
The first method would however also decrease the
number of bees unless the insecticide is of a type that
only affects the leafhoppers and not the bees. We
simulate the effects of employing an insecticide of this
type or using the second method by increasing the
value of the leafhopper's death rate. We have solved
eqns. (2a), (2b') and (2c) for three values of the death
rate 0 (0.05, 0.07 and 0.09). In Figure 5, we see that
more flowers would be pollinated if the life time
(inversely proportional to the death rate) of the
leafhopper were shorten. The time axis is changed so
that it starts at day 100. We see that the flowers are only
pollinated overa nine day period (i.e., during the period

x 10'
6

5
<-<
<U

~
0

~ 4
'"
<U

~
'f: 3
~
"-<
0

[) 2

S
::>

ZI

0
100 101 102 103 108 108 110

Fig 5.A graph shows the number of fertilized flower per day
per tree for the death rate ofleafhopper, d, equal to 0.05,
0.07 and 0.09. The number of flowers
appearing on day to is F = 10,500,000. The values of the
parameters are: a=500, d]=0.08, 1=0.0035, k]=3.95,

k,=0.00005, m]=7.5, m,=1.6, f=0.0000386, s=0.25,
g=O.Olll, m=23, b= d]-l, K=lOOO

the flowers are present on the tree).
Another way for the number of pollinated flowers

to be increased is to increase the number of flowers on
the tree. This could be done by having the rain arrive
at the right time and or having a new variety of mango
plants that have more flowers. These are however
beyond the control of the farmer.
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ru( 't) has a pairof complex eigenvalues, 'A( 'ta) = u( 't):t iv( 't)

such that
i. u('t) = 0 ,

ii. v('t)=v*>Oand du "

iii. -(TJ"* o (AS)
da

where 't is called a critical value of the bifurcation
paramet~r "t', and no other eigenvalues with zero real
part exist, the system will undergo a transition to a limit
cycle about the point (x* ,'to)'

Proofs of this theorem can be found in various

APPENDIX

Lemma 1. Conditions for the Existence of Positive
Real Roots of a Cubic Equation.

Consider the following cubic equation

S( 11) = 1]3 + dj1]2 + d21] + d3= 0 (AI)

A. If either (i) dj < 0, d2 30 and d/> 3d2, or (ii) d2
< 0: and A < 0 , then eqn. (AI) has positive simple roots.

where
431222 43 2Ll = 5(81 )5(82 )=-d2 - -d1 d2 - -d1d2d3 + ~d1 d3 + d3
27 27 3 27

(A2)

withE! andE2 being the two turning points 0[5(11) given by

-dl - ~d~ - 3d2 -dl + ~d~ - 3d2
El = ,E2 =

3 3"

B. If d} ~ 0, the necessary condition for eqn. (AI) to
have no positive

real roots are either
2dl < 3d2
2dl = 3d2

d2
1

d2
1

(i)

(n)

(iii)

(iv)

-3d2 > 0 and ~> 0, or

- 3d2 > 0 and ~< 0, dl > 0 and d2 > 0
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