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ABSTRACT One class of the iterative ordinary differential equations is the simple iterative ordinary
differential equation.  In this paper, the local existence and uniqueness results for the first order of
degree m of simple iterative ordinary differential equations are proved.  The global existence and
uniqueness results for the first order of second, third, fourth and mth degree are also proved.
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INTRODUCTION
The first order iterative ordinary differential

equation of degree m in the closed interval [0, a] is
of the form

    ′ =y x f x y x y x y x y xm( ) ( , ( ), ( ), ( ),..., ( ))2 3 (1)

with the initial condition

y(0) = c, (2)

where c is a positive real number in [0, a], m is a
positive integer greater than 1 and

y2(x) = y(y(x))
y3(x) = y(y(y(x))) = y(y2(x))
y4(x) = y(y3(x))

  M
ym(x) = y(ym-1(x)).

Pelczar1-3, introduced the first order iterative
ordinary differential equations of second degree and
Podisuk4 worked on the first and higher order
iterative ordinary differential equations of degree m
as well as the iterative partial differential equations.

One of the special problems of the first order
iterative ordinary differential equations is that of the
first order simple iterative ordinary differential
equation of degree m which has the form

    ′ = ∈y x y x x am( ) ( ), [ , ],0 (3)

with the initial condition

y(0) = c, (4)

where c is a positive real number in [0, a] and m is a
positive integer greater than 1.

LOCAL EXISTENCE AND UNIQUENESS RESULTS

By the solution of the problems (3)-(4), we mean
a function y∈ C1[0, a] satisfying (3) and (4) in the
closed interval [0, a].  Thus the problems (3)-(4)
are equivalent to the problem of finding a continuous
solution of the integral equation

    
y x c y t dtm

x

( ) ( )= + ∫
0

(5)

Choose the Banach space B = C[0, a] equipped

with norm 
    
u u xx a= max ( )[ , ]ε 0 .  Set S(ρ) = {u ∈ B:

0 ≤ u ≤ ρ, 
    
u x u x M x x( ) ( ) }− ≤ −  where ρ = c + a2,

M is the positive real number and Tm = 1 + M + M2 +
M3 + ... + Mm-1.

Define T : S(ρ) → S(ρ) by 
    
( )( ) ( )Tu x c u t dtm

x

= + ∫
0

.

Theorem 1 Suppose c + a2 ≤ a, a ≤ M and aTm < 1
then T has a unique fixed point, that is, there is a
unique solution to the problems (3)-(4).

Proof We have 
    
0

0

≤ ≤ + ∫( ) ( )Tu c u t dtm
x

 ≤ c + a2 = ρ

and 
    
( )( ) ( )( ) ( )Tu x Tu x u t dtm

x

x

− ≤ ∫  
  
≤ − ≤ −a x x M x x .
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Thus, we have T : S(ρ) → S(ρ).
Now, for all u, v ∈  S(ρ)we have

    
( )( ) ( )( ) ( ) ( )Tu x Tv x u t v t dtm m

x

− ≤ −∫
0

 
    
≤ − < −aT u v u vm

S S
.

Hence, by the Banach Contraction Principle, T
has a unique fixed point.

The above theorem shows that there exists a
unique solution to the problems (3)-(4).  However,
it does not tell us how to find this solution.  To find
the power series solution of the problems (3)-(4),
we will define the following approximating sequence

    
y x c y t dtn n

m
x

+ = + ∫1

0

( ) ( ) (6)

where n = 0, 1, 2, ...  and y0(x)  is fixed functions
of the class c1 mapping from [0.a] to [0, a] such that

    
′ ≤y x a0 ( ) .  Then we have the following theorem.

Theorem 2 If the assumptions of the theorem 1 are
satisfied then the sequences defined in (6) converges
uniformly to the (unique) solution of the problems
(3)-(4).

Proof We put 
    
Y y x y xk x a k k= − −max ( ) ( )[ , ]ε 0 1 .

Then 
    
Y y x y xx a1 0 1 0= −max ( ) ( )[ , ]ε

 = + −∫max ( ) ( )[ , ]x a

m
x

c y t dt y xε 0 0

0

0
.

Since y0(x) maps from [0, a] to [0, a] then, we
have

      Y c a a1

2≤ + ≤

and 
    
Y y x y xx a2 0 2 1= −max ( ) ( )[ , ]ε

= + − +∫ ∫max ( ) ( )[ , ]x a

m
x

m
x

c y t dt c y t dtε 0 1

0

0

0

= −∫max ( ( ) ( ))[ , ]x a

m m
x

y t y t dtε 0 1 0

0

    
≤ − ≤ ≤∈ ∫max ( ) ( )[ , ]x a

m m
x

y t y t dt aY a0 1 0

0

1

2

and  
    
Y y x y xx a3 0 3 2= −max ( ) ( )[ , ]ε

= + − +∫ ∫max ( ) ( )[ , ]x a

m
x

m
x

c y t dt c y t dtε 0 2

0

1

0

= −∫max ( ( ) ( ))[ , ]x a

m m
x

y t y t dtε 0 2 1

0

    
≤ −∈ ∫max ( ) ( )[ , ]x a

m m
x

y t y t dt0 2 1

0

    ≤ ≤aY a2

3.

Thus, we have Yk ≤ ak.  Since c + a2 ≤ a then a < 1
when c > 0.  Hence Yk tends to zero as k tends to
infinity.  Since the family  {Yk} is the Arzela-Ascoli

family thus for every subsequence 
    
{ }yk j

 of {Yk} there

exists a subsequence 
    
{ }yl j

 uniformly convergent and

the limit needs to be a solution of the problem (3)-
(4).  Thus the sequence {Yk} tends uniformly to the
(unique) solution of the problem (3)-(4).

It is easy to see that if c = 0 then the solution
of (3)-(4) is identically zero.  Thus we have the
following theorem.

Theorem 3 Given the problem

    ′ = ∈y x y x x am( ) ( ), [ , ]0 , (7)
with the initial condition

y(x) = 0. (8)

The solution of the problems (6)-(7) is y(x) = 0.

Proof (omitted).

POWER SERIES SOLUTIONS

Second Degree Problem
We want to find the solution of the problem

    ′ = ∈y x y x x( ) ( ), [ , . ]2 0 0 5 (9)
with the initial condition

y(0) = 0.25 (10)

Hence, we have m =2, a = 0.5 and c = 0.25.
Thus c+ a2 = 0.25 + 0.25 = 0.5 = a.
If we let y0(x) = 0.25

then
    
y x dt x

x

1

0

0 25 0 25 0 25 0 25( ) . . . .= + = +∫

and 
    
y x t dt

x

2

0

0 25 0 25 0 25 0 25 0 25( ) . ( . . ( . . ))= + + +∫

        = 
    
0 25 0 3125 0 0625

0

. ( . . )+ +∫
x

t dt

        = 0.25 + 0.3125x + 0.03125x2

and
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y x t t

x

3

2

0

0 25 0 25 0 3125 0 25 0 3125 0 03125( ) . ( . . ( . . . )= + + + +∫

    + 0.03125(0.25 + 0.3125t + 0.03125t2)2)dt
     = 0.25 + (3.3008 x 10-1)x + (5.1270 x 10-2)x2

    + (4.4352 x 10-3)x3 + (1.5258 x 10-4)x4

   + (6.1035 x 10-5)x5

    
y x y y t dt

x

4 3 3

0

0 25( ) . ( ( ))= + ∫

= 0.25 + (3.3579 x 10-1)x + (5.5944 x 10-3)x2

+ (5.8757 x 10-3)x3 + (5.3309 x 10-4)x4

+ (7.7315 x 10-5)x5 + (8.3894 x 10-6)x6

+ (7.8031 x 10-7)x7 + (6.5693 x 10-8)x8

+ (5.2159 x 10-9)x9 + (3.8982 x 10-10)x10

+ (2.8083 x 10-11)x11 + (1.9448 x 10-12)x12

+ (1.2936 x 10-13)x13 + (8.1680 x 10-15)x14

+ (4.8066 x 10-16)x15 + (2.6037 x 10-17)x16

+ (1.2803 x 10-18)x17 + (5.6616 x 10-20)x18

+ (2.2291 x 10-21)x19 + (7.7222 x 10-23)x20

+ (2.3235 x 10-24)x21 + (5.95222 x 10-26)x22

+ (1.2623 x 10-27)x23 + (2.1290 x 10-29)x24

+ (2.5849 x 10-31)x25 + (1.9884 x 10-33)x26.

Figure 1 contains the graphs of 
    
y x

ex

( ) =
4

, the

fourth iterate y4(x) and the line y x
x

( ) = +1

4 2
.  The

curve of 
    
y x

ex

( ) =
4

 is the dashed curve, the curve

y4(x) is the dotted curve and the curve of the line

y x
x

( ) = +1

4 2
 is the solid line.

Third Degree Problem
We want to find the solution of the problem

    ′ = ∈y x y x x( ) ( ), [ , . ]3 0 0 5 , (11)
with the initial condition

y(0) = 0.25. (12)

Hence, we have m = 3, a = 0.5  and c = 0.25.
Thus c + a2 = 0.25 + 0.25 = 0.5 = a.
If we let y0(x) = 0.25

then 
    
y x y t dt

x

1 0

3

0

0 25( ) . ( )= + ∫

          = 0.25 + 0.25x

and 
    
y x y t dt

x

2 1

3

0

0 25( ) . ( )= + ∫

         = 0.25 + 0.328125x + 0.0078125x2

and 
    
y x y t dt

x

3 2

3

0

0 25( ) . ( )= + ∫

= 2.5 x 10-1 + 3.5997 x 10-1 x + 1.8157 x 10-2 x2

+ 4.1257 x 10-4 x3 + 4.7996 x 10-6 x4

+ 6.3863 x 10-8 x5 + 4.9360 x 10-10 x6

+ 5.4468 x 10-12 x7 + 3.7303 x 10-14 x8

+ 1.97373 x 10-16 x9.

Figure 2 contains the graphs of 
    
y x

ex

( ) =
4

, the

third iterate y3(x) and the line y x
x

( ) = +1

4 2
.  The

curve of 
    
y x

ex

( ) =
4

 is the dashed curve, the curve of

y3(x) is in the dotted curve and the curve of the line

y x
x

( ) = +1

4 2
 is the solid line.

Fig 1.

Fig 2.



194 ScienceAsia  28 (2002)

Fourth Degree Problem
We want to find the solution of the problem

    ′ = ∈y x y x x( ) ( ), [ , . ]4 0 0 5 (13)
with the initial condition

y(0) = 0.25. (14)

Hence, we have m =4, a = 0.5 and c = 0.5
Thus c+ a2 = 0.25 + 0.25 = 0.5 = a.
If we let y0(x) = 0.25

then 
    
y x y t dt

x

1 0

4

0

0 25( ) . ( )= + ∫

          = 0.25 + 0.25x

and 
    
y x y t dt

x

2 1

4

0

0 25( ) . ( )= + ∫

          = 0.25 + 0.34765625x + 0.001953125x2

and 
    
y x y t dt

x

3 2

4

0

0 25( ) . ( )= + ∫

= 2.5 x 10-1 + 3.7799 x 10-1 x + 7.3828 x 10-3 x2

+ 4.1740 x 10-5 x3 + 1.3307 x 10-7 x4

+ 4.7601 x 10-10 x5 + 1.2181 x 10-13 x6

+ 3.9095 x 10-16 x7 + 7.2229 x 10-18 x8

+ 2.5991 x 10-21 x9 + 6.1761 x 10-24 x10

+ 1.5977 x 10-26 x11 + 3.5761 x 10-29 x12

+ 7.2689 x 10-32 x13 + 1.2649 x 10-34 x14

+ 1.9174 x 10-37 x15 + 2.0433 x 10-40 x16

+ 1.3505 x 10-44 x17.

Figure 3 contains the graphs of 
    
y x

ex

( ) =
4

, the

third iterate y3(x) and the line y x
x

( ) = +1

4 2
.  The

curve of 
    
y x

ex

( ) =
4

 is the dashed curve, the curve of

y3(x) is the dotted curve and the curve of the line

y x
x

( ) = +1

4 2
 is the solid line.

We can see that the solution of the problem

    ′ = ∈y x y x xm( ) ( ), [ , . ]0 0 5 , (15)
with the initial condition

y( )0
1

4
= (16)

is in the form of power series

y x a x a x a x a xn

n( ) ... ...= + + + + + +1

4
1 2 3

3  . (17)

The following lemmas are needed for proving the
existence and uniqueness of the global solutions.

Lemma 1 The relation of the   a sk

′
 in (17) is a1 > a2 >

a3 > ... > an > ...  .

Proof It is easy to see, from (6), that a1 > a2 > a3 > ...
> an > ...  .

Lemma 2 The coefficients an  in (17) are less than or

equal to 
1

2
 for all n.

Proof Since y x a x a x a x a xn

n( ) ... ...= + + + + + +1

4
1 2 3

3

then ′ = + +y x a a x( ) ...1 22 .

But 
    

′ = ∈y x y x xm( ) ( )), [ , . ]0 0 5  then ′ ≤y x( )
1

2

for all ∈x [ , . ]0 0 5l  and ′ ≤y ( )0
1

2
, so 

    
a1

1

2
≤ .  Thus by

lemma 1, we have 
    
an ≤ 1

2
 for all n.

Lemma 3 If y(k) (x) is the kth derivative of y(x), y(x)
being the power series of the problems (9)-(10), then

    
y xk( )

( ) ≤ 1

2
 for all k.

Proof From 
    

′ = ∈y x y x x( ) ( ), [ , . ],2 0 0 5  then

′′ =y x y x y x( ) ( ) ( )3 2  thus ′′ ≤y x( )
1

4
s .

Now     ′′′ = +y x y x y x y x y x y x y x y x( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 3 2 2 3 3 2

Fig 3.
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i = 4 + (6 + 9 + 12 + ... + 3(k-1)).  Thus we have

y xk( )
( ) ≤ 1

2
 for all k.

Lemma 6 If y(k) (x) is the kth derivative of y(x), y(x)
being the power series of the problems (15)-(16),

then 
    
y xk( )

( ) ≤ 1

2
 for all k.

Proof From     ′ = ∈y x y x xm( ) ( ), [ , . ]0 0 5 , then

    ′′ = − − +y x y x y y x y xm m m m( ) ( ) ... ( ) ( )2 1 2 2 1   thus 
    

′′ ≤y x
m

( )
1

2
.

Now     ′′′y x( ) = y3m-2 (x)y3m-3 (x)...ym (x)y2m-2 (x)
y2m-3 (x)...ym (x) + y2m-1 (x)y3m-3 (x)
y3m-4(x)...ym (x)y2m-3 (x)...ym (x) +
y2m-1 (x)y2m-2 (x)y3m-4(x)y3m-5 (x)...ym

(x)y2m-4 (x)...ym (x) + ... + y2m-1 (x)
y2m-2 (x)...ym+1 (x)y2m-1 (x)y2m-2 (x)...
ym (x).

Then 
    

′′′ ≤ + + + +
− + −

y x
m m m m

( ) ...
1

2

1

2

1

2

1

22 1 2 2 1 3 2
 then

′′′ ≤y x( )
1

2
.  It is easy to see that 

    
y xk

m

( )
( ) ≤ +

−

1

22 1

m i
...+ + +1

2

1

22
 , where i = m + (2(m - 1) + 3(m - 1) +

(k - 1)(m - 1)).  Thus we have  
    
y xk( )

( ) ≤ 1

2
 for all k.

GLOBAL EXISTENCE AND UNIQUENESS RESULTS

We will now study the global existence and
uniqueness solutions of the problems of second, third,
fourth and mth degree equations.

Second Degree Problem.
The solution of the problems (9)-(10) is in the

form of a power series y(x) = a0 + a1x + a2x
2 + a3x

3 + ...
+ anx

n + ... which converges for x ∈ [0, 0.5].  Then it
converges for x ∈ [-0.5, 0.5], so it has the Taylor’s

expansion and 
    
a

y

n
n

n

=
( )

( )

!

0
.

But y xn( )
( ) ≤ 1

2
 for all n (by lemma 3), so

y n( )
( )0

1

2
≤  for all n.  Thus we have 

    
a

n
n = 1

2( !)
 for

all n.  Then 
    
y x

ex

( ) ≤ −
2

1

4
.  Since 

    

ex

2

1

4
−  has a Taylor’s

then 
    

′′′ ≤ + ≤y x( )
1

2

1

2

1

23 4
.

It is easy to see that  
    
y xk

i

( )
( ) ...≤ + + +1

2

1

2

1

23 4
, where

i = 2 + (2 + 3 + 4 + ... + (k - 1)).  Thus we have

    
y xk( )

( ) ≤ 1

2
 for all k.

Lemma 4 If y(k) (x) is the kth derivative of y(x), y(x)
being the power series of the problems (11)-(12),

then 
    
y xk( )

( ) ≤ 1

2
 for all k.

Proof From     ′ = ∈y x y x x( ) ( ), [ , . ]3 0 0 5 , then

    ′′ =y x y x y x y x( ) ( ) ( ) ( )5 4 3 .  Then 
    

′′ ≤y x( )
1

23
.

Now     ′′′ = +y x y x y x y x y x y x( ) ( ) ( ) ( ) ( ) ( )7 6 5 4 3

         y x y x y x y x y x y x( ) ( ) ( ) ( ) ( ) ( )5 6 5 4 3 3 .

Then 
    

′′′ ≤ + +y x( )
1

2

1

2

1

25 6 7
 then ′′′ ≤y x( )

1

2
.

It is easy to see that 
    
y xk

i

( )
( ) ...≤ + + +1

2

1

2

1

25 6
, where

i = 3 + (4 + 6 + 8 + ... + 2(k-1)).  Thus we have y xk( )
( ) ≤ 1

2

for all k.

Lemma 5 If y(k) (x) is the kth derivative of y(x), y(x)
is the derivative of, being the power series of the

problem (13)-(14), then 
    
y xk( )

( ) ≤ 1

2
 for all k.

Proof From     ′ = ∈y x y x x( ) ( ), [ , . ]4 0 0 5  then

    ′′ =y x y x y x y x y x( ) ( ) ( ) ( ) ( )7 6 5 4  then 
    

′′ ≤y x( )
1

24
.

Now     ′′′y x( )= y10 (x)y9 (x)y8 (x)y7 (x)y6 (x)y5 (x)
y4 (x) y6 (x)y5 (x)y4 (x) + y7 (x)y9 (x)
y8 (x)y7 (x)y6 (x)y5 (x) y4 (x)y5 (x)
y4 (x) + y7 (x)y6 (x)y8 (x)y7 (x)y6 (x)
y5 (x) y4 (x)y4 (x) + y7 (x)y6 (x)
y5 (x)y7 (x)y6 (x)y5 (x) y4 (x)

then 
    

′′′ ≤ + + +y x( )
1

2

1

2

1

2

1

27 8 9 10
 then ′′′ ≤y x( )

1

2
n .

It is easy to see that 
    
y xk

i

( )
( ) ...≤ + + +1

2

1

2

1

27 8
, where
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expansion that converges for x ∈ (-∞, ∞), then our
power series solution converges for x ∈ (-∞, ∞).
Thus we have the following theorem.

Theorem 4 There exists a unique solution to the
problems (9)-(10) in the domain [0, ∞).

Figure 4 contains the graph of the power series
solution of the problems (9)-(10) using 10 terms in
the series(the dashed curve) and the graph of the

line y x
x

( ) = +1

4 2
 (the solid line).

Third Degree Problem
The solution of the problems (11)-(12) is of the

form of power series y(x) = a0 + a1x + a2x
2 + a3x

3 + ... +
anx

n + ... converges for x ∈ [0, 0.5].  Then it converges
for x ∈ [-0.5, 0.5], so that it has a Taylor’s expansion

and 
    
a

y

n
n

n

=
( )

( )

!

0
.

But y xn( )
( ) ≤ 1

2
 for all n (by lemma 4), so

y n( )
( )0

1

2
≤  for all n.  Thus we have 

    
a

n
n = 1

2( !)
 for

all n.  Then 
    
y x

ex

( ) ≤ −
2

1

4
.  Since 

    

ex

2

1

4
−  has a Taylor’

s expansion that converges for x ∈ (-∞, ∞), then our
power series solution converges for x ∈ (-∞, ∞).
Thus we have the following theorem.

Theorem 5 There exists a unique solution to the
problems (11)-(12) in the domain [0, ∞).

Fig 4.

Fig 5.

Figure 5 contains the graph of the power series
solution of the problems (11)-(12) using 10 terms
in the series(the dashed curve) and the graph of the

line y x
x

( ) = +1

4 2
 (the solid line).

Fourth Degree Problem
The solution of the problems (13)-(14) is of the

form of a power series y(x) = a0 + a1x + a2x
2 + a3x

3 + ...
+ anx

n + ... which converges for x ∈ [0, 0.5].  Then
it converges for x ∈ [-0.5, 0.5], so that it has a

Taylor’s expansion and 
    
a

y

n
n

n

=
( )

( )

!

0
.

But y xn( )
( ) ≤ 1

2
 for all n (by lemma 5), so

y n( )
( )0

1

2
≤  for all n.  Thus we have 

    
a

n
n = 1

2( !)
 for

all n.  Then 
    
y x

ex

( ) ≤ −
2

1

4
.  Since 

    

ex

2

1

4
−  has a Taylor’s

expansion that converges for x ∈ (-∞, ∞), then our
power series solution converges for x ∈ (-∞, ∞).
Thus we have the following theorem.

Theorem 6 There exists a unique solution to the
problems (13)-(14) in the domain [0, ∞).

Figure 6 contains the graph of the power series
solution of the problems (13)-(14) using 10 terms
in the series(the dashed curve)and the curve of the

line y x
x

( ) = +1

4 2
 (the solid line).

Mth Degree Problem
The solution of the problems (15)-(16) is of the
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form of a power series y(x) = a0 + a1x + a2x
2 + a3x

3 + ...
+ anx

n + ...  which converges for x ∈ [0, 0.5].  Then it
converges for x ∈ [-0.5, 0.5], so it has a Taylor’s

expansion and 
    
a

y

n
n

n

=
( )

( )

!

0
.

But y xn( )
( ) ≤ 1

2
 for all n (by lemma 6), so

y n( )
( )0

1

2
≤  for all n.  Thus we have 

    
a

n
n = 1

2( !)
 for

all n.  Then 
    
y x

ex

( ) ≤ −
2

1

4
.  Since 

    

ex

2

1

4
−  has a Taylor’s

expansion that converges for x ∈ (-∞, ∞), then our
power series solution converges for x ∈ (-∞, ∞).
Thus we have the following theorem.

Theorem 7 There exists a unique solution to the
problems (15) - (16) in the domain [0, ∞).

Figure 7 contains the graph of the line y x
x

( ) = +1

4 2

(the solid line ), the graphs of the power series
solution of the problems (9)-(10) (the dashdot
curve), (11)-(12) (the dotted curve), (13)-(14) (the

dash curve) and 
    
y x

ex

( ) =
4

 (the plus line) using 10

terms in the series.

Fig 6.

Fig 7.

Figure 8 contains the graph of the line (the solid
line), the graphs of the power series solution of the
problems (9)-(10) (the dashdot curve), (11)-(12)
(the dotted curve), (13)-(14) (the dash curve) and

the graph 
    
y x

ex

( ) =
4

 (the plus curve) (T2, T3  and T4

respectively) and using 10 terms in the series.

CONCLUSION

Letting E be the curve 
    
y x

ex

( ) =
4

, Tk the graph of

the solution of the kth degree problem, L the curve

y x
x

( ) = +1

4 2
, Pe, l = (xe, l, ye, l) the point of intersection

of E and L, Pi, l = (xi, l, yi, l) the point of intersection of
Ti and L, Pe, i = (xi, j, yi, j) the point of intersection of
and, the point of intersection of Ti and Tj where i < j,
then, we have

xe, j < x2, l < x3, l < x4, l < ... < xm, l < ...
ye, l < y2, l < y3, l < y4, l < ... < ym, l < ...
xe, l > xe, 2 > xe, 3 > xe, 4 > ... > xe, m

ye, l > ye, 2 > ye, 3 > ye, 4 > ... > ye, m

xi, j > xi, k and yi, j > yi, k when j < k
xi, j > xk, j and yi, j > yk, j when i < k.

Fig 8.
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Figure 9 shows how the graphs of E, T2, T3, T4,
..., Tm, ... and L are related globally.

There are two more things that need to be done.
First, for each m we need to find the largest c so that
the power series solution still converges uniformly.
Second, for each m we need to find the exact power
series solution of the problem.

The solution of the system

    ′ = ∈ ∞y x y x xm( ) ( ), [ , ),0 (20)

with the initial condition

y( )0
1

4
= (21)

as m → ∞, is y x
x

( ) = +1

4 2
.

Finally, the solution y = ex of the problem

    ′ = ∈ ∞y x y x x( ) ( ), [ , ),0  with the initial condition
y(0) = 1, has been used in the modeling problems in
mathematical applications.  The suggestion here is
that some of many areas of those applications may
lead to the problem of the types (15)-(16) and its
solution instead.

The author would like to thank Dr Azmy S
Ackleh for his valuable corrections.
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