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ABSTRACT

For a real and sufficiently smooth function f, Karlin and Loewner proved two interesting results
which say roughly that

(i) f is an exponential polynomial if and only if certain Wronskian vanishes;

(ii) f is an exponential sum with positive coefficients if a Wronskian of certain order vanishes,
while those of lower orders have the same positive sign at one point.

We give a slightly different proof of (ii) and obtain analogues of both results in the discrete
setting, with Casorati’s determinants taking the place of Wronskians.

INTRODUCTION
A (real) exponential polynomial of order r is an expression of the form
f(x) = P,(x) e + .. + P(x) e (x € R),
where o, ,.., o, are distinct real numbers; P, ..., P, are real polynomials of degrees deg P,
(i=1,.,k),and é (deg P, + 1) = r. Given a function f differentiable up to a sufficiently high

order, define
f(x) £'(x) o £

H,, (0 = WEE,f0) = [0 £ 000

fOx (D) . 2 (x)

to be the Wronskian of the functions ff',...,f®. Karlin and Loewner [2] obtained the following
interesting results concerning the problem of characterizing those functions f for which H (f)

maintains a constant sign over an interval.

I. Let f e C* on (ab). Then f satisfies H , ,(F) = 0 if and only if f is a real exponential

polynomial of order at most r.

An immediate consequence of I is the following: if f € C**? on (a,b) and satisfies
H_, () = Ae™ , for prescribed real constants A and o, then f is an exponential polynomial of

order at most r+1.

II. If f e C* on (a,b) and satisfies H ,,(f) = 0, while at x = x, € (a,b) we have
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H,() > 0, Hy(f) > 0, .., H() >0, (1)

then f(x) = E}aiea'x, where a. > 0 and a_ are real and distinct (i = 1,...,r), and therefore (1)

holds for all real r.

. Let f(x) = X ™ be a power series expansion about the origin convergent for
m=0 ™M

[x| < p. If f satisfies

fDo .. (R

f(l'+l)(0) f(l'+k+1)(0)

g | >0 (r=01.;k=0]1.,n)
fR ) ... 1020
where €, ,..., €  are prescribed sequence of sign +1 or -1, then
O . TR
€ AR RINEE SIS IS 0, forO0sx<p;r=,1,..;k=01,..n
£+ )y L fT20(x

The final stage of the proof of Il in [2] appeals to the uniqueness criteria of differential
equations. This is indeed unnecessary, and in the next section, we give a slightly different
proof of II without making such appeal. Our main objective (in Sections 3 and 4) is to derive
analogues of I and II in the discrete setting, i.e. the case of difference equations. Though the
central ideas of Karlin and Loewner carry over, the discrete nature makes it necessary to impose
further restrictions, as well as to replace Wronskians by Casorati’s determinants. Regarding the

anlogue of III, this is quite trivial, and we shall merely remark upon it at the end of the paper.

A PROOF OF 11

We may take x;, = 0, for otherwise it suffices to consider f(x-x ) instead of f(x). By I,
f is an exponential polynomial of order r, say f(x) = éa,e“"‘ ,  where
for i = 1,..k, the a are distinct real numbers, P, real polynomials with

I(deg P + 1) =r.

We claim that there exist positive constants b and distinct real B, (i=1,...,r) such that
the exponential polynomial g(x) = Zv<** interpolates f(x) at the origin up to the (2r-1)"
derivative, i.e.

g0) = f9(0) G =01,.,2r-1).

This amounts to solving a moment problem on the positive axis such that
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f0(0) = ,§biﬁi" G =0,1,.,.2r1).
By Theorems 17 and 18, pp. 235-238 of Gantmacher [1], this problem is uniquely solvable, and

the claim is verified.

It remains to show that f(x) = g(x). We consider the exponential polynomial f(x) - g(x),
which is of order at most 2r, and vanishes at the origin up to the (2r-1)* derivative. By a result
on generalized Vandermonde determinants, see p. 283 of van der Poorten [4], we must have

f(x) - g(x) = 0, and the proof is complete.

THE FIRST MAIN THEOREM
By a discrete exponential polynomial , we mean a function

k
f(x) =A§mum?

’

where o, are distinct real numbers, P, polynomials with real coefficients (i = 1,...,k), and the
variable x takes on only nonnegative integral values. It is said to be of order r if Z(deg P
+ 1) = r. In what follows, a discrete function (of one variable) signifies a real-valued Function

with the variable taking on only nonnegative integral values. Define the difference operator A
by
Ay(x) = yx), Ay(x) = y(x+1) - y(x), Ay(x) = A(A™y(x)) (o =23,.).
It readily follows that
Ay = v (Myocen (n=12,.).
£.(

Given n discrete functions f,(x),...f (x), the Casorati’s determinant of f, ..., f is defined to
be (see p. 354 of Milne-Thomson [3])

f1(x) 2 (x) v (%)

fi(x+1) fa(x+1} o fax+1)
D, ., £) =

fi(x+n—-1) fHx+n-1) .. f(x+n-1)

By adding and subtracting appropriate rows, we see that also

f1(x) fo(x) ... fL(x)
Af)(x) Afy(x) ... Af (%)
D, .. £) =

177777 Tn

n—1 n—1 n—1
The determinant AT () AT L AT ()

f(x)  Af(x) v ATF(X)

D_ () =D, ,(tx) == |afx) A%f(x) ... ATH(x)

ATE(x) ATTE(x) .. AZR(x)
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will play the same role as H_,,(f) does in the differential case.

Theorem 1. Let f be a discrete function. For all nonnegative integral x, suppose that
D.(f),.,D(f) are never zero. Then f satisfies D_ (f) =0 if and only if f is a discrete
exponential polynomial of order r.

Proof. If f is a discrete exponential polynomial of order r, then (see Chapter XIII of Milne-
Thomson [3]) f satisfies an exact 1" order linear difference equation with constant coefficients
of the form

~

0 = H@a-o)Ty=@a"+b,a" " +.4b)y
1

P . k .
where o are distinct real numbers, b, real numbers, r, positive integers, and ZI r, = r. Taking
P

differences of this equation r times successively, we obtain a system of r+1 linear homogeneous
equations for the quantities 1, b, ,..., b . The determinant of this system is D_,  (f) , which must

then vanish.

To establish the other implication, we first look at the special case r = 1. Suppose that

f(x) Af(x)
D)) = 5 =
Af A°f
Then o ®
F)A%(x) - (AF(x))? = 0 @)

Since D,(f) = f(x) # 0 for all nonnegative integral x, then (2) is equivalent to (see
problem 6, p. 50 of Milne-Thomson [3])

A FOAT() - (A ()2 0
f(x) ) f()F(x+1) -
Then for some real constant C,, we have Df(x) = C f(x). Solving this last difference
equation, we get f(x) = C,(1 + C))*, for some nonzero real constant C,. The assertion in

this case then follows.
To prove the general case, let c,(x),c,(x),..,c(x) be the cofactors of the last row of
D_,,(f), then by the property of cofactors,
i%ci(x)zs”“‘f(x) = 0 (m = 0,1,...r-1)
and
¢x) D'f(x) + ... + c(x) D*f(x) = D_,,(f) = 0.

From the hypotheses, the coefficients ¢ (x) = D (f) # 0 for all nonnegative integral x, so we
divide by ¢ (x) and get for m = 0,1,...,r-1

2d0a" Mo = 0 ©)

i=0

where d(x) = ¢(x)/c(x) (i = 0,1,..r-1), d(x) = 1. Taking differences of these equations
corresponding to m = 0,1,...,r-1, we get

Z(){Adi(x))&*mf(xﬂ)+di(x>A*+m*‘f(x)} =0 (m = 0,1,...r-1).
iz
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Using (3) and Ad (x) = 0, we see that

r—1 .

_%(Ad;(x))A‘*mf(x+1> =0 (m = 0,1,...r-1).
Considering these as equations for determining Ad(x),...,Ad_(x), we see that the coefficient
matrix is D (f(x+1)) which never vanishes by the hypotheses. Thus for all nonnegative integral
x, Ady(x) = .. = Ad (%) = 0 implying that all d(x) (i = 0,1,...,r-1) are constants. Now the
case m = 0 of (3) and the fact that d (x) = 1 yield that f(x) satisfies a linear difference equation

of exact order 1, and hence f(x) must be a discrete exponential polynomial of order r.

Remarks

1. In contrast to the differential case [2], note the extra hypotheses that D,(f),..., D (f)
are nonzero for all nonnegative integral x. The differential case can do without this extra
condition by invoking upon continuity. That this restriction is essential in the difference
situation is illustrated by the folowing example.

Define f(0) = f(1) = 1, f(x) = 0 for all positive integral x > 2.

Evidently, f is not a discrete exponential polynomial and

D, (£(x)) = 1 ifx=01
= 0 otherwise
D, (£(x)) = -1 ifx=0
= 0 otherwise
D (fx) = 0 for all integral r 2 2, x > 0.

2. Unlike Wronskians, Casorati’s determinats do not enjoy the beautiful identity derivable
from Sylvester's determinant identity as alluded to in the proof of Theorem 1 of Karlin and
Loewner [2].

3. The second part of the above proof resembles not only that of Karlin and Loewner

but also the proof of Casorati’s theorem on pp. 354-355 in Milne-Thomson [3].

THE SECOND MAIN THEOREM
Theorem 2. Let f be a discrete function. Suppose D, (f),..., D (f) do not vanish for all
nonnegative integral x. If f satisfies D _,(f) = 0, while at x = x, (x, being a nonnegative

integer) we have
D,(f) > 0, Dyf) >0, .., D(f) >0 (4)
then f(x) = é:aiﬁix , where a_ > 0, and b, are real and distinct (i = 1,...,x).
Proof. By Theorem 1, f is a discrete exponential polynomial of order 1, say f(x) = ZP ESLT

where o, are real and distinct, P, real polynomials (i = 1,.. .,k) and Z (deg P+1)=r Wlthout

loss of generality, we may assume x, = 0, for otherwise consider f(x x,) instead of f(x). As in
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Section 2, there exist positive constants b, and distinct real B, (i = 1,..,r) such that the

discrete exponential polynomial g(x) = _ébiﬁix satisfies
NE©O) = Ag0) = Bosi-v G = 0,1,.2:-1).
This immediately implies that f(x) = g(x) (x = 0,1,..,2r-1).

The exponential polynomial f(x) - g(x) then vanishes at 2r consecutive integral points, and
by a result on generalized Vandermonde determinants corresponding to taking differences (see
p- 283 of van der Poorten [4]), we know that f(x) - g(x) must vanish identically, and the
theorem is thus proved.

Remarks

A difference analogue of III mentioned in the introduction is relatively trivial as the
existence of A'f(0) for all nonnegative integral r trivially induces the existence of Df(x) for all
nonnegative integers r and x.
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