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ABSTRACT

We analyse the reliability of Gaver's parallel system sustained by a cold standby unit and
attended by two identical repairmen. The system satisfies the usual conditions (i.i.d. random variables,
perfect repair, instantaneous and perfect switch, queueing). Each operative unit has a constant
failure rate and an arbitrary repair time distribution.

Our analysis is based on a time dependent version of the supplementary variable method.

The basic partial differential equations are transformed into an integro-differential equation
of the (mixed) Fredholm type.

The equation generalizes the integro-differential equation of Takdcs.

A particular case motivates the proposed analysis.

INTRODUCTION

Two-unit parallel systems (for instance two power generators, in active redundancy?,
connected with the light-plant of a tunnel) are widely used to increase the reliability of
industrial plants. Gaver's two-unit parallel system? sustained by a cold or warm standby
unit and attended by a single repair facility, henceforth called an S-system, has received
considerable attention3?.

As a variant, we analyse the reliability of Gaver's parallel system sustained by a cold
standby unit and attended by two identical repairmen, henceforth called a T-system. The
T-system satisfies the usual conditions (i.i.d. random variables, perfect repair'?, instantaneous
and perfect switch!, queueing).

Each operative unit has a constant failure rate and a general repair time distribution.
Both repairmen are jointly busy if and only if at least two units are in failed state. In any
other case, at least one repairman is idle.

It is evident that the T-system reduces the waiting time for repair with respect to
a similar S-system. Therefore, a T-system improves the reliability of the corresponding S-
system.

Our reliability analysis is based on a time dependent version of the supplementary
variable method. The partial differential equations are transformed into an integro-differential
equation of the (mixed) Fredholm type. The equation generalizes Takacs' integro-differential
equation, e.g.!l.

A particular example motivates the proposed analysis.
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FORMULATION
Consider a T-system satisfying the usual conditions.

Each operative unit has a constant failure rate A>0 and a general repair time
distribution R(z), R(0)=0. Let R (1)=1-R(z). Without loss of generality, (see forthcoming
remark) we may assume that R(t) has a density function defined on [0, ).

Both repair facilities are jointly busy if and only if at least two units are in failed
state. In any other case, at least one repairman is idle.

Let {N, ,t 2 0} be a stochastic process with arbitrary state space {A, B, C, D} <« R
characterized by the following events :

{N, = A} : "Both repairmen are idle at time ¢, i.e,, two units are operating in parallel
sustained by a cold standby unit."

{N, = B} : "One repairman is busy at time ¢, i.e., two units are operating in parallel
and one unit is in repair.”

{N, = C} : "Both repairmen are jointly busy and only one unit is operative at
time ¢."

{N, = D} : "Both repairmen are jointly busy and a failed unit is waiting for repair at
time 1."

Define the stopping time
0:= inf {t > 0: N =D|N =A}.
In reliability engineering, 6 is usually called the first system-down time.

It is plain that the behaviour of the process {N,, >0} after 0 is irrelevant for system's
reliability analysis. Therefore, it is obvious to consider the system-down state D as an
absorbing state of {N_ }.

Furthermore, let {X, Y,} be a random permutation of the past repair times of failed
units in progress at time ¢.

The process {N,, X, Y,, t >0} is a piecewise-linear Markov process with state space:
{N,}, N, = A (the renewal state), N, = A as,,
{N, X,}, N, =B, X, 20,
{N, X,¥,}, N=C, X, 20,Y 20,
and absorbing state D.
For K=A, B, C, D define pg(t) : = P{N,=K, Vu: O<u<t, N # D}, where
V120, p, (1) +pg(t)+pc(t) +pp(t)=1.
Finally, let
pp(tx)dx:=P{N_ = B, Vu: O<u<t, N #D, x<X < x+dx},
pcltx y)dxdy : = P{N,= C, Vu: O<u<t, N, # D, x<X, < x+dx, y <Y, Sy+dy}.
Note that py(t)=P{6 <1}. Hence, the reliability or survival function of the system
is given by P{6 >t } = 1-p(1).
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INTEGRO-DIFFERENTIAL EQUATION

In order to construct a set of partial differential equations, we apply the usual technical
manipulations related to the supplementary variable method!!. For t>0, respectively t>x>0,
t>y>0, we obtain the so-called Kolmogorov equations.

@r + 9 PO = ({ p(%) (‘1‘1183 , (1)
(2“&(1%?10@*387*38)(—”3“”‘) - 2!({tpc<t.x,y);‘:%, )
(x+%-R—gb+%%+§7+%+-g—y)pc(t,x,y)=0, 3)

P = xof of (J)Z P (z.xy) dxdydz. @)

Remark

Clearly, dpp(t) = Ap()dt, £- ae.

Hence, the survival function P{6 >t } is absolutely continuous (with respect to the
Lebesgue measure) irrespective of the canonical structure of R. Therefore, in order to keep

the analysis as simple as possible, we have assumed, without loss of generality, the existence
of a repair time density on [0, e].

The boundary conditions are

1,

0
PA( )

t, 0 2 , &)
pB( ) PA(t)

2Ap (4, x),if t2x 20,
21p (t%,0) = B
C

0, otherwise.

Using the method of characteristics'?, or a conditional probabilistic argument?3, yields
by equation (3),
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R (R ()

Lift2x2y2>0,
Rc(X'Y)

( Ry XY, 0)e~AY

B(6X.Y)=1 p (x,0,y-0¢ X B%Cgl Jift2y2x20), ©)

\_0, otherwise.

In order to simplify the equations, let

pc(u,v,oy};J-—— if u>v>0,
(0)) (U,V) L= C V)
0, otherwise.

But note that p. (u, v, 0)=p:(u, 0, v).

By equations (1), (2), (5), (6) and some technical manipulations, we have
d t
@ 5P 0 = 1! o1, y)dRE),
0

t
p®) = Aot YR, ()dy, 0]
0

t
A+ ai + % ) (1, x) =24 f D(t-y, x-y)e~ kydR(y) +2he MJ@ (tx, y0dR(y).
t 0 y=x

Observe that ®(t, 0)=2A%p,(t), ¢ 2 0.

Laplace transforms of functions, with respect to t, are denoted by the corresponding
character marked with an asterisk.

For instance,

®'(s,0)i= @ (1 uwetdt,s>0,u 0.
t=0
By equations (7), Fubini's theorem and the obvious substitution
®* (s, u)=2A2p ,(s)¥'(s, u), u 2 0, we obtain the following
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RESULT

For s > 0,

* _ 1
%& (s) = T ,
s+2M(1 - ) ¥* (s, 2)dR(z) )
0
2lr ¥* (s, )R (z) dz
* 0
pB (S) = i ’
42001 - | w* (s, 2)dR(2) )
0

where W*(s, x), x>0 satisfies the integro-differential equation

(s+2 A+ —dd; )‘P*(s, X) = 2\ f\({l* (s, x-y)e~ (s+ 7L)ydR(y)+2 xe‘(” M XT‘P* (s, y-x)dR(y),

0 y=X
®)

with the boundary condition W*(s, 0)=1.

Remark
By equation (4) we have Ee®=Ap.*(s), s>0.
However, the identity p,(t)+pg(t)+p(t) +pp(t) =1, reveals that

EesO = 12: (1—sp: (s)-sp:(s)).

SOLUTION PROCEDURE

It is of interest to remark that the exact unique solution of equation (8) can be
obtained by an application of the theory of sectionally holomorphic functions!3.
Unfortunately, the solution of the resulting Cauchy integral equation is, in general, extremely
formal (Cf!3, pp 496-497).

In order to present computational results, we restrict here the solution procedure to
the following important particular case.
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}\,t

R(f) = Zp(le LnzLA >0, Zp_1
k=1 ¥ k=1

where, without loss of generality, A, <...< A_.

We do not require that all p, are positive (which is the case in the family of hyper-
exponentials). As R(t) is supposed to be a probability distribution of a positive random
variable, we must have

p>0 ZpX—l
k=1 ¥ K

Note that, for instance,

R0 n=2,p> 0, p,< 0, p;+p,=1, Ap;+ip,2 0,
is log-convex, so that R(t) has an increasing repair ratel,

Finally, let

0. = 9 5. 00 P20,
0

Laplace transformation of equation (8) and inserting @=Aj in the resulting equation, yields
for j=1,....,n:

M

S+2m_z D o A #,

k=1

)+x ¢ (s.1))= 1+2x2<p (s: M) p_”"L—)‘E}”

We have reduced the solution of the Fredholm equation to the solution of n linear
equations in n unknowns {@(s, Aj); j=1,...,n}.

Clearly,
1+2k2(p s AP
Ee 9. A (1 k=1 ).
T A4s n
st2 A[1- 20 (s, A PP M ]
k_

It is not hard to see that Ee is a rational transform. Hence, the inverse easily follows from
an appropriate computer routine.
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NUMERICAL EXAMPLE

Let, for instance, n=2; A=0.1; A,=2; X,=20; p,=1.1; p,=-0.1 Inverting the Laplace

transform

L1-Ee™ Res>0,
S

yields the reliability function

P{0 >1}=1.00037¢0.000518651 _ 4 69399 104203573t
9.69742 107 450393 + 484331 107 e20.0075 _
4.38906 107 e222926141 29757 109 e*40.0597: .
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