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Abstract

The effect of screening on ground state energy of bound system of hydrogenic
impurity and electron in a homogeneous two-dimensional electron gas (2-DEG) is studied
within the linear response theory. The temperature and density dependent Lindhard function
has been used. The long wavelength value of this function shows maximum in both high
and low temperature limits. The ground state energy can be approximately calculated
using the long wavelength limit in both low and high temperatures by the variational
method. The result is in agreement with the work done by Stern and Howard, especially
in the high temparature limit.

Introduction

The problem of screening of an impurity charge in an electron gas of density n, in
thermal equilibrium at a temperature T, has attracted considerable attention in recent
years. The effective potential due to the impurity charge as modified by the polarization
of electron gas has to be solved. In the three-dimensional electron gas, the effective
screened impurity potential goes over to the Debye-screened potential in the limit of high
temperature and low density, and to the Thomas-Fermi potential in the opposite limit of
low temperature and high density of the gas. In the intermediate degeneracy region where
neither the Debye nor the Thomas-Fermi model is valid, Gupta and Rajagopal? calculated
the potential within the framework of linear response theory via the temperature - and density-
dependent Lindhard dielectric function. They compared their screened potential with the
traditionally employed Debye potential and computed the ground-state energy of an
electron trapped by this impurity potential. In the two dimensional system, Stern and
Howard! have given a graph of binding energy versus the screening constant. They find a
screening constant § = 4/a* where a* = K h%/m* €2 and K is the dielectric constant.
The variation of 5 seen by them is due to K. Because of a peculiar nature of the function
X (@, n, T), the retarded part of the time-ordered density correlation function, appearing? in
the dielectric function. The variation of 5 can also be"viewed as being due to the temperature.

In this work, the screening effects of a static ipurity charge on the ground state
energy of two-dimensional electron system (2-DES) will be studied in analogy with three-
dimensional case. The long wavelength value of the temperature-dependent response function -
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X (d. n, T) has been used to calculate the ground state energy at low and high temperatures.
This approximation is reasonable because the response function is maximum in both low
and high temperature limits.

The effective screened potential

Consider a static impurity charge +Ze imbedded in a homogeneous 2-DEG of
density n(f) in thermal equilibrium at a temperature T. A uniform background of
positive charges is assumed for charge neutrality. The external impurity charge polarises
the medium and brings about a redistribution of the electronic charge density n(T, T)
around it. The basic temperature dependent Kohn-Sham equations for the effective potential
(neglecting the exchange-correlation effects and trying Z = 1) is,

2 ! ot
- . -€ 2 n(f , T)dr
Ve [Ton, T ] = — te S —_——lf-fll (1)
or in momentum space,
_ -2 el 2 me2 _
Vg [0, T] = + -n(g, T) )

q q

In the linear response theory, the density deviation n(q, T) is approximated as
responding linearly to the effective potential

n@g, T) = X @nT) Vg [Tn,T) ?3)

where X (@, n, T) is the temperature-dependent response function. The screened potential
is given by
—2 me? 1

\' »n, T = 4
e (B T] a 1-Q me¥9 X @n, T @

The function X is the retarded polarization and at zero temperature it is a
wellknown Lindhard function. The Lindhard function generalized to non-zero temperature
is

d’p  fp + - f(P)

X @ n, T) = (%)
@m)* €p- fp+q
with €§ = 'th2/2m and f(p) is the Fermi function for the electrons :
- 1
f(p) = (6)

exp [B(eﬁ-u )] + 1
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The chemical potential i appropriate to the temperature T and electron density n(T) must
be determined from the condition

n = 2 f

d%k 1
5 Fi2k2 Y
@my exp [B(zp—- )] +1

Thus U /E is a function of T only, and does not depend separately on n and T. Our task
in this section is to calculate X (q, n, T) analytically. Making transformations, p + Q-
K for f(p + @) and g P+ and p—--p for f(p) ande B using the fact that € - = €

P p
and f(-p) = f(p), we get

X @, n, T) = 5 R
@m) e B
2 e 2T e
= —_ [pfpp [ ———o ®)
1r2112q [¢] o 2pcosb-q

Consider the angular integral, 1(8);

2 27
9= L -1, D
o 2pcosd-q 9 4 acosd-l
wherea = 2p/q. Letz = eie, cos® = Ya(z + %), it follows that
-2i dz
10 = o ¢

= RV 1
/z/=1 (z a) + (1 a_z)

with the poles at % il - lz)l/2 fora? >1and é— + (iz - l)l/2 for a? < 1. Since the sum
a a

of residues in case of a% > 1 is zero, there is no contribution to the integration froma% > 1.
A . .
For a® < 1, only the pole at % - (l2 - 1)”2 lies inside the unitcircle | z| = 1 and the maximum
a

value of a is unity. It follows that the upper limit of the p-integration in eq. (8) is q/2. Since
the residue of the pole is -‘/z(l2 - 1)1/2, the value of 1 (8) is, then, 1 (8) = -2 T /(q? - 4pH) s
a

and eq.(8) becomes

q/2
4 f 4
X @nD = 2B PO _ A gq, ©
Thi /qz _4p? Thlg
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q/2
ith  h(@,n, T = ; _pi@)p 10
wit @n,T) S Ve (10)

q°-4p

Using these equations, the effective potential in eq.(4) becomes

- -4T
\" ,n, T = (11
ert(@ ™ 1) 4 + 8h(@, m, T)/q 1n

where the unit of e = 2, h? = 2m = 1 have been used. The Fourier transform of eq.(11)
is
V (f,n,T) = —"—2 Fd2qV g (@, n, T) el T
2m)

T lo@nd
= 27 2(1 o (qr) dq (12)
o q° + 8h(@,n, T)

where J(x) is the Bessel function of order zero. The effective potential will be used to
calculate the ground state energy of an electron trapped by the impurity potential in the
next section. Variation of X (q, n, T) with q at various values of T is shown in Fig. 13,
where we use the unit that h%2 = 2m = 1 and e2 = 2. For low temperature limit, X is
approximately constant with the value of 0.159. This constant agrees quite well with that
calculated by Maldague The curves are drastically change for q > 2k and go to zero as
q—>. X isexactly constantat T = Oupto q = 2kg, whereas ithasa logarlthmlc slope
at q = kg in 3-D case (see, for example, Zlmans) For q > 2kp, it decreases as l/q for
the low temperature limit. At higher temperature the curves converge slowly and the sharpness
near q = 2kg is disappears.

Ground state energy of bound system

The ground state energy of an electron trapped by the impurity potential can be
evaluated by the variational method. The trial wavefunction is Y(T) = Ae’Y T, where Y
is a real positive parameter to be detzermmed by minimising the energy. The normalization
condition of ¥ (T) gives A% = Y . The ground state energy, E; (Y), is

E(Y)= <V @]-y2+Vug@nD|v O > (13)
2 _ d? 1 d. o .
where V < = — + T is the kinetic energy operator. The expectation value of the
dr

kinetic energy is
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* 2
<V @-7v@ s> = s+ Ly ym ag
dr r dr

= Y2

and the expectation value of the effective potential is

o 24
<Y (ﬂlVe T, n, T)l (r) > =-16 -Y3 ! q3dq 5
ff( v 0o [q2 + 8h(ﬁ,n,T)] [4Y2 + qz ]3/2

Since the long wavelengthvalue of h(q, n, T) is the maximum value of X (q,n, T)
in both high and low temperature limits, we have

h(g,n,T) ~q/4 forq—0,T—0
~ q/4t forq—=0,T-->»

where t = T/Tp. This is equivalent to taking Yukawa type potential. This approximation
is not bad because X (q, n, T) remains constant in both the limits over a substantial range
of q, as can be seen from Fig. 1. We, therefore, can calculate the ground state energy at
low and high temperature with screening effect.

Low temperature limit

In this limit, eq. (15) becomes

<y M| VT, D |y (O > =-167°%1

-]

g dq
o (@+2)@y2+ g2

where I =

Lettingq + 2 = zand a = 4y 2 + 4, then

V2
S WS HFS N S G0 SRS I B
ay? ¥ a¥? y2 .Yl y2 4
Vov2
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Thus
_ : 4y -4y?2
<d)(?)|Veff(r,n,T)|1p(ﬂ>=-4Y+(Y2___Y._)
Y+ 1
3 I v2

(2+ 1 yrayl y2ig

The ground state energy in the low temperature limit is,

4y-4y2 4%} In I )

Eo(Y) = J-4y + (16)
T -0 Y+ 1 (v + 12 Y2+Y‘/ Y2+ 1
q—0 '

9E,

The condition 3y = 0 is a condition of minimum energy and it leads to the

cubic equation which can be solved numerically to give Y ,~ 1.2134. The corresponding
ground state energy is

E,~ -0.535568 Ryd.

> 0 has been checked to ensure minimum. This value should be

2
The condition 9 I;:
Y4 Y

compared with Ej = - 4.0 rydberg when there is no screening.

Hi'gh temperature limit

A similar procedure of calculation in this limit leads to the expectation value of
Veff(?, n, T) being

<V OV D| ¥ (D>
LAva-yy _avde@ o v yre -

(Y22+1) (Y2 +D¥2 W24yt Y 4

= -4y

Leading to the ground state energy

3.2 V ov22.
aa-yy eyl o Y YRelol

—— ¢)]
(Y42 + 1) (y%2 + 1)¥? Y22 + YtJ Y2241

Ef(Y) = Y2-4Y +
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which is also a function of temperature. The condition 0Ey(Y)/3Y = Oleads to the
equation

V3¢ Yt ) 1 .,
(Y2412 Vy22 0101 y22eyed X
3r2e In Y22 41 -1 )+Y2t2+2Yt-l+(l_Y_)=0
T 22, 142 ;
24yt Y2 41 (yt"+ 1) 2

( .Y2t2 +1 )5/ 2 y
Numerical values of 'y and the corresponding values of ground state energy at various -

high temperatures are listed in Table 1, and shown in Fig. 2. Fort > 4, the approximation
is reasonably treated quite well when compared with the result by Stern and Howard!.

TABLE 1. VALUES OF Y AND THE CORRESPONDING VALUES OF E, AT
VARIOUS HIGH TEMPERATURES

t Y E, (Rydbergs)
5 1.814 -2.311758
6 1.842 -2.600770
7 1.864 -2.806932
8 1.881 -2.960399
9 1.893 -3.079130
10 1.904 -3.173657

Discussion

My analysis is based on the linear response theory which would be valid for small
Z impurities (in this case, Z = 1). For large Z impurities, a non-linear theory is needed.
In 3-D case and at T = 0, such a non-linear screening theory was investigated by Almbladh
et al.%, which showed significant differences from the results of the linear theory. The
density functional theory of Hohenberg-Kohn-Sham at finite temperatures can be applied
for obtaining the energy spectrum of high Z ions. However, we must include the term
V. [nT]=6Q xc [n, T}/ § n(r) in the effective potential given by eq.(1).2 ,_is the
thermodynamic potential due to exchange and correlation effects and V, . is the corres-
ponding exchange and correlation potential. In 3-D case, Gupta and Rajagopal’ showed
the effect of including ch on the bound state spectrum of neon nucleus (Z = 10)
embedded in a plasma of electron density n = 10%* electrons/cm? at a temperature T =
100 eV = 1.2x 10° K. The effect was found'to be very substantial. ¢ 1s Is lowered by
aboute 6 %, € 25 by 20 % and € 2 by as much as 30% compared to the self-consistent
Hartree result. In 2-D case. Phatisena er al.3 calculated the value of V.. at various densities
and temperatures. The finite temperature non-linear theory for two-dimensional system
will be reported latter.
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Figure 1. Variation of X (Q, n, t) with Q = g/ ka at various t = T/Tg
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Figure 2. Ground state energy E, as a function of t = T/Tg at high temperatu



J. Sci. Soc. Thailand, 13 (1987} 229

Acknowledgment

The author would like to thank Dr. Panat and Dr. Amritkar of University of

Poona, India, for numerous valuable discussions as well as for detailed comments on the

manuscript.

References

1.

Stern, F. and Howard, W.E. (1967). Properties of semiconductor surface inversion layers in the electric
quantum limit. Phys. Rev. 163, 816-835.

. Gupta, U. and Rajagopal, A.K. (1979). Plasma screening effects in the intermediate degeneracy region. J,

Phys. B12, L703-L709.

. Phatisena, S., Amritkar, R.E., and Panat, P.V. (1986). Exchange and correlation potential for a two-

dimensional electron gas at finite temperatures. Phys. Rev. A34, 5070-5079.

4. Maldague, P.F. (1978). Many-body corrections to the polarizability of the two-dimensional electron gas.
Surf. Sci. 13, 296-302.
5. Ziman, J.M. (1964). Principles of the Theory of Solids, Cambridge University Press, Cambridge, P. 155.
6. Almbladh, C.O., von Barth, U., Popovic, Z.D., and Stott, M.J. (1976). Screening of a proton in an
electron gas. Phys. Rev. B14, 2250-2254,
7. Gupta, U. and Rajagopal, A.K. (1982). Density functional formalism at finite temperatures with some
applications. Physics Reports 87, 259-311.
unfade

a ¥ dat v - X o e e anda a o -
ﬂnﬂ']“ﬂﬂa\"\”ﬁnuﬂuﬂawaﬂﬂquﬂﬁn’]uzwu‘uﬂdT:UU“naaLﬁnﬂ’auaﬂ\’uﬂﬂ”ﬂq"laﬂﬂu Iﬂﬂl'ﬂﬂqyg

a w - o . a4 X | a a ' - ) P
MITUDINDULTITU luﬂd'ﬁ’]nﬁd'ﬂu Lindhard ‘H\ﬂluﬂqnUqmﬂqﬂtlﬂ:ﬂjquﬂuﬂlu‘v{uﬂlﬂdf:U’J uﬂqgﬁqﬂﬂﬂq"luﬂ'n

r) }4 a as e ¥ 2ave o ddan o o P X %
ARUIIN 9 mqmuqugoua:qquum muuaalmﬂomuunaumanm'zmwmmu*nanﬂutwuwaes:uuTmu1’n

an 9 v o v oA a
AFNsul T Nﬂﬂvlﬂﬂaﬂﬂﬂa\’nuﬂﬂ\r]u'ﬂﬂ\’ Stern 8z Howard Iﬂﬂlﬂwqtaﬂqqﬂﬂﬂa‘mﬁquﬁd 9





